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ABSTRACT

In this paper, given the shortcomings of jellyfish search algorithm with low search ability in the early stage and easy
to fall into local optimal solution, this paper introduces adaptive weight function and elite strategy, improving
the global search scope in the early stage and the ability to refine the local development in the later stage. In
the numerical study, the benchmark problem of dimensional optimization with a 10-bar truss structure and
simultaneous dimensional shape optimization with a 15-bar truss structure is adopted, and the corresponding
penalty method is used for constraint treatment. The test results show that the improved jellyfish search algorithm
can provide better truss sections as well as weights. Because when the steel main truss of the large-span covered
bridge is lifted, the site is limited and the large lifting equipment cannot enter the site, and the original structure
does not meet the problem of stress concentration and large deformation of the bolt group, so the spreader is used
to lift, and the improved jellyfish search algorithm is introduced into the design optimization of the spreader. The
results show that the improved jellyfish algorithm can efficiently and accurately find out the optimal shape and
weight of the spreader, and through Midas Civil simulation, the spreader used can meet the requirements of weight
and safety.
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1 Introduction

In recent years, the emergence of various lifting equipment, construction site various installation
and lifting technology is becoming more and more mature, but in the face of the problem of lifting the
superstructure of the large-span covered bridge, due to the limitation of large-scale lifting equipment,
coupled with the influence of the river bank, it is difficult to build a lifting structure, and can only
consider the use of jacks for lifting on the original structure. At this point it is about whether the
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weight of the structure to be lifted can meet the lifting limits of the jack and whether the force can
meet the safety requirements.

Nowadays, the continuous in-depth research of intelligent algorithms by scholars from all over
the world has introduced various algorithms into the weight, shape and topology optimization of
structures, and solved many engineering problems.

Shi et al. [1] proposed a new hybrid algorithm, namely the improved plant growth simulation
algorithm and the genetic mixing algorithm, and the optimization efficiency and effect of PGSA-GA
are better than other algorithms and methods through the case studies of typical trusses and single-
layer lattice shells; Kim et al. [2] proposed an efficient two-stage optimization program based on force
method to correctly identify the location and extent of multiple damage in planar and space truss
structures; Viet-Hung et al. [3] developed a robust method for dimensional optimization (RBDO)
of truss structures by integrating nonlinear inelastic analysis, structural reliability analysis methods,
and optimization methods based on differential evolution (DE) algorithms. Azad et al. [4] solved the
problem of simultaneous optimization of dimensions and geometry of dynamically excited steel truss
structures. Using the well-known Big Bang-Big Crunch algorithm, the minimum weight design of steel
truss is carried out under periodic and a periodic excitation; Grzywinski et al. [5] proposed a novel
and effective Jaya optimization algorithm for optimization the best quality of the supporting dome
structure with natural frequency constraints; Habibi et al. [6] considered the geometric nonlinearity
problem using the total Lagrangian formula, and obtain a nonlinear solution by introducing and
minimizing the objective function constrained by the displacement type; Artar et al. [7] studied the
optimal design of steel space truss towers under seismic load by using the Jaya optimization algorithm;
Kaveh et al. [8] proposed a new Gaussian diagram-based Chaotic Firefly Algorithm (CGFA) for
structural optimization problems. Wong et al. [9] investigated a new meta-heuristic algorithm called
symbiotic organism search (SOS) for component size optimization of relatively large steel trusses;
Ha et al. [10] developed an effective method to optimize nonlinear steel frames under several load
combinations, considering the panel area for the first time in the optimization design. The double-layer
board is designed to prevent shear deformation of the panel area; Gholizadeh et al. [11] proposed a
new and efficient meta-heuristic, the Newtonian meta-heuristic (NMA). Seismic design optimization
for steel bending moment frames based on discrete properties; Es-Haghi et al. [12] proposed an
asymmetric genetic algorithm (AGA) to solve the optimization problem of steel frames, and optimized
a 15-layer three-layer steel flat frame through AGA, AGA can reduce the analysis time, the number
of analyses and the total weight of the structure; Truong et al. [13] proposed a gradient tree boosting
(GTB) algorithm for the safety assessment of steel trusses, which was first generated using advanced
analysis methods to consider the geometry of the structure and the non-linearity of the material.
Then, four GTB models are proposed to predict the ultimate bearing capacity and displacement of the
structure for safety evaluation of strength and suitability. Zhou et al. [14] proposed a hybrid strategy
based on butterfly optimization algorithm (BOA) and differential evolution algorithm (DE), and
experimental tests of 8-layer shear steel frame structure in the laboratory to evaluate its performance.
Numerical and experimental results show that the proposed HBODEA is more powerful in detecting
the stiffness reduction of limited sensors and contamination measurement results. Bigham et al. [15]
proposed an improved electrical search algorithm to solve the topology optimization problem of
nonlinear single-layer domes; Gholizadeh et al. [16] used the proposed algorithm to design a 6-layer
and 12-layer steel bending moment frame and evaluate it. The optimal design of seismic performance
and collapse capacity used the failure index and incremental dynamic analysis, and evaluated their
seismic failure cost and adjusted collapse allowance ratio; Artar et al. [17] proposed teaching-based
optimization (TLBO) and biogeography-based optimization (BBO) algorithms to study the optimal
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discrete size design of steel truss steel bridges to minimize structural weight; Azad et al. [18] proposed
a computationally efficient multi-stage guided random search algorithm for the optimization and
standardization of real-size free steel double-layer grids. Carbas et al. [19] investigated the design of the
optimal discrete dimensions of a steel plane truss containing the effects of seismic loads by teaching-
based optimization (TLBO) and biogeography-based optimization (BBO) meta-heuristics; In order to
obtain better vibration response data, based on the improved particle swarm optimization algorithm,
Zhao et al. [20] proposed an optimal arrangement scheme of measurement points of long-span steel
beams to improve the accuracy of the modal test results of long-span steel beams. Ojha et al. [21]
adaptive search space decomposition method and a new formula based on gradient-free optimization
for the anterior and post-buckling analysis of spatial truss structures. Eser et al. [22] proposed a
volumetric controlled search (CCS) algorithm that is capable of handling dimensional optimization
of particularly large steel frames under multi-strength and multi-displacement constraints. Sang-
To et al. [23] presented a new shrimp tiger associative search algorithm (SGA) for efficient optimization
of truss-based structural health monitoring (SHM). SGA can get rid of local optimization better and
converge faster than the population-based algorithm. Azizi et al. [24] proposed a novel metaheuristic
algorithm—Energy Valley Optimizer (EVO), and it can provide competitive and outstanding results
in dealing with complex benchmarks and real-world problems. Kadkhoda et al. [25] proposed the
coronavirus metamorphosis optimization algorithm (CMOA), and the CMOA is applied to three
engineering problems including optimal design of a welded beam, a three-bar truss and a pressure
vessel, showing its high potential in solving such practical problems and effectiveness in finding global
optima.

