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ABSTRACT

Accurate simulation of the cracking process caused by rust expansion of reinforced concrete (RC) structures plays
an intuitive role in revealing the corrosion-induced failure mechanism. Considering the quasi-brittle fracture
of concrete, the fracture phase field driven by the compressive-shear term is constructed and added to the
traditional brittle fracture phase field model. The rationality of the proposed model is verified by a mixed fracture
example under a shear displacement load. Then, the extended fracture phase model is applied to simulate the
corrosion-induced cracking process of RC. The cracking patterns caused by non-uniform corrosion expansion
are discussed for RC specimens with homogeneous macroscopically or heterogeneous with different polygonal
aggregate distributions at the mesoscopic scale. Then, the effects of the protective layer on the crack propagation
trajectory and cracking resistance are investigated, illustrating that the cracking angle and cracking resistance
increase with the increase of the protective layer thickness, consistent with the experimental observation. Finally,
the corrosion-induced cracking process of concrete specimens with large and small spacing rebars is simulated, and
the interaction of multiple corrosion cracking is easily influenced by the reinforcement spacing, which increases
with the decrease of the steel bar interval. These conclusions play an important role in the design of engineering
anti-corrosion measures. The fracture phase field model can provide strong support for the life assessment of RC
structures.
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1 Introduction

Concrete is an important building material, and its fracture characteristics play a key role in
engineering safety [1]. The cracking failure of reinforced concrete (RC) structures caused by rebar
corrosion and rust expansion has always been one of the main problems encountered in the service
of concrete infrastructure, especially in the marine environment. The rebar corrosion process can
be divided into three stages. In the first stage, once the chloride ion concentration around the
reinforcement reaches the threshold, the protective passive film around the reinforcement starts to
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dissolve, leading to the start of reinforcement corrosion. In the second stage, the corrosion products of
reinforcement continuously form, resulting in tensile stress in the concrete at the corrosion site. In the
third stage, the rust expansion-induced crack initiates and gradually extends to the whole protective
layer, which may cause the protective layer to peel off from the concrete structural members, e.g.,
beams, columns, and piers [2].

The simulation research of the concrete fracture process, especially the crack initiation and
propagation, has attracted great attention. The failure simulation methods used for concrete materials
and structures are usually classified into two broad categories, i.e., discrete crack approach vs. smeared
or diffuse damage approach. In the discrete approach, cracks are either formed by the separation of
elements [3,4] or by adding discontinuous enrichment functions in the elements [5,6], which makes
the initiation of cracks dependent on mesh division or crack preset. For the former, the fracture
energy will be overestimated because the crack can only propagate along the boundary of the element.
Sanz et al. [7] developed an expansive joint element to simulate the oxide expansion and used an
adaptable embedded cohesive crack element to describe concrete cracking, by which the numerical
crack pattern agreed well with their experimental observations. For the latter, that is the extended
finite element method (XFEM), the crack can propagate freely in the fixed mesh because of the employ
of the level sets representation technology of cracks [8]. Therefore, the XFEM was used to simulate
the concrete cover cracking due to the corrosion of steel bars [9,10]. Recently, the effect of transverse
cracks on corrosion-induced cracking has been investigated based on a three-dimensional diffusion-
mechanical XFEM simulation [11], where the corrosion-induced crack paths under different transverse
crack morphology were tracked without remeshing. Nevertheless, in the XFEM model, the crack
initiation, the crack extending direction, and the cracking distance must be well-defined according
to certain fracture criteria.

For the diffuse damage approach, the damage is used to describe the crack initiation and evolution.
However, if the concrete is treated as a homogeneous material, it is difficult to simulate the effect
of damage localization. Based on the elastic damage model, Zhu et al. simulated the localized
damage distribution by introducing the random mechanical characteristics with Weibull distribution
[12,13]; however, the damage pattern differs from the actual concrete fracture mode, which limited
the application of the elastic damage model in concrete structures because of the homogenization
treatment requirement. Another way to promote damage localization is to employ the nonlocal
integral averaging operator for the damage variable or related stress, and strain variables [14–17].
In the nonlocal damage model, although the problem of mesh sensitivity and size effect is solved,
the stress locking cannot be avoided because no energy release mechanism of the microstructure is
reflected. Recently, an integral nonlocal peridynamic model, first proposed by Silling et al. [18,19],
has been widely followed with interest [20–24] because of its strong failure simulation capability. Zhao
et al. proposed a partially-homogenized stochastic peridynamic model with the simplest constitutive
relation to simulate the concrete fracture caused by rebar corrosion [25]. Although the corrosion
cracking of the concrete cover layer is successfully presented, the computational cost of peridynamics
is still very high.

