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ABSTRACT

In actual traffic scenarios, precise recognition of traffic participants, such as vehicles and pedestrians, is crucial
for intelligent transportation. This study proposes an improved algorithm built on Mask-RCNN to enhance the
ability of autonomous driving systems to recognize traffic participants. The algorithm incorporates long and short-
term memory networks and the fused attention module (GSAM, GCT, and Spatial Attention Module) to enhance
the algorithm’s capability to process both global and local information. Additionally, to increase the network’s
initial operation stability, the original network activation function was replaced with Gaussian error linear unit.
Experiments were conducted using the publicly available Cityscapes dataset. Comparing the test results, it was
observed that the revised algorithm outperformed the original algorithm in terms of AP50, AP75, and other metrics
by 8.7% and 9.6% for target detection and 12.5% and 13.3% for segmentation.
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1 Introduction

Intelligent transportation and autonomous driving have significantly advanced with the rapid
growth of information technology [1]. Intelligent transportation has emerged as a prominent trend
in the automotive industry [2], with a key component being the observation and understanding of the
driving environment by self-driving cars [3]. Numerous scholars have developed new algorithms to aid
self-driving cars in better understanding their environment. The current mainstream algorithms can
be divided into single-stage and two-stage algorithms depending on the processing method [4].

Two-stage instance segmentation algorithms, such as SDS [5], DeepMask [6], Mask-RCNN [7],
and SGN [8], have become typical examples in this field. The two-stage algorithm originated in 2014
when Pinheiro et al. [5] created the SDS algorithm. Although the SDS algorithm fell short in terms of
processing speed and recognition accuracy compared to current algorithms, it provided a framework
for further research. In 2015, Dai et al. [9] published an MNC model using cascaded structure-sharing
convolutional features. Then, in 2017, He et al. [10] proposed the Mask-RCNN model based on the
Faster-RCNN model, marking a new phase in instance segmentation task with Mask-RCNN serving
as the benchmark model.

Two-stage algorithms built on area candidate networks tend to achieve higher accuracy. However,
models such as Mask-RCNN and Cascade Mask R-CNN [11] require a lot of memory resources and
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have long inference times when trained on small batches. On the other hand, single-stage algorithms
such as YOLACT [12], Blend Mask [13], and CondInst [14], which perform both localization and
segmentation, are quicker and more suitable for the real-time demands of autonomous driving, but
they lack accuracy. Additionally, single-stage instance segmentation techniques such as the YOLACT
series [12] , SOLO [15] series, and CenterMask [16] can fully utilize positional data in images, resulting
in high accuracy and segmentation speed, but their training time is usually lengthy. Although single-
stage algorithms typically outperform two-stage algorithms in terms of speed, they often lack the
accuracy and precision achieved by two-stage algorithms.

Researchers have explored various techniques to increase accuracy. Zhang et al. [17] used random
undersampling (RUS) for detection and classification. Lin et al. [18] produced a number of target
candidate regions through a region recommendation approach network. Then, to enhance parameter
learning, they trained a convolutional neural network (CNN) using a library of real inspection picture
samples. Yuan et al. [19] introduced a spatial attention mechanism that focuses on regions requiring
attention to increase the segmentation accuracy. On the other hand, Ya et al. [20] proposed a two-
stage coarse-to-fine search technique called structure-to-modular NAS (SM-NAS) to discover GPU-
friendly designs with improved modular-level architectures for object identification and efficient
module combinations. This technique involved a structure-level search phase that seeks effective ways
to combine various modules, followed by a modular-level search phase that evolves each module
and drives the Pareto front end toward a quicker task-specific network with a significant increase
in inference speed.

Deep learning has greatly advanced computer vision, with CNN becoming the architecture of
choice for popular models. However, recurrent neural networks (RNNs) offer distinct advantages over
CNNs in capturing target context, and RNN/LSTM applications are currently gaining popularity in
the recognition sector. For example, Xiang et al. [21] used deep learning techniques, principally based
on a blend of long short-term memory (LSTM) and CNN, for quick target extraction from films.
Yang et al. [22] integrated a standard target detector with an LSTM module to further enhance the
detection performance of intelligent driving. In response to recent developments in computer vision,
Mallick et al. [23] substituted the gated recurrent units (GRU) for LSTM as a decoder in image
captioning models. The combination of the attention mechanism and the GRU decoder increased
the accuracy.