This paper presents a modified variant of a recently introduced natural heuristic algorithm, the
Jellyfish Search optimizer [26]. Two modifications are proposed in the basic JSO to form the modified
variant, which is applied to the optimization of the main truss lifting spreader of the long span gallery
bridge.

2 Jellyfish Search Algorithm

Jellyfish Search optimizer (JSO). The algorithm proposed by Chou et al. [26] in 2020, and the
algorithm mainly simulates the characteristics of jellyfish drifting with ocean currents and the internal
motion of jellyfish population, and introduces a time control mechanism. Compared with other bionic
algorithms, this algorithm exhibits superior computational results.

Any meta-heuristic algorithm has two main stages: early exploration to enrich population
diversity; later development, strengthen the approximation optimal solution. The JSO algorithm is
also developed based on these two stages.

Before designing the algorithm, Chou et al. assumed the motion law of jellyfish as follows:

1. Jellyfish move in two ways, either with ocean currents or within populations, and the time
control mechanism controls the transition between the two motions.

2. Jellyfish are more easily attracted to places with more food in the ocean.

2.1 Currents
The current contains a lot of nutrients, and jellyfish are attracted to it. The direction of the current

is the convergence trend of the algorithm, which is defined as the average vector position of each
jellyfish to the current best jellyfish position:
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−−→
trend = 1

npop

∑−−−→
trendi = 1

npop

∑
(X ∗ − ecXi) = X ∗ − ec

∑
Xi

npop

= X ∗ − ecμ (1)

Set df = ecμ (2)

npop is the size of the jellyfish population; X ∗ is the optimal position of the jellyfish; ec is the
attraction control factor; μ is average position for all jellyfish; df is the difference between the optimal
jellyfish position and the average position of all jellyfish. The original paper assumes that jellyfish
are normally spatially distributed in all dimensions, and that all jellyfish may be distributed within
a distance of ±σβ (σ is the standard deviation of the distribution, and β = 3 is the distribution
coefficient) around the mean position, so there is the following definition:

df = β × σ × rand f (0, 1) (3)

Set σ = randα (0, 1) × μ (4)

Ocean currents are calculated as follows:−−→
trend = X ∗ − β × rand (0, 1) × μ (5)

So the position update formula for each jellyfish as follows:

Xi (t + 1) = Xi (t) + rand (0, 1) × (X ∗ − β × rand (0, 1) × μ) (6)

2.2 Jellyfish Swarms
The movement of jellyfish is mainly divided into passive movement (type A) and active movement

(type B). Initially, when the jellyfish colony was first formed, most of the jellyfish only followed
the movement of the population, so they showed A-type movement. Over time, jellyfish gradually
exert their own initiative, so they increasingly exhibit B-type movements. Type A locomotion is the
movement of a jellyfish around its own position:

Xi (t + 1) = Xi (t) + γ × rand (0, 1) × (Ub − Lb) (7)

where Ub, Lb are the upper and lower limits of the search space, respectively, and γ = 0.1 is the motion
coefficient. After the jellyfish swarm has formed a certain size, everyone begins to be motivated and
approach companions who find more food, which is also known as the B-type movement:
−−→
Step = Xi (t + 1) − Xi (t) (8)

−−→
Step = rand (0, 1) × −−−−−→

Direction (9)

−−−−−→
Direction =

{
Xj (t) − Xi (t) if f (Xi) ≥ f

(
Xj

)
Xi (t) − Xj (t) if f (Xi) < f

(
Xj

) (10)

Xi (t + 1) = Xi (t) + −−→
Step (11)

2.3 Time Control Mechanism
When a certain section of the ocean current contains abundant food, jellyfish gather in groups

to feed each other. When the temperature or wind changes the current, the jellyfish swarm moves
towards another current, forming another jellyfish swarm. Therefore, Chou et al. introduced a time
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control mechanism to simulate this passive to active process. To regulate the movement of jellyfish
following ocean currents and moving within the jellyfish swarm, time control mechanisms include the
time control function c (t) and the constant C0 = 0.5:

c (t) =
∣∣∣∣
(

1 − t
Maxiter

)
× (2 × rand (0, 1) − 1)

∣∣∣∣ (12)

When c (t) is greater than C0, the jellyfish will follow the currents, that is B-type motion; when
c (t) is less than C0, the jellyfish will only move within the population, A-type motion.