Another diffuse approach simulating crack growth is the very popular phase field method [26–
32], where the crack is characterized as a continuous damage function defined by order parameters.
The phase-field model is mainly formulated based on the variational approach to fracture mechanics
[33–37], where the free energy degradation function is sometimes employed to promote damage
localization. Because no need to deal with the update of crack geometry, the phase-field approach
has been successfully applied to the simulation of the non-uniform corrosion fracture of reinforced
concrete [38,39], where the chloride and oxygen diffusion, electrochemical reaction, and concrete cover
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cracking were coupled at mesoscale for RC. However, the effect of the interfacial transition zone (ITZ)
between aggregates and cement paste on the corrosion-induced cracking path has not been deeply
investigated. In addition, only the circular aggregate is involved, while the polygonal aggregate is not
yet considered.

In summary, because of the advantages of the fracture phase field method in tracking crack
propagation with no requirement for explicit fracture criteria and mesh reconstruction, the fracture
phase field method will be adopted and modified to simulate the corrosion-induced cracking of RC
structures for the possible quasi-brittle fracture. The cracking patterns of different RC specimens
macroscopically homogeneous or microscopically heterogeneous with different polygonal aggregate
distributions will be explored respectively. Furthermore, the effects of protective layer thickness on the
corrosion-induced cracking path will be investigated for the concrete specimens with single-, double-,
or multi-steel bars.

This paper is organized as follows. In Section 2, an extended fracture phase field for mixed mode
fracture is constructed. In Section 3, the rationality verification of the proposed fracture phase model is
provided by a designed example. The elliptical non-uniform corrosion distribution model of reinforced
concrete is given in Section 4. In Section 5, the fracture phase field simulations of rust expansion failure
of RC specimens with single-, double-, and multi-steel bars at the homogeneous macroscale and the
heterogeneous mesoscale are presented respectively, in which the cracking patterns are discussed in
detail. Finally, Section 6 summarizes the present study.

2 An Extended Phase Field Model for Mixed Mode Fracture

The total potential energy for a cracking system is composed of elastic strain potential energy,
dissipative potential energy generated by fracture, and external force potential energy [40], that is

�opt (u, �) =
∫

Ω

ψε (ε) dΩ +
∫

�

GcdS −
∫

Ωb

b · udΩ −
∫

∂Ωt

f · udS (1)

where u is the displacement vector, �t is the crack surface, b denotes the body force, f is the boundary
traction, ε is the strain tensor and ψε (ε) elastic strain energy density, Gc is the surface release energy
per unit cracking area of the material, Ωb denotes the action domain of body force, ∂Ωt denotes the
boundary of traction.

Bourdin et al. [26] defined the fracture phase field by introducing an order parameter variable
ϕ ∈ [0, 1] as presented in Fig. 1, for which ϕ = 0 means an intact state, while ϕ = 1 denotes a
completely cracked state. The fracture surface energy released at the cracking surface can be equivalent
to the phase transition energy due to the fracture or damage in the fracture zone, that is

Figure 1: Phase-field approximation of the crack surface
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∫
Γ

GcdS =
∫

Ω

(γt (ϕt) + γs (ϕs)) dΩ (2)

where γt (ϕt) and γs (ϕs) are the phase transition energy density function for tensile fracture and shear
fracture, respectively, which are defined as follows:⎧⎪⎪⎨
⎪⎪⎩

γt (ϕt, ∇ϕt) = GcI

2l0

(
ϕ2

t + l0
2|∇ϕt|2

)

γs (ϕs, ∇ϕs) = GcII

2l0

(
ϕ2

s + l0
2|∇ϕs|2

) (3)

where GcI , GcII are critical fracture energy release rates for mode I and mode II, respectively, the
scale parameter l0 is an intrinsic material property and used to control the crack “diffusion” amount.
Therefore, the dissipative potential energy due to the cracking surface can be further expressed as∫

Γ

GcdS =
∫

Ω

{
GcI

[
ϕ2

t

2l0

+ l0

2
|∇ϕt|2

]
+ GcII

[
ϕ2

s

2l0

+ l0

2
|∇ϕs|2

]}
dΩ (4)

Francfort et al. [40] pointed out that the release of elastic energy drives the evolution of the fracture
phase field. Assuming that the crack is only driven by the tensile strain [41], the strain tensor ε can be
decomposed into tensile and compressed parts as follows:⎧⎪⎪⎨
⎪⎪⎩