In this study, Mask-RCNN is used as a benchmark for enhancing and optimizing the algorithm.
Based on recent research findings, the superiority of two-stage algorithms over single-stage algorithms
is believed to be valid. By examining a few of the research papers on LSTM-based recognition, it is
evident that most of them use more sophisticated hybrid models. However, overly intricate networks
can hinder recognition. GRU offers faster training compared to LSTM due to its reduced tensor
operations. Therefore, this study investigates an improved algorithm that combines Mask-RCNN with
GRU. In summary, it seeks to enhance the capabilities of the existing algorithm.

The following are the contributions of this study:

1. To make the algorithm useful for complex traffic circumstances, it is optimized using Mask-
RCNN as the benchmark. The incorporation of the CBAM attention mechanism has improved the
segmentation algorithm’s accuracy. However, the CBAM module is computationally intensive and
prioritizes accuracy over speed, which makes it unsuitable for safe driving in smart cars. To address
these challenges, the CBAM model is enhanced to make it more suitable for complicated traffic
scenarios by leveraging the aforementioned modularity and spatial attention. To improve feature
extraction, the huge convolution is converted to a tiny convolution, and the channel attention module
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is replaced with the less complicated GCT attention mechanism. These modifications reduced the
model’s complexity.

2. The introduction of network-end long and short-term memory methods improves the feature
extraction performance of the algorithm. This approach enables the algorithm to prioritize the
interplay between global and local information and effectively connect recent information with older
information to increase overall performance.

3. To increase the algorithm’s robustness, the Gaussian error linear unit (GELU) is used as the
algorithm’s activation function.

This study is divided into five sections. Section 1 introduces the development history of the
research; Section 2 describes the improvement made to the network; Section 3 describes the experi-
mental setup and configuration environment; Section 4 presents the experimental results and visually
showcases the performance of the improved algorithm; Section 5 summarizes the findings and
contributions of this study.

2 Network Improvement

During training, models often need to acquire and analyze a large amount of data, but frequently
only a small subset of that data is relevant at any given time. The attention mechanism imitates the
capacity of the human brain to identify critical regions in complex visual images. This mechanism
has proven to be effective in achieving tasks such as target identification, semantic segmentation, and
instance segmentation.

2.1 Converged Attention Module (GSAM)
The convolutional block attention module (CBAM) [24] accurately assigns and processes infor-

mation, leading to improved target detection accuracy. In this study, a modification inspired by
the CBAM structure called Gaussian context transformer (GCT) [25] and spatial attention module
(SAM), collectively referred to as GSAM, is obtained. Fig. 1 shows the structure of GSAM.

Figure 1: GSAM structure diagram
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GSAM consists of GCT and SAM, integrated within the bottleneck of the ResNet-50 base
module. The experimental trials conducted demonstrate the complementary nature of this structure
and how the two can work together to enhance the precision and stability of feature extraction. To
improve feature extraction for complex traffic scenarios, the complexity is reduced by replacing the
big convolution with the tiny convolution.

The GCT consists of three operations: global context aggregation (GCA), channel normalization,
and Gaussian context excitation (GCE).

(1) Global Context Aggregation (GCA)
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where αc is the adaptive embedding output weight; χc is the input feature map; H and W are the spatial
dimensions; � is a constant. Large receptive fields help avoid local confusion. Therefore, this global
inline embedded module aggregates global context information for each channel.

(2) Channel Normalization
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where C is the number of channels. Normalization can construct competing relationships between
neurons using limited computational resources, similar to local response normalization, which GCT
uses to perform cross-channel feature normalization, i.e., channel normalization, defined as expressed
in Eq. (2).

(3) Gaussian Context Excitation (GCE)

∧
xc = xc

[
1 + tanh

(
γc

∧
sc + βc

)]
, (3)

where γc is the gating weight and βc is the bias. The GCT introduces a gating mechanism to those
mentioned earlier, as expressed in Eq. (3), which further promotes the competition or synergistic
relationships between neurons.