2.4 Population Initialization
The JSO algorithm introduces a logistic chaos mapping as the initialization:

Xi (t + 1) = ηXi (1 − Xi) (13)

X0 /∈ 0.0, 0.25, 0.75, 0.5, 1.0, η = 4.

2.5 Boundary Restrictions
The JSO algorithm takes into account that the earth is circular, so a boundary buffering strategy

is adopted:{
X ′

i,d = (
Xi,d − Ub,d

) + Lb (d) if Xi,d > Ub,d

X ′
i,d = (

Xi,d − Lb,d

) + Ub (d) if Xi,d < Lb,d

(14)

Through the analysis process of JSO algorithm, it can be seen that the algorithm has good
robustness, and the buffer strategy of the boundary avoids the situation that individuals concentrate
on searching the domain boundary, thereby improving the population diversity.

3 Modified the Jellyfish Search Algorithm (MJSO)
3.1 Elite Strategy

For the JSO algorithm in the early stage, it relies on determining the position of the optimal
jellyfish, and the best position of the jellyfish generated at this time is still random, and the position
update of the jellyfish is determined by the direction of the ocean current, and the ocean current is
determined by the average of the random position generated by the jellyfish, which is easy to cause
the global search ability of the algorithm in the early stage to be relatively low, so the elite strategy is
introduced. After the population is initialized, the set of best positions of jellyfish is determined, and
for the previous global search stage, the average value of the best position set of jellyfish (μElite) is
taken instead of the average of all jellyfish positions, and the updated formula is as follows:

Xi (t + 1) = Xi (t) + rand (0, 1) × (X ∗ − β × rand (0, 1) × μElite) (15)

μElite = mean (nelite) (16)

nelite = npop × (1 − r) (17)

Eq. (16) indicates that μElite equals the elite population mean, Eq. (17) is the equation for
calculating the elite population, r denotes the golden mean ratio.

Elite is the set of the best individuals of a certain number of jellyfish in the population. μElite
differs from Eq. (6) in that its mean value is obtained from the best individuals in the Elite set, not
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from all individuals in the aggregate. Calculating the average of a certain number of elite individuals
helps to direct individuals to the main areas of the search space where high-quality solutions exist.
Therefore, when the local search process is initiated, the solution begins to search locally in areas
where more promising, high-quality solutions exist.

3.2 Adaptive Weighting
In addition to the above elite strategy, aiming at the shortcomings of the overall process of JSO

algorithm that the search range is not large in the early stage and the development is easy to fall into
local optimization in the later stage, the adaptive weight function is introduced to improve the global
search ability and calculation time, and the improved jellyfish algorithm is formed.

Adaptive weight inertia weight is a very important parameter in the particle swarm, when the
inertia weight is large, the algorithm search ability is strong, can search a larger area, when the inertia
weight is small, the algorithm later search ability is strong, can be finely searched around the optimal
solution.

Introducing the particle swarm algorithm inertia weights and modifying them accordingly to
obtain the adaptive weight function w, since the direction of ocean currents is determined by the
optimal jellyfish position, adaptive weights are introduced to expand the jellyfish search capability
in the early stage, and the local search ability of Type-A jellyfish is increased when the inertial weight
is small in the later stage, so as to find the optimal solution. Weight function w is as follows:⎧⎪⎪⎨
⎪⎪⎩

ε = (10 ∗ it − 5 ∗ Maxit)
Maxit

w = 1
1 + √

ε

(18)

where it is the number of iterations and Maxit is the maximum number of iterations. The function
image is shown in Fig. 1.

Figure 1: Adaptive function w graph

The improved jellyfish update formula is as follows:
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The early stage follows the ocean current search stage:

Xi (t + 1) = w ∗ Xi (t) + rand (0, 1) × (X ∗ − β × rand (0, 1) × μElite) (19)

A-type movement development stage:

Xi (t + 1) = w ∗ Xi (t) + γ × rand (0, 1) × (Ub − Lb) (20)

The MJSO pseudo-code is as follows:

MJSO processes

Begin
Define objective function F(x)
Set population size (Npop) and maximum iteration number (Maxit)
Initialize jellyfish population Xi (i = 1,2...Npop)
Calculate the fitness value (F(Xi)) of each Xi
Define the size of Elite set (En)
Find the best individual in the population (X∗)
Define the adaptive function (w)
For it = 1 to maxit

Sort the population by fitness value and add En best individuals to Elite
Calculate (μElite) to Eq. (16)
For i = 1 to Npop

Calculate c(t) according to Eq. (12)
If c(t) > Co then

Define new location (Xnew) according to Eq. (19)
Else
If rand(0,1) > (1-c(t)) then

Define new location (Xnew) according to Eq. (20)
Else

Determine jellyfish direction according to Eq. (10)
Define new location (Xnew) according to Eq. (11)

End If
End If
If F(Xnew) < F(Xi) then

Xi = Xnew
If F(Xnew) < F(X) then

X∗ = Xnew
End If

End If
End For

End For
Output best results
End

The MJSO algorithm pseudo-code can be seen that the proposed MJSO algorithm does not
contain any additional loops. Only some modifications have been made to the search formula.