ε+ =
3∑

a=1

〈εa〉+ na ⊗ na

ε− =
3∑

a=1

〈εa〉− na ⊗ na

(5)

where ε+ and ε− are tension and compression strain tensor, respectively, εa is the principal strain, na is
the corresponding principal direction. Operators 〈·〉+ and 〈·〉− are defined [41] as 〈·〉+ = (· + |·|)/2 and
〈·〉− = (· − |·|)/2. For isotropic material, the strain energy density in tension and compression can be
obtained as follows:⎧⎪⎪⎨
⎪⎪⎩

ψ+
ε

(ε) = λ

2
〈tr (ε)〉2

+ + μtr
(
ε2

+
)

ψ−
ε

(ε) = λ

2
〈tr (ε)〉2

− + μtr
(
ε2

−
) = ψ−vol

ε
(ε) + ψ−dev

ε
(ε)

(6)

where λ is the Lame constant, μ is the shear modulus, tr(·) denotes the trace operator. So, the elastic
strain energy density is expressed as [42]

ψε (ε) = gt (ϕt) ψ+
ε

(ε) + gs (ϕs) ψ−dev
ε

(ε) + ψ−vol
ε

(ε) (7)

where gt (φt) and gs (φs) are the energy degradation functions for tensile-shear and compressive-shear
state respectively. At present state-of-art, we choose a quadratical function to depict the tensile-shear
energy dissipation mechanism. Considering the mechanism of residual shear stiffness and energy decay
rate decreasing during the shear instability process, we construct an exponential decay function to
depict the compressive-shear energy dissipation mechanism, i.e.,{

gt (ϕt) = (1 − ϕt)
2

gs (ϕs) = 1 − ae1−ϕsϕs
(8)

where a represents the complete loss coefficient of shear stiffness, with a value range of 0 ≤ a ≤ 1,
depending on the hydrostatic pressure it is subjected to. The larger the hydrostatic pressure, the higher
the maintenance of shear resistance, and the smaller the value of a.
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Without considering the kinetic energy term, the total Lagrangian energy functional can be
expressed as the sum of the fracture energy of Eq. (4), the elastic energy of Eq. (7), and the external
force potential energy caused by the external load.

L = ∫
Ω

{
(1 − ϕt)

2
ψ+

ε
(ε) + (

1 − ae1−ϕsϕs

)
ψ−dev

ε
(ε) + ψ−vol

ε
(ε)

}
dΩ

+ ∫
Ω

GcI

[
ϕ2

t

2l0

+ l0

2
|∇ϕt|2

]
dΩ + ∫

Ω
GcII

[
ϕ2

s

2l0

+ l0

2
|∇ϕs|2

]
dΩ −

(∫
Ωb

b · udΩ + ∫
∂Ωt

f · udS
) (9)

The above energy functional integral equation is discretized by finite element method and intro-
duces the interpolation mode of displacement and fracture phase field of element, the corresponding
finite element incremental solution format can be obtained by variational extreme value of functional
L for node displacements and node fracture phase variables as follows:⎧⎨
⎩

u
ϕt

ϕs

⎫⎬
⎭

t+�t

=
⎧⎨
⎩

u
ϕt

ϕs

⎫⎬
⎭

t

−
⎡
⎣Kuu Kuϕt Kuϕs

Kϕtu Kϕtϕt Kϕtϕs

Kϕsu Kϕsϕt Kϕsϕs

⎤
⎦

−1

t

⎧⎨
⎩

Ru

Rϕt

Rϕs

⎫⎬
⎭

t

(10)

where Ru,Rϕt and Rϕs are respectively the residual vectors for stress and phase diffusion equilibrium,
which are specifically expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ru =
ne∧

e=1

∫
Ωe (Bu)

T σdV −
ne∧

e=1

∫
Ωe

b
(Nu)

T bdV −
ne∧

e=1

∫
∂Ωe

t
(Nu)

T f dS

Rϕt =
ne∧

e=1

∫
Ωe

{[
2l0 (1 − m) H+

GcI

+ 1
]

Nϕtϕt − 2l0 (1 − m) H+
GcI

+ l2
0 (Bϕt)

T ∇ϕt

}
dV

Rϕs =
ne∧

e=1

∫
Ωe

{(
al0e1−Nϕs ϕsHdev

−
GcII

+ 1
)

Nϕsϕs − al0e1−Nϕs ϕsHdev
−

GcII

+ l2
0 (Bϕs)