Based on the experimental analysis, it is observed that adding GCT before the convolution
operation yields better results. Therefore, the CBAM improved by GCT, i.e., the GSAM, is inserted
between each lifting and lowering dimension operation to increase the resolution of image information
through the convolutional neural network.

The spatial attention component of GSAM remains unchanged and follows the original spatial
attention module approach. First, it aggregates the channel information of the feature map through
two pooling operations to generate two 2D mappings, as expressed in Eqs. (4) and (5).

F s
avg ∈ R1×H×W , (4)

F s
max ∈ R1×H×W . (5)
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These mappings are concatenated and convolved through a standard convolution layer to produce
a 2D spatial attention map. Then, the map is normalized using a sigmoid function to obtain the final
attention map, as expressed in Eq. (6).

Ms(F) = σ(f 7×7([AvgPool(F); MaxPool(F)]))

= σ
(
f 7×7

([
Fs

avg; Fs
max

]))
. (6)

Fig. 2 shows the improved identity and convolution block structures of the ResNet-50 network.

Figure 2: Improved identity block and convolution block

The improved backbone layer increases the ability to detect small targets among images while
maintaining computational speed [26]. Additionally, the system’s robustness is improved due to the
inclusion of the GCT network within the CBAM, and this enhancement is particularly significant for
the ResNet network.

2.2 Activation Functions
In a biological sense, a neuron is activated only when the weighted sum of the signals transmitted

by the primary dendrites exceeds a specific threshold value. Inspired by this biological operation
mechanism, activation functions were introduced [27].

The activation function activates some neurons within the neural network during runtime and
transmits activation information to the subsequent neural network layer. By introducing nonlinear
factors, activation functions enable neural networks to solve nonlinear problems, enhancing the
expressiveness of nonlinear models [28]. Activation functions preserve and map the “characteristics
of activated neurons” to the next layer through mathematical functions.

Mask-RCNN uses rectified linear unit (ReLU) as the activation function, as expressed in Eq. (7).

f (x) = max(0, x). (7)
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Although the ReLU function is computationally straightforward, it is not differentiable at the zero
point and has no output when the input value is negative [29]. As a result, the entire neural network
“dies” if any neuron encounters a negative input value.

Additionally, when the input value is negative, all negative values instantly become zero, making it
challenging to train or fit the model accurately to the data. As a result, any negative input to the ReLU
activation function will cause the graph’s values to instantly change to zero. This sudden change to
zero values due to negative inputs leads to improper mapping, which affects the overall outcomes [30].

To address these limitations, the ReLU function is replaced with the GELU function, which offers
improved smoothness and strengthens the network’s stability. The GELU function is mathematically
expressed as follows:

GELU(x) = x ∗ �(x). (8)

The GELU function is differentiable at the zero point. It yields output even when the input
value is negative, preventing the initial death of neurons and ensuring the required model smoothing.
Additionally, the GELU function introduces stochastic regularization, which establishes a stochastic
connection between the input and output and prevents the disappearance of the gradient. This
significantly reduces the likelihood of neuron necrosis and improves the algorithm’s stability.

2.3 Gated Circulation Unit
The GRU is a gate mechanism unit in RNN, similar to LSTM, but can achieve the same effect

compared to LSTM. Compared to LSTM, GRU is easier to train and can significantly improve
training efficiency. Therefore, GRU is chosen for this experiment. Fig. 3 shows the GRUs structure.

Figure 3: GRU network structure

The most important innovation that distinguishes GRU from LSTM is the design of an “update
memory” phase [31], which involves two steps: forgetting and remembering. The expression for
updating memory is as follows:

ht = (1 − z) � ht−1 + z � h′. (9)

In Eq. (9), z is used as a gating signal, and its signal range is closer to 1 for more data to be
remembered and closer to 0 for more data to be forgotten. The (1−z)ht−1 represents the selective
forgetting of the previous state, and the (1−z) is used as a forgetting gate to control the “forgetting” of
some unimportant information in the ht−1 dimension. Similarly, z � h′ represents the selective memory
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of the current state, where z is a memory gate controlling the retention of some critical information in
the ht dimension.