2364 CMES, 2024, vol.138, no.3

Therefore, the time complexity of MJSO (O = N × d × Maxit) is the same as the standard JSO
algorithm.

3.3 Algorithm Performance Testing
3.3.1 Benchmark Testing

The MJSO algorithm and JSO algorithm were compared with the JSO algorithm for benchmark
function testing, and 50 functions described in Table 1 of the literature [26], including separate,
non-separable, single-modal and multi-modal functions, were tested with MATLAB R2021b, and
the computer processor was: AMD Ryzen7 4800H with Radeon Graphics 2.90 GHz. The initial
population size is 50, the number of iterations is 10,000, and 30 cycles are performed, taking the mean,
standard deviation, and average time to each optimization. Table 2 shows the calculation results.

Table 1: 50 benchmark test functions

Function number Function name Dimension Best Rank

F1 Stepint 5 0 [−5.12, 5.12]
F2 Step 30 0 [−100, 100]
F3 Sphere 30 0 [−100, 100]
F4 SumSquares 30 0 [−10, 10]
F5 Quartic 30 0 [−1.28, 1.28]
F6 Beale 2 0 [−4.5, 4.5]
F7 Easom 2 −1 [−100, 100]
F8 Matyas 2 0 [−10, 10]
F9 Colville 4 0 [−10, 10]
F10 Trid6 6 −50 [−D2, D2 ]
F11 Trid10 10 −210 [−D2, D2 ]
F12 Zakharov 10 0 [−5, 10]
F13 Powell 24 0 [−4, 5]
F14 Schwefel 2.22 30 0 [−10, 10]
F15 Schwefel 1.2 30 0 [−100, 100]
F16 Rosenbrock 30 0 [−30, 30]
F17 Dixon-Price 30 0 [−10, 10]
F18 Foxholes 2 0.998 [−65.536, 65.536]
F19 Branin 2 0.398 [−5, 10] × [0,15]
F20 Bohachevsky1 2 0 [−100, 100]
F21 Booth 2 0 [−10, 10]
F22 Rastrigin 30 0 [−5.12, 5.12]
F23 Schwefel 30 −12,569.5 [−500, 500]
F24 Michalewicz2 2 −1.8013 [0, π ]
F25 Michalewicz5 5 −4.6877 [0, π ]
F26 Michalewicz10 10 −9.6602 [0, π ]
F27 Schaffer 2 0 [−100, 100]
F28 Six Hump Camel Back 2 −1.03163 [−5, 5]
F29 Bohachevsky2 2 0 [−100, 100]

(Continued)
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Table 1 (continued)

Function number Function name Dimension Best Rank

F30 Bohachevsky3 2 0 [−100, 100]
F31 Shubert 2 −186.73 [−10, 10]
F32 GoldStein-Price 2 3 [−2, 2]
F33 Kowalik 4 0.00031 [−5, 5]
F34 Shekel5 4 −10.15 [0, 10]
F35 Shekel7 4 −10.4 [0, 10]
F36 Shekel10 4 −10.53 [0, 10]
F37 Perm 4 0 [−D, D]
F38 Powersum 4 0 [0, 1]
F39 Hartman3 3 −3.86 [0, D]
F40 Hartman6 6 −3.32 [0, 1]
F41 Griewank 30 0 [−600, 600]
F42 Ackley 30 0 [−32, 32]
F43 Penalized 30 0 [−50, 50]
F44 Penalized2 30 0 [−50, 50]
F45 Langermann2 2 −1.08 [0, 10]
F46 Langermann5 5 −1.5 [0, 10]
F47 Langermann10 10 NA [0, 10]
F48 Fletcher Powell2 2 0 [−π , π ]
F49 Fletcher Powell5 5 0 [−π , π ]
F50 Fletcher Powell10 10 0 [−π , π ]

Table 2: Best, mean and std. values of benchmark test functions for JSO and MJSO

Function symbol MJSO JSO
Mean Std. Time Mean Std. Time

F1 0 0 1.43 0 0 1.47
F2 0 0 1.31 0 0 1.36
F3 0 0 1.32 0 0 1.37
F4 0 0 1.3 0 0 1.33
F5 5.73E-05 2.06E-05 2.86 0.0000724 2.65E-05 2.92
F6 0 0 1.17 0 0 1.19
F7 −1 0 1.13 −1 0 1.16
F8 0 0 1.12 0 0 1.14
F9 0 0 1.14 0 0 1.18
F10 −50 5.35E-14 1.16 −50 2.59E-14 1.19
F11 −210 1.35E-11 1.22 −210 6.08E-12 1.25
F12 0 0 1.27 0 0 1.33
F13 2.32E-08 5.47E-08 1.93 3.08E-07 1.16E-06 1.99
F14 0 0 1.4 0 0 1.43

(Continued)
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Table 2 (continued)