T ∇ϕs

}
dV

(11)

where ‘Λ’ denotes the assemble operator of the vectors in element level, the maxmum tensile strain
energy density in history H+ and the maxmum compressive-shear strain energy density in history Hdev

−
are introduced for replacing the ψ+

ε
(ε) and ψ−dev

ε
(ε) respectively to consider the irreversibility of energy

dissipation, Bu is the strain matrix, Nu is the displacement shape function matrix, Nϕt and Nϕs are the
phase field shape function array, Bϕt and Bϕs are the phase field gradient matrix, and σ is the Cauchy
stress of the last load iteration step, which can be obtained as follows:

σ = [
(1 − m) (1 − ϕt)

2 + m
] ∂ψ+

ε

∂ε
+ (

1 − ae1−ϕsϕs

) ∂ψ−dev
ε

∂ε
+ ∂ψ−vol

ε

∂ε
(12)

where m are parameters much smaller than one, introduced for numerical convergence. The subma-
trixes in the generalized stiffness matrix K are as follows:

Kuu = ∂Ru

∂u
, Kuϕt = ∂Ru

∂ϕt

, Kuϕs = ∂Ru

∂ϕs

Kϕtu = ∂Rϕt

∂u
, Kϕtϕt = ∂Rϕt

∂ϕt

, Kϕtϕs = ∂Rϕt

∂ϕs

Kϕsu = ∂Rϕs

∂u
, Kϕsϕt = ∂Rϕs

∂ϕt

Kϕsϕs = ∂Rϕs

∂ϕs

(13)
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To facilitate implementation in COMSOL software, the corresponding strong form of the differ-
ential equations are adopted as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · σ + b = 0
[

2l0 (1 − m) H+
GcI

+ 1
]

ϕt − 2l0 (1 − m) H+
GcI

= l2
0∇2ϕt(

al0e1−ϕsHdev
−

GcII

+ 1
)

ϕs − al0e1−ϕsHdev
−

GcII

= l2
0∇2ϕs

u = u on ∂Ωu; ϕt = ϕt on ∂Ωϕt ; ϕs = ϕs on ∂Ωϕs

σ · n = f on ∂Ωσ ; ∇ϕt · n = 0 on ∂Ωϕ′
t
; ∇ϕs · n = 0 on ∂Ωϕ′

s

(14)

For the solution strategy of the coupled Eq. (14), the staggered iteration scheme is adopted to
ensure the convergence of solving process, and the loading step must be small enough to ensure the
stability of calculation results. The numerical solution flow is shown in Fig. 2.

Figure 2: Flow chart of numerical calculation

To refine the cracked presentation results, a mixed fracture phase field variable φ is defined as
φ = √

ϕ2
t + ϕ2

s .

3 Validation of the Extended Phase Field Model

To verify the rationality of the proposed phase field model, an example of crack tracking under
shear load is designed as follows: A plate with a horizontal edge crack is fixed on the bottom and
a horizontal displacement u∗ is applied to the top boundary under the normal constraint, as shown
in Fig. 3a. For simplicity, the complete loss coefficient of shear stiffness a is taken as 0.7. The failure
results for different critical fracture energy release rates for Type II are presented in Figs. 3b–3d. As
the value of Type II critical energy release rate decreases, the failure mode transitions from pure Type
I fracture to shear failure dominated by Type II, which verifies the rationality of the proposed fracture
phase field model.
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Figure 3: The mixed fracture phase distribution for different value of GcII

4 Corrosion Distribution Model of Reinforced Concrete

In the early study of the distribution characteristics of corrosion products, there was a lack of
accurate tests and observation instruments. Researchers believed that the distribution of corrosion
product layers around reinforcement was uniform. Based on this assumption, theoretical analysis [43]
and test methods [44] can be simplified. However, with the deepening of research, it is found that
the assumption of uniform distribution of corrosion products in reinforced concrete is inconsistent
with the actual situation. Based on the electro-chemical coupling model of RC sample, the corrosion
depth of steel bars at the upstream surface takes on a Gaussian distribution, as shown in Fig. 4.
Yuan et al. [45] gained the oval distribution of reinforcement corrosion for the case of the accelerated
corrosion of RC under an artificial climate environment by using electron microscopy scanning and
electron probe technology, as shown in Fig. 5. In the polar coordinate system established at the centroid
of the reinforcement, the corrosion amount of the reinforcement surface is represented by the loss of
radius, and the expression of the radius loss can be written as follows:

Figure 4: The distribution of rebar corrosion depth
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Figure 5: Model of non-uniform corrosion and expansion distribution of steel bar

Dθ = R − R (R − Dm)√
(R − Dm)

2 cos2 θ + R2 sin2
θ

(15)

where R is the radius of the reinforcement, Dm is the maximal radius loss, which the position locates
the nearest place from the concrete cover surface, and Dθ is the radius loss for any polar angle θ ,
0◦ ≤ θ ≤ 180◦.