This updated memory mechanism keeps the amount of data “constant”, with a certain amount
of information about the previous state “forgotten” at (1−z) and a certain amount of information
about the current state “remembered” at z. The combination of forgetting (1−z) and remembering z
forms a linkage mechanism that keeps the amount of data constant and prevents the risk of gradient
explosion [32].

The number of GRU layers is set to two. Using two layers of GRU can compress the data into
a highly “condensed” form. Additional layers beyond two will only lead to information loss during
the information compression process and gradient disappearance during training. Fig. 4 shows the
structure of the ResNet-50-GRU network.

Figure 4: ResNet-50-GRU network

3 Experimental Environment and Evaluation Index

The Cityscapes dataset, released in 2015 by Mercedes-Benz, contained 5000 finely labeled images
of driving scenes in urban environments, including pedestrians, cyclists, vehicles, and other essential
urban landscape targets. Although this dataset is recognized as one of machine vision’s most authori-
tative and professional image segmentation datasets, it lacks some exceptional cases, such as snow and
rain scenes. To address this, additional datasets were created to compensate for this deficiency.

All algorithms used in this experiment were executed on PyCharm 2021.3.1 IDE with Windows
10 hardware platform, i7 CPU, and 8 GB NVIDIA RTX 2070 SUPER GPU. The maximum epoch
was set to 100, using the SGD optimizer with pre-training parameters and Warmup method, and a
batch size of 4. The Pytorch library version used was 1.14.0.

In this study, average precision (AP) was used as a metric to measure the performance of
model instance segmentation in conjunction with practical considerations. The metrics include AP50,
AP75, APs, APm, and APl, where AP50 and AP75 represent different IOU thresholds of 0.5 and 0.75,
respectively. APs, APm, and APl represent the average accuracy of target objects with small, medium,
and large areas, respectively. This comprehensive criterion setting allows for a thorough evaluation of
the model’s segmentation performance.

4 Experimental Results
4.1 Data Analysis

To verify the effectiveness of the added network modules, the experimental ablation metrics of
detection and segmentation on the Cityscapes dataset are presented in Tables 1 and 2, respectively.
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The original Mask-RCNN algorithm is denoted as Base, while the network with the CBAM attention
mechanism added is referred to as Base-CBAM. Similarly, the networks with GSAM and GRU added
are labeled as Base-GSAM, Base-GRU, and Base-GSAM-GRU. PointRend and BlendMask are used
to split the network for other instances.

Table 1: Comparison of target detection results

Model AP50 AP75 APs APm APl

Base 0.548 0.327 0.112 0.335 0.561
Base-GRU 0.552 0.332 0.111 0.348 0.557
Base-CBAM 0.554 0.346 0.110 0.362 0.578
Base-GSAM 0.559 0.347 0.106 0.361 0.584
PointRend 0.563 0.354 0.106 0.368 0.597
Base-CBAM-GRU 0.580 0.363 0.116 0.380 0.611
BlendMask 0.590 0.365 0.118 0.386 0.623
Base-GSAM-GRU 0.596 0.368 0.121 0.391 0.627

Table 2: Comparison of instance segmentation results

Model AP50 AP75 APs APm APl

Base 0.487 0.233 0.055 0.257 0.516
Base-GRU 0.492 0.237 0.056 0.260 0.528
Base-CBAM 0.503 0.246 0.049 0.271 0.532
Base-GSAM 0.523 0.262 0.054 0.285 0.546
PointRend 0.525 0.260 0.053 0.286 0.548
Base-CBAM-GRU 0.527 0.262 0.053 0.286 0.556
BlendMask 0.532 0.262 0.056 0.289 0.560
Base-GSAM-GRU 0.534 0.264 0.057 0.290 0.569