Function symbol MJSO JSO
Mean Std. Time Mean Std. Time

F15 0 0 1.89 0 0 1.92
F16 5.1E-06 8.59E-06 1.43 0.847 3.58 1.43
F17 0 0 1.47 0.0000913 0.0005 1.46
F18 0.998 1.13E-16 3.85 0.998 1.13E-16 3.95
F19 0.398 0 1.55 0.398 0 1.46
F20 0 0 1.21 0 0 1.23
F21 0 0 1.29 0 0 1.32
F22 0 0 1.57 8.95 5.54 1.6
F23 −8420 575 2.6 −8050 490 2.74
F24 −1.8 9.03E-16 1.4 −1.8 9.03E-16 1.39
F25 −4.67 0.0336 1.64 −4.66 0.0488 1.63
F26 −9.45 0.191 1.96 −9.45 0.151 1.98
F27 0 0 1.27 0 0 1.28
F28 −1.03 6.78E-16 1.43 −1.03 6.78E-16 1.45
F29 0 0 1.26 0 0 1.27
F30 0 0 1.28 0 0 1.29
F31 −187 1.97E-14 1.61 −187 1.9E-14 1.64
F32 3 1.31E-15 1.29 3 2.1E-15 1.29
F33 0.000307 1.79E-19 1.35 0.000307 1.69E-19 1.35
F34 −10.2 7.23E-15 3.48 −10.2 7.17E-15 3.57
F35 −10.4 1.81E-15 3.46 −10.4 1.81E-15 3.55
F36 −10.5 1.68E-15 3.5 −10.5 1.65E-15 3.54
F37 0.0025 0.00214 2.46 0.00279 0.00217 2.5
F38 5.08E-05 9.34E-05 2.07 0.0000428 7.44E-05 2.03
F39 −3.86 2.71E-15 5.31 −3.86 2.71E-15 5.31
F40 −3.32 6.39E-16 6.72 −3.32 6.39E-16 6.81
F41 0 0 1.68 0 0 1.68
F42 0 0 1.72 0 0 1.71
F43 0.00346 0.0189 8.68 2.5E-30 1.06E-29 9.27
F44 0 0 5.42 0 0 5.59
F45 −1.08 4.52E-16 1.53 −1.08 4.52E-16 1.57
F46 −1.5 6.78E-16 1.65 −1.5 6.78E-16 1.68
F47 −0.736 0.22 2.03 −0.762 0.196 2.07
F48 0 0 1.58 0 0 1.53
F49 0 0 2.44 0 0 2.45
F50 0 0 2.55 0 0 2.55
Hit rate 80% 72%
Total time (s) 107.39 109.4
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According to the optimal solution hit rate, the MJSO algorithm has a hit rate of 80% for the
optimal solution calculated for 50 benchmark functions, and the JSO algorithm has a hit rate of 72%,
which shows that the optimal solution optimization ability of the MJSO algorithm is better than that
of the JSO algorithm. The time spent by the two algorithms is approximately the same, which also
indicates that there is no increase in time complexity of the improved MJSO algorithm. The errors of
both algorithms are approximately the same, and the original literature has verified that the robustness
test is more stable than other metaheuristic algorithms.

It can be seen from Fig. 2 that the MJSO algorithm is optimized for unimodal separable (F3),
unimodal inseparable function (F8), multimodal separable function (F23) and multimodal inseparable
function (F42). The number of iterations required to converge the optimal solution is less than that of
the JSO algorithm, and the overall image shows that the local search for the optimal solution of the
MJSO algorithm is stronger, which can avoid falling into the local optimum.

Figure 2: (Continued)
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Figure 2: MJSO and JSO algorithm convergence comparison

3.3.2 10-Bar Truss Weight Optimization Test

Fig. 3 shows a 10-pole planar truss structure. The design variable is the cross-sectional area of the
10 truss elements. Table 3 lists the upper and lower bounds of material properties, load conditions, and
design variables. The constraint is the allowable stress and allowable displacement of the planar truss.
The maximum allowable displacement of each node in the ±x and ±y directions is equal to 2 in, while
the maximum allowable stress for tension and compression is 25 ksi, with the goal of minimizing the
weight of the structure under the specified constraints.

The average evolution of the objective function using 1000 iterations of the 10-bar truss with an
initial population of 50 for MJSO, JSO, PSO, GWO and ACOR, respectively, as the number of iteration
steps increases, is shown in Fig. 4, from which it can be seen that MJSO continuously provides better
values than others, enabling it to provide a better adaptation of the results at each stage of execution.
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Figure 3: Diagram of a 10-bar truss

Table 3: 10-bar truss design parameters

Material properties Value

Elastic modulus 107 psi
Material density 0.1 lb/in3

Length L 360 in
Load P 100 kips
Design variable lower bounds 0.1 in2

Design variable upper bound 35 in2

The number of design variables 10

Figure 4: MJSO, JSO, PSO, GWO and ACOR the convergence process of the 10-bar truss

MJSO, JSO, PSO, GWO and ACOR algorithms were optimized for each unit section of the 10-bar
truss, respectively, for 30 cycles, and the results of section optimization as well as the optimal weight
optimum, average value and standard deviation after optimization are shown in Table 4.
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Table 4: Comparison of 10-bar truss optimization results

Unit number MJSO JSO PSO GWO ACOR

Cross-sectional
area (in2)

1 30.2462 31.0510 30.1983 30.5486 30.5421
2 0.1000 0.1011 0.1000 0.2715 0.1000
3 23.4747 23.2819 24.4013 23.8667 23.4729
4 15.060 15.0160 14.5457 14.6854 15.2586
5 0.1000 0.1000 0.1000 0.1060 0.1000
6 0.5470 0.5390 0.5570 0.1093 0.5696
7 21.2643 20.9902 21.1165 21.2017 21.0661
8 7.4561 7.4710 8.4860 8.5632 7.4754
9 0.1004 0.1001 0.1000 0.2044 0.1000
10 21.4588 21.2988 20.9266 20.8135 21.3055

Best weight (lb) 5060.671 5061.6664 5077.6475 5090.6388 5064.4658
Mean weight (lb) 5063.8834 5065.7621 5081.6322 5098.5763 5068.8955
Std. 6.426 7.231 6.811 7.312 6.945

It can be seen from the above table that the optimization results of 10-bar truss lightweight are
superior and more robust than those of others.