After the steel bars are corroded, the molar volume of ferric hydroxide generated is larger than that
of iron, resulting in expansion. The volume of corrosion products is about three to four times that of the
original steel bars [46]. Even if the corrosion depth is Gaussian distribution with the angle around the
steel bar, due to the limitations of the surrounding concrete, the corrosion products will still be filled in
an elliptical distribution. When the corrosion products fill the gap between the reinforcement and the
concrete, the surrounding concrete will be squeezed, resulting in expansion force. The force is in direct
proportion to the volume after corrosion, oval in shape, and opposite to the direction of corrosion. The
rust expansion effect is achieved by applying displacement to the nodes on the reinforcement surface.
From the radius loss expression of Eq. (15), the expansion distribution during the corrosion process
of the reinforcement surface can be obtained as follows:

Ds = R (R + Dmax)√
(R + Dmax)

2 cos2 θ + R2 sin2
θ

− R (16)

where Ds is the rust expansion for any polar angle, Dmax is the maximal rust expansion. The
distributions of the radius loss and the rust expansion are presented in Fig. 5.

5 Simulation of Rust Expansion Failure of Reinforced Concrete Specimens
5.1 Cases of Concrete With a Single Steel Bar

Take the reinforced concrete test specimen with a square cross-section as an example, the side
length of the cross-section is 100 mm, the diameter of the steel reinforcement is 16 mm, and the
thickness of the concrete protective layer is c. In the numerical simulation, the plane strain problem is
considered. The bottom edge of the reinforced concrete specimen is fixed. The displacement loads with
oval distribution, whose maximum amplitude is denoted by Dmax, are applied on the surface of steel
reinforcement, and the loading increment of each step is 1.2 × 10−4 mm. Table 1 shows the material
parameters of concrete taken from Liu et al. [47], where concrete is regarded as a homogeneous
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material. The fracture phase field method is adopted to simulate the corrosion-induced cracking
process of the RC specimen.

Table 1: Parameters of concrete for phase-field model

Parameter Symbol Value

Density (kg/m3) ρ 2300
Elastic modulus (GPa) E 25
Poisson’s ratio μ 0.25
Length scale (mm) l0 0.2
Griffith’s constant for mode I (J/m2) GcI 5
Griffith’s constant for mode II (J/m2) GcII 90

To investigate the influence of the concrete protective layer on the corrosion expansion failure of
reinforced concrete, three different thicknesses, i.e., c = 15 mm, c = 20 mm and c = 25 mm, are selected
for analysis. The calculation results are correspondingly shown in Figs. 6–8. As can be seen in Fig. 6,
for the case of c = 15 mm when Dmax reaches 6.0 × 10−3 mm, cracks first appear in the concrete, and
then begin to expand radially along the reinforcement. After an increase to Dmax = 35.4 × 10−3 mm,
cracks extend to the boundary finally, and the protective layer is cut into two wedge-shaped fragments.
Figs. 7 and 8 show the crack distributions with displacement loads of 6.0 × 10−3, 18.0 × 10−3, and
35.4 × 10−3 mm for c = 20 mm and c = 25 mm, respectively. It is found that with the increase of the
thickness of the concrete protective layer, the length of the cracks decreases significantly at the same
loading level. Meanwhile, with a larger protective layer thickness, the angle between the cracks and
the surface of the left protective layer gradually becomes smaller. In other words, there is a tendency
to expand parallel to the surface of the protective layer, which confirms the findings of Bažant [48].
Besides, Yu et al. [11] studied the development of cracks caused by corrosion expansion of steel bars
with prefabricated transverse cracks in the protective layer, as shown in Fig. 9a, whose experimental
results are shown in Fig. 9b. As can be seen from the figure, in the section at the tip of the prefabricated
transverse crack, the corrosion cracking angle is the smallest, and then gradually increases with the
section away from the prefabricated crack surface, which indirectly confirms the above simulation
conclusions. Furthermore, we reduced the thickness of the protective layer according to the distance
from the prefabricated crack surface on four cross-sections of the test specimen shown in Fig. 9, and
simulated the steel bar rust expansion cracking at the mesoscopic level under the plane strain condition
for the different section, respectively. The final expansion cracking results are shown in Fig. 10, and
it was found that the expansion cracking path is basically consistent with the experimental one for all
corresponding sections.