From the comparative analysis of Tables 1 and 2, it can be concluded that the GRU, CBAM, and
GSAM modules improve the algorithm’s performance, with their performance improvement degree as
GSAM > CBAM > GRU. The inclusion of the CBAM attention mechanism led to increased accuracy
in the segmentation algorithms. To strengthen the CBAM model and make it more suitable for complex
traffic conditions, the attention mechanism was developed using the aforementioned modularity and
spatial attention. The model’s complexity was slightly reduced through improved feature extraction,
smalling large convolutions, and replacing the channel attention module with a simpler GCT attention
mechanism. The addition of the GSAM module and GRU module enabled the network to effectively
combine global and local information, leading to improved identification of the vehicle environment
and the traffic participants, such as vehicles, pedestrians, and cyclists, resulting in enhanced detection
and segmentation abilities and overall generalization. After replacing its activation function, the initial
death problem of network neurons was partially resolved, and the robustness of the network improved.
Furthermore, its segmentation accuracy was found to be advantageous compared with other popular
segmentation networks used nowadays. Figs. 5 and 6 show the change process of mAP, loss, and
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learning rate of the Base-GSAM-GRU network automatically generated by the algorithm during the
training process, respectively. It was observed that the training starts to converge at 20 epochs.

Figure 5: mAP change plot

Figure 6: Loss and learning rate change diagram

Based on the above evaluation indexes, such as AP, further evaluation of the algorithm’s perfor-
mance was conducted using detection accuracy P and recall rate R to verify its accuracy further. The
mathematical formulae are expressed in Eqs. (10) and (11).

p = TP
TP + FP

, (10)

R = TP
TP + FN

. (11)
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For the network training, models with iteration periods of 30, 50, 70, 90, and 100 were selected
for evaluation. Table 3 presents the network training loss and detection accuracy.

Table 3: Network training and loss accuracy

Training period Loss Accuracy

30 1.726 71.5%
50 1.636 74.6%
70 1.504 79.5%
90 1.424 83.4%
100 1.374 84.7%

As the number of training cycles of the network increases, the network loss effectively decreases
and tends to improve, indicating that the accuracy of this advanced network model is constantly
improving. The network model with a training period of 100 was selected, and the test samples were
randomly selected from the dataset test set. Fig. 7 shows the tested and calculated detection accuracy
and the target detection categories. The average detection accuracy of the experiment reached 88%.

Figure 7: Target detection accuracy

4.2 Visual Verification
Fig. 8 shows the comparison of the improved algorithm with the original algorithm. It was

observed that the improved algorithm is more accurate in pedestrian recognition and occlusion
handling.

Comparing the details of Figs. 8b and 8e, it was observed that the right side of each figure
represents the original algorithm, while the left side represents the improved algorithm. The improved
algorithm exhibits more accurate target segmentation compared to the original algorithm. For
instance, the original algorithm misidentifies two pedestrians as three, whereas the improved algorithm
accurately handles the occlusion problem and does not mistake street lights that do not belong to the
car as a car.
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(a) Original picture

(b) Test pictures of the improved algorithm (c) Test pictures of the original algorithm

(d) Comparison picture of a car (e) Comparison picture of pedestrian

Figure 8: Comparison picture

To demonstrate the network’s instance segmentation effectiveness under various traffic scenes, a
network model with 100 training iterations was selected for testing, and the test results are shown in
Figs. 9–12.

(a) Urban highway (b) Complex highway

(c) Expressway (d) Suburban highway

Figure 9: Detection results in natural scenes
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(a) Light occlusion (b) Shadow occlusion

Figure 10: Detection results in light scenes

(a) Snowy weather (b) Rainy weather

(c) Long-distance scene

Figure 11: Detection results in fuzzy scenes

(a) One-way street scene (b) Two-way scene

Figure 12: Detection results in dark scenes

Fig. 9 shows the segmentation results under natural traffic scenes, with Figs. 9a–9d depicting
urban highway, complex highway, expressway, and suburban highway, respectively. The improved
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algorithm effectively performed target recognition segmentation in the above scenes, with detection
results consistent with the actual outcomes and appropriate calibration frame range.

Fig. 10 shows the segmentation results under light traffic scenes, with Fig. 10a depicting the
light-obscured scene and Fig. 10b depicting the shadow-obscured scene. Changes in light brightness
significantly impact the target appearance, and its color and texture shape are disturbed, causing
an increase in segmentation difficulty. However, the segmentation results show that the improved
algorithm successfully handles the detection and segmentation tasks in such scenarios.

Fig. 11 shows the segmentation results under blurred scenes, withFigs. 11a–11c depicting snowy
weather, rainy weather, and distant scenes, respectively. In these scenes, the shape and appearance of
the target are affected, resulting in