3.3.3 15-Bar Truss Weight and Shape Optimization

Fig. 5 shows the structure of a 15-bar truss. The design variables for this problem are 15 unit
cross-sectional areas (A1 to A15) and 8 nodal shape variables (X5 = X6, X3 = X4, Y1, Y2, Y3, Y4,
Y5, Y6). Table 5 shows the material properties, loading conditions and discrete boundaries for cross-
sectional area and continuous boundaries for shape variables. The constraint is the allowable stress
of the plane truss with a maximum stress constraint of ±172.3689 MPa. No displacement limit is
assumed. The objective is to optimize the shape and minimize the weight of the structure under the
specified constraints.

Figure 5: 15-bar truss
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Table 5: 15-bar truss design parameters

Material properties Value

Elastic modulus 68.95 GPa
Material density 2767.99 kg/m3

Length L 3.048 m
Load P 44.45 kN
Cross-sectional value interval D = (0.072 0.091 0.112 0.142 0.174 0.185 0.224 0.284 0.348

0.615 0.697 0.757 0.860 0.960 1.138 1.382 1.740 1.806 2.020
2.300 2.460 3.100 3.840 4.240 4.640 5.500 6.000 7.000 8.600
9.219 11.077 12.374) (×10−3) (m2)

Shape variable boundary
constraints

2.54 ≤ X5 ≤ 3.556 5.588 ≤ X3 ≤ 6.604 2.54 ≤ Y5 ≤ 3.556
2.54 ≤ Y3 ≤ 3.556 1.27 ≤ Y2 ≤ 2.286 −0.508 ≤ Y6 ≤ 0.508
−0.508 ≤ Y4 ≤ 0.508 0.508 ≤ Y2 ≤ 1.524 (m)

The number of design variables 15 size variables and 8 shape variables

The convergence process of the objective function is shown in Fig. 6 as the number of iterations
increases using 100 iterations of the 15-bar truss with an initial population of 50 by MJSO and JSO,
respectively, from which it can be seen that the MJSO algorithm is clearly superior to the JSO algorithm
in terms of search capability after the inclusion of the elite strategy in the early stage, and the entire
convergence process MJSO algorithm shows superior exploration capability than the JSO algorithm.

Figure 6: MJSO and JSO optimized the convergence process of 15-bar truss

Figs. 7 and 8 show the optimized structural shape of the truss after 100 iterations of the MJSO
algorithm and the JSO algorithm. MJSO optimization is less than the original structure of two bars,
JSO optimized only one bar.
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Figure 7: MJSO optimization results

Figure 8: JSO optimization results

The MJSO and JSO algorithms were optimized for each unit section of the 15-bar truss,
respectively, for 30 cycles, and the results of section optimization as well as the optimal weight
optimum, average value and standard deviation after optimization are shown in Table 6.

Table 6: Comparison of optimization results of 15-bar truss

Unit number MJSO JSO

Cross-sectional area
(×10−3) (m2)

A1 7.35 6.95
A2 5.96 5.7
A3 4.30 4.12
A4 2.32 1.30
A5 1.78 4.42
A6 0.933 1.81
A7 4.39 3.87
A8 0.00 4.40
A9 4.39 8.92
A10 0.00 0.00
A11 0.653 0.40
A12 2.69 4.72
A13 1.23 1.58

(Continued)
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Table 6 (continued)

Unit number MJSO JSO

A14 1.45 1.21
A15 4.04 3.29

Shape node
displacement (m)

X5 = X6 3.0314 3.0902
X3 = X4 5.7303 6.5812
Y1 1.7312 1.2844
Y2 0.8907 1.1111
Y3 3.3138 2.8395
Y4 0.0410 −0.1006
Y5 3.3346 2.8278
Y6 −0.0834 −0.1272

Best weight (kg) 29.857 38.325
Mean weight (kg) 30.634 41.793
Std. 2.57 4.41

From the above table, it can be seen that for the optimization of the 15-bar truss, the MJSO
algorithm has one less string bar than the JSO algorithm when the constraints are satisfied, and the
optimized weight average is 26% less than the JSO algorithm weight, which is more superior, and the
overall standard deviation is smaller and more robust than the JSO algorithm.

4 Optimization of Steel Truss Lifting Spreader for Long-Span Covered Bridges

The project is a 54 m span corridor bridge with steel truss as the main structure. In the steel truss
lifting stage, due to the site limitation, large lifting equipment cannot enter the site, so the project can
only set up lifting brackets on the structure of Guanjiang Pavilion on both sides and use 4 lifting power
of 70 tons jack to lift the steel truss.

The steel truss beam model is established according to the material and cross section provided
by the design, the hoisting bracket adopts the beam unit, the steel beam adopts the truss unit, the
wire rope adopts the cable unit for simulation, and the vertical rigid frame of the hoisting bracket and
Guanjiang Pavilion adopts the rigid connection. Midas civil was used for the lifting analysis without
considering the effect of live load.