To investigate the evolution of load exerted on concrete by rust expansion during reinforcement
corrosion, the curves of the reaction force at the maximum corrosion location on the surface of
reinforcement in RC samples with different cover thicknesses vs. rust expansion are extracted from
the numerical results, presented as in Fig. 11. As can be seen that the limit reaction force or the limit
bearing capacity increases as the thickness of protective layer increases. Moreover, the left and middle
subfigures illustrate that the reaction force at the maximum corrosion position rapidly decreases and
tends to zero when damage occurs at that position; and then, as the rust expansion proceeds, the middle
crack develops towards the upstream surface, and the reaction force rebounds slightly followed by
softening release. However, for the thickest protective layer in right subfigure, the damage at corrosion
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area occurs when the cracks on both sides are far from fully developed, and the corresponding reaction
force is rapidly released without subsequent rebound; that is, the intermediate damage does not
develop cracks due to dispersion towards the adjacent reinforcement surface.

Figure 6: Cracking patterns with c = 15 mm at representative loading levels

Figure 7: Cracking patterns with c = 20 mm at representative loading levels

Figure 8: Cracking patterns with c = 25 mm at representative loading levels
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Figure 9: Experimental test cracking pattern in different circumferential cross-sections [11] (Copy-
right obtained: https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=e36d7096-2f67-4cfb-aa9b-
d7e7a3ec52f4)

Figure 10: Numerical verification of experimentally tested cracking patterns for different circumfer-
ential cross-sections

In general, concrete material at the mesoscale is considered to consist of three phases, i.e.,
randomly distributed aggregate, a hardened cement paste, and the interface transition zone (ITZ)
between them. Compared with the cement paste, aggregate is almost impermeable, and hence the
distribution of aggregate may directly affect the diffusion path of chloride ions. As shown in Fig. 12,
the polygonal aggregate is generated for mesoscale modeling of concrete, and the thickness of ITZ is
set as 0.3–0.6 mm [49]. The mechanical properties of aggregate, cement paste, and ITZ are listed in
Table 2 [2,47], where Young’s modulus and the tensile strength of ITZ are the smallest among those of
the three material phases. To capture the significant differences in stress distribution around cracks, the
mesh generation still needs to be very dense, nevertheless, the quadratic element is adopted, especially

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=e36d7096-2f67-4cfb-aa9b-d7e7a3ec52f4
https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=e36d7096-2f67-4cfb-aa9b-d7e7a3ec52f4
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in the areas around reinforcement and ITZ, as shown in Fig. 13, and other examples follow the same
meshing principle.

Figure 11: Curves of reaction force at the maximum corrosion location vs. maximum rust expansion
for different cover thicknesses (left c = 15 mm, middle c = 20 mm, right c = 25 mm)

Figure 12: Meso-scale model of concrete with a steel reinforcement

Table 2: Mechanical properties of aggregate, hardened cement paste and ITZ [2,47]

Parameter Aggregate Hardened cement paste ITZ

Elastic modulus (GPa) 70 25 15
Tensile strength (MPa) 8 4.5 2.5

(Continued)
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Table 2 (continued)

Parameter Aggregate Hardened cement paste ITZ

Poisson’s ratio 0.2 0.2 0.2
Length scale (mm) 0.25 0.2
Griffith’s constant for mode I (J/m2) 5 3.5
Griffith’s constant for mode II (J/m2) 90 52

Figure 13: Finite element mesh of the model

To illustrate the effect of randomly distributed aggregate, Sample A with the random distribution
of mostly elongated and sharp aggregates, Sample B with three gradation random distribution of
blunt polygon aggregates, and Sample C with two gradation random distribution of blunt polygon
aggregates, are chosen as presented in Figs. 14–16. The thickness of the concrete protective layer is
all set as 15 mm. The geometry, loading, and boundary of the inhomogeneous concrete specimens
are the same as those of the above homogeneous concrete specimen. Taking the fracture phase field
modeling, the calculation results are shown in Figs. 14–16, correspondingly. It is interesting to note
that the generation of cracks is more or less similar to the case of homogeneous concrete, but the
growth and development of cracks along the ITZ locally depend on the distribution of aggregates. It
means that the existence of aggregate can hinder and delay the propagation of cracks. Therefore, the
more the aggregate grading, the larger the particle content can be designed. If the interface strength
is sufficient, it is not easy to rust, and even with the same degree of rust, it is not easy to crack and
expand.