4.1 No Spreader Lift
The jack is directly connected to the upper lugs of the steel joist through the steel strand to lift the

steel joist with the structure arrangement as shown in the Fig. 9.

The structure is simulated by Midas Civil to analyze the construction process of the steel truss as a
whole. The calculation shows that the maximum stress of the steel main truss of the spreading gallery
is 203 MPa < 300 MPa, which meets the structural stress limit; the maximum deflection is 37.6 mm <

L/400 = 135 mm, which meets the deflection limit. The relative displacement of adjacent section beam
is 33 mm > 0.75 mm, which does not satisfy the construction condition of group bolts. Therefore, the
lifting method needs to be reconsidered.
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Figure 9: Lifting without spreader

4.2 Lifting with Rigid Flat Beam Spreader
For the common method of overall lifting construction, a rigid flat beam spreader is designed

to meet the construction conditions of group bolts by connecting the steel strand with the rigid flat
beam spreader to reduce the deformation between the beams of the steel joist. The structure is shown
Fig. 10.

Figure 10: Spreader with rigid flat beam

The main longitudinal beam structure adopts square steel beam with cross-section height 1.4 m,
width 0.9 m, web thickness 25 mm, top and bottom plate thickness 30 mm, cross brace structure adopts
HM588 × 300 section steel, support bar structure adopts I32a.

Using Midas civil calculations, it can be obtained that the maximum stress of the steel truss is
45 Mpa, the maximum deflection is 13.5 mm, and the relative displacement of the adjacent internode
beam is 0.7 mm, all of which meet the limit requirements, but the weight of the spreader itself is 120
tons, plus the weight of the steel truss 180 tons, exceeding the lifting power limit of the jack, required
weight optimization of the spreader.

4.3 Optimization of Rigid Flat Stretcher Spreader Based on MJSO Algorithm
4.3.1 Model Construction

In optimizing the steel joist structure, section A with nodal vertical displacement X is set as
the design variable. The maximum load is kept constant and the known permissible stresses, elastic
modulus, stress parameters and permissible displacements of the nodes are the constraints in order to
achieve the minimum mass of the structure.
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1© Design variables

A = [A1, A2, · · · , An, XI , X2, · · · , Xn]
T (21)

A is the design variable of the structure; n is the number of section variable groups of continu-
ous bars.

2© Objective function

min f (x) =
n∑

i=1

ρiAiLi (22)

f (x) is the weight of the structure; ρ is the material density of group I members; A is the cross-
sectional area of group i members; L is the length of group i members.

3© Constraints

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gσ

i (A) = [σi] − σi ≥ 0, i = 1, 2, · · · , K

gu
jl (A) = [

ujl

] − ujl ≥ 0, j = 1, 2, · · · , m;

l = 1, 2, · · · , ω

Amin ≤ A ≤ Amax

xa
b ≤ xb ≤ xc

b, b = 1, 2, · · · , z

(23)

K is the total number of bars; m is the total number of nodes; gσ

i (A) is the stress constraint; gu
jl (A)

is the displacement constraint; Amin is the minimum cross-sectional area of the member; Amax is the
maximum cross-sectional area; ω is the number of dimensions constrained by the node displacement;
σi is the most unfavorable stress value of the ith group of members; ujl the maximum displacement of
node j; and the upper and lower limits of the xb coordinate b.

4© Treatment of constrained condition

As with other direct search methods, MJSO cannot be used directly for constrained optimization
problems. The penalty function method is one of the most widely used constraint processing techniques
[27]. In this paper, a self-adaptive penalty function strategy is proposed to solve constrained optimiza-
tion problems. Based on this method, Tao et al. [28] proposed a self-adaptive penalty function strategy
for solving constrained optimization problems and the fitness function is written as Eqs. (24)–(26):

W (x) = f (x) + P
P∑

i=1

h (t) gi (x) f (x) (24)

gi (x) = σi

σiall

− 1 ≤ 0 (25)

h (t) = 1 + t/T (26)

where W (x) is an unconstrained objective function (the objective function after penalty); σi and σiall

are the actual value and allowable value of ith constraint; h (t) is the penalty parameter.
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The MJSO algorithm is introduced according to the steel joist structure optimization model, and
its optimization process is shown in Fig. 11.

Objective function 

Output result 

Basic parameters 

MJSO optimization 

Output result FEA analysis Input the data 

Termination

Project design 

satisfy 

Midas civil 

Matlab 

Unsatisfy 

Figure 11: Flow chart of optimized steel truss by MJSO

4.3.2 Optimized Design of MJSO Algorithm Spreader

Based on the flat beam model, a truss model is established as in Fig. 12, with steel strength of
Q345 steel, density of 7850 kg/m3 and modulus of elasticity of 2.06E+08 kN/m2. The cross-section
size of the string bar is HM588 × 300, and the cross-section size of the middle support bar is I32a. 18
nodes and 26 units are set up, and the constraints are node 1 and node 10 are rigidly connected, while
other nodes are not constrained. In this node 1, node 10 vertical applied jack maximum lifting weight
of 70 tons of force P. The upper limit of stress constraint is 125768.5 kN/m2, the maximum vertical
displacement is 0.135 m, the cross-sectional area optimization boundary between 0–0.121 m2, the node
optimization boundary between 2–4 m. The design variables are section A1–A26, Y11 = Y18, Y12 =
Y17, Y13 = Y16, Y14 = Y15, total 30 variables. The calculation was performed by MATLAB with 200
iterations and an initial population of 50, and the optimization results of MJSO and JSO are shown
in the Table 7.