When it comes to the mechanism of rust expansion and fracture, the simulation results of
homogeneous concrete can basically show a rough propagation path. However, due to the principle of
weakest component strength, which means that the initiation of rust expansion and crack is determined
by the ITZ in the concrete around the steel bar, further crack propagation will be induced by the ITZ.
Therefore, the strength homogenization treatment of homogeneous concrete is not suitable, which
leads to inaccurate rust crack paths.
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Figure 14: Cracking patterns of Sample A at representative loading levels

Figure 15: Cracking patterns of Sample B at representative loading levels

Figure 16: Cracking patterns of Sample C at representative loading levels

5.2 Cases of Concrete with Multiple Steel Bars
In this section, the corrosion cracking process of reinforced concrete with different spacing

arrangements of steel bars is studied. The first example is a test specimen with 110 mm spacing between
two steel bars, and the diameter of both rebars is 16 mm, as shown in the left of Fig. 17. The loading
and boundary of the specimen are the same as in the previous case of concrete with a single steel bar.
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Fig. 18 shows the cracking patterns at three representative loading levels. Similar to the case of a single
steel bar, the protective layer in the case of two steel bars is still cut into two wedges, while the protective
layer is thin enough and the distance between reinforcements is large enough.

Figure 17: Model of concrete with different spacing arrangements of rebars

To investigate the multiple cracking interactions during the corrosion process, we next consider
another specimen with a small spacing reinforcement arrangement. Except for reducing the spacing
between reinforced bars to 50 mm, the calculated parameters, constraints, and loads of the latter
example are still the same as the former, as shown in the right of Fig. 17. The numerical simulated
cracking process is presented in Fig. 19, in which the crack pattern is similar to that of a single steel
bar at the initial stage. However, when the cracks further expand, the propagation path will be affected
by adjacent cracks, and then the cracks connect and penetrate each other, and finally, the phenomenon
of layered peeling emerges. It is of interest to note that the simulation results are in good agreement
with the experimental results in the Cady et al. [50]. All of these fully demonstrate the feasibility of the
fracture phase field method to simulate the corrosion cracking failure of reinforced concrete.
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Figure 18: Cracking patterns with large spacing rebars at representative loading levels

Figure 19: Cracking patterns with small spacing rebars at representative loading levels

6 Conclusions

Considering the quasi-brittle fracture of concrete, the fracture phase field driven by the
compressive-shear term is constructed and added to the traditional brittle fracture phase field model.
The rationality of the proposed model is verified by a designed example of mixed cracking under
a shear load. The fracture phase field models of RC specimens homogeneous macroscopically or
heterogeneous with different polygonal aggregate distributions at the mesoscopic scale are established,
and their non-uniform corrosion-induced cracking process and cracking patterns are simulated
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successfully. Then, the effects of protective layer thickness on the crack propagation path and cracking
resistance are investigated. Finally, the corrosion-induced cracking process of concrete specimens with
large and small spacing rebars is simulated, and the interaction mechanism of multiple corrosion
cracking is also explored. Some conclusions are obtained as follows:

1) The advantages of fracture phase fields in tracking the corrosion-induced crack propagation
are again demonstrated, namely, no need for explicit fracture criteria, no need to preset cracks,
and no need to re-mesh.

2) The corrosion-induced cracking of concrete is still mainly mode I cracking because the critical
fracture energy release rate of mode II is much greater than that of mode I for concrete material,
which is the square magnitude of the fracture toughness ratio.

3) The cracking resistance of concrete increases with the increase of the protective layer thickness
under the same corrosion expansive level. The thicker the concrete protective layer is, the closer
the crack propagation direction is to the direction parallel to the surface of the protective layer,
which confirms the findings of Bažant.

4) Aggregate within the concrete can hinder and delay the propagation of cracks, while the weak
ITZ can induce cracks to grow or develop towards itself, which results in the corrosion-induced
cracking path locally depending on the distribution, shape, and grade of aggregates. Never-
theless, the cracking pattern for heterogeneous concrete with different randomly distributed
aggregates is more or less similar to the case of homogeneous concrete under the same non-
uniform corrosion of steel bar.

5) The cracks caused by the rust expansion of adjacent reinforcements are easy to coalesce with
the decrease of reinforcement spacing; that is, when the spacing of reinforcement is closer, the
rust expansion cracks are easier to connect and penetrate.