Figure 12: Spreader truss model diagram
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Table 7: Spreader optimization results

Unit number MJSO JSO

Cross-sectional area (m2)

A1 0.01825 0.01935
A2 0.01833 0.02013
A3 0.01842 0.02045
A4 0.01906 0.02132
A5 0.01913 0.02195
A6 0.01901 0.02183
A7 0.01895 0.02064
A8 0.01887 0.02051
A9 0.01841 0.02033
A10 0.01306 0.01623
A11 0.01245 0.01589
A12 0.01289 0.01577
A13 0.01244 0.01602
A14 0.01345 0.01679
A15 0.01268 0.01583
A16 0.01224 0.01494
A17 0.01339 0.01569
A18 0.01244 0.01502
A19 0.01321 0.01591
A20 0.01221 0.01488
A21 0.01329 0.01421
A22 0.01316 0.01473
A23 0.01269 0.01562
A24 0.01278 0.01455
A25 0.01282 0.01454
A26 0.01255 0.01432

Shape node displacement (m)

Y11 = Y18 2.45 2.88
Y12 = Y17 3.26 3.43
Y13 = Y16 3.58 3.76
Y14 = Y15 3.73 3.90

Weight (kg) 14001.48 22315.56

Figs. 13 and 14 show the optimized shape of the spreader for 100 vs. 200 iterations of MJSO,
respectively. As can be seen from Fig. 15, MJSO has better optimization efficiency than JSO, and as
can be seen from Table 6, MSJO is 37% lighter than JSO in optimizing spreader, and MSJO has better
overall performance than JSO.
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Figure 13: MJSO iteration 100th model

Figure 14: MJSO iteration 200th model

Figure 15: MJSO and JSO optimizes spreader convergence process

4.3.3 Finite Element Analysis after Optimization

Finite element analysis is performed on the optimized structure, and the model is established and
calculated according to the actual situation and actual construction working conditions. The size
is selected according to the optimized cross-section, and the overall shape such as arch structure is
considered after optimization, i.e., the curve is selected for monolization. The two arch spreaders are
connected by support bars and props are set in each span, and the overall spreader is shown in Fig. 16.
In this study, Midas civil is used for lifting operation of the optimized spreader, and the force as well
as deformation of the optimized spreader are analyzed.
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Figure 16: Schematic diagram of arch truss spreader

According to the optimization results, according to the Chinese steel design code standard for
section selection, the main longitudinal beam adopts 2HM588 × 300 mm section steel, the arch
support and upright bar all adopt �426 ∗ 10 mm steel pipe, the support bar selects HM588 × 300 mm,
the spreader elevation and plane are shown in Figs. 17 and 18.

Figure 17: Elevation diagram of arch truss spreader

Figure 18: Schematic diagram of arch truss spreader plan

Installed under no wind or light wind condition, the load combination is as follows:

Self-weight of lifting bracket + Weight of spreader + Weight of main truss;

After software calculation, the maximum stress of all bars is 180 MPa, which is less than the
strength design value [f] = 215 MPa, so it meets the requirements.

The maximum deformation under this working condition is 77.5 mm, and the deformation is as
follows:

L/200 = 51910/400 = 129 mm;

which meets the requirement according to the cantilever member allowable deflection value
specified in the Code for design of steel structures. The deformation difference of upper and lower
chords is as follows:

74.899 − 74.775 = 0.114 mm < 0.75 mm;

which meets the requirements of group bolt construction. The spreader weighs about 50 tons, and the
main truss weighs 110 tons, which is 46% lighter than the flat beam spreader and the requirement of
jacking lifting limit.
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5 Conclusion

To solve the truss shape and size optimization problem more effectively and efficiently, this paper
proposes an improved jellyfish search algorithm (MJSO) by integrating the advantages of adaptive
weight function and elite strategy through the jellyfish search algorithm. This algorithm improves the
global search ability in the early stage of the algorithm by the elite strategy and the adaptive weight
function and enhances the local search ability in the late stage of the algorithm by the adaptive weight
function to avoid falling into the local optimum. Through testing and application, the advantages of
the MJSO algorithm are as follows:

(1) In the benchmark function test, the MJSO algorithm performs better than the JSO algorithm
overall for unimodal, multi-modal, separable, and non-separable functions.

(2) The MJSO algorithm is more robust than the JSO, PSO, GWO, and ACOR algorithms in terms
of the effect of truss lightweight, and the optimization results are better.

(3) In the test of simultaneous optimization of truss shape and weight, the MJSO algorithm
reduced two chords while JSO reduced only one chord under the constraints, and the weight
of MSJO was 26% lighter than that of JSO, and the standard deviation of MJSO through
30 cycles was 1.84 smaller than that of JSO, and the robustness of MJSO is also superior. In
general, MSJO is superior to JSO in optimizing the shape and weight of trusses.

(4) For the restricted construction environment of the site, the structure needs to be lifted using
a spreader. Through the optimization of the lifting spreader by MJSO and JSO, the result of
lightweight spreader by MJSO is better than JSO, and the problem of large lifting weight of
steel joist as a whole is solved.

Since the MJSO algorithm improvement is only optimized for the passive motion in the early
ocean currents and the later local search, it lacks the optimization for the active motion part, which
needs to be enhanced here.
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