It should be noted that the Phase-field model of compression shear fracture proposed in this paper
is not perfect, for example, the correlation between residual shear stiffness and spherical stress has not
been established, and how to properly calibrate the length scale parameters of mode I and mode II
fractures. The more efficient adaptive algorithm and the more perfect fracture Phase-field model will
be explored in another paper.

Acknowledgement: The financial support of the National Natural Science Foundation of China and
the Fundamental Research Funds for the Central Universities is gratefully acknowledged.

Funding Statement: This work has been partially supported by the National Natural Science Foun-
dation of China (Qing Zhang, Nos. 11932006, U1934206, 12172121), and the Fundamental Research
Funds for the Central Universities (Xin Gu, No. B210201031).

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Xiaozhou Xia; computational simulation: Changsheng Qin; analysis and interpretation
of results: Xiaozhou Xia, Guangda Lu, Xin Gu; draft manuscript preparation: Xiaozhou Xia, Xin
Gu, Guangda Lu, Qing Zhang. All authors reviewed the results and approved the final version of the
manuscript.

Availability of Data and Materials: Readers can access the data used in the study by Email xiaxi-
aozhou@163.com.



2274 CMES, 2024, vol.138, no.3

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Xiao, Y. X., Lu, N. W., Chen, F. H. (2020). The shear capacity of steel-ultra-high performance concrete

composite board connectors. Journal of Transport Science and Engineering, 36(1), 44–49 (In Chinese).
2. Chen, A. R., Pan, Z. C., Ma, R. J. (2017). Mesoscopic simulation of steel rebar corrosion process in concrete

and its damage to concrete cover. Structure and Infrastructure Engineering, 13(4), 478–493.
3. Ortiz, M., Pandolfi, A. (1999). Finite-deformation irreversible cohesive elements for three-dimensional

crack-propagation analysis. International Journal for Numerical Methods in Engineering, 44(9), 1267–1282.
4. Zhang, Y. F., Xia, X. Z., Wu, Z., Zhang, Q. (2020). The effect of initial defects on over-

all mechanical properties of concrete material. Computers, Materials & Continua, 62(1), 413–442.
https://doi.org/10.32604/cmc.2020.04660

5. Moës, N., Dolbow, J., Belytschko, T. (1999). A finite element method for crack growth without remeshing.
International Journal for Numerical Methods in Engineering, 46(1), 131–150.

6. Khoei, A. R. (2014). Extended finite element method: Theory and applications. Hoboken: John Wiley & Sons.
7. Sanz, B., Planas, J., Sancho, J. M. (2013). An experimental and numerical study of the pattern of cracking

of concrete due to steel reinforcement corrosion. Engineering Fracture Mechanics, 114, 26–41.
8. Stolarska, M., Chopp, D. L., Moës, N., Belytschko, T. (2001). Modelling crack growth by level sets in

the extended finite element method. International Journal for Numerical Methods in Engineering, 51(8),
943–960.

9. Mirzaee, M. J., Alaee, F. J., Hajsadeghi, M., Zirakian, T. (2017). Numerical modeling of concrete cover
cracking due to steel reinforcing bars corrosion. Structural Engineering and Mechanics, 61(6), 693–700.

10. Guzmán, S., Gálvez, J. C., Sancho, J. M. (2011). Cover cracking of reinforced concrete due to rebar corrosion
induced by chloride penetration. Cement and Concrete Research, 41(8), 893–902.

11. Yu, S., Jin, H. (2020). Modeling of the corrosion-induced crack in concrete contained transverse crack
subject to chloride ion penetration. Construction and Building Materials, 258(1), 119645.

12. Zhu, W. C., Teng, J. G., Tang, C. A. (2004). Mesomechanical model for concrete. Part I: Model development.
Magazine of Concrete Research, 56(6), 313–330.

13. Teng, J. G., Zhu, W. C., Tang, C. A. (2004). Mesomechanical model for concrete. Part II: Application.
Magazine of Concrete Research, 56(6), 331–345.

14. Bazant, Z. P., Lin, F. B. (1988). Nonlocal smeared cracking model for concrete fracture. Journal of Structural
Engineering, 114(11), 2493–2510.

15. Bazant, Z. P., Pijaudier-Cabot, G. (1988). Nonlocal continuum damage, localization instability and conver-
gence. Journal of Applied Mechanics, 55(2), 287–293.

16. Jirasek, M. (1998). Nonlocal models for damage and fracture: Comparison of approaches. International
Journal of Solids and Structures, 35(31–32), 4133–4145.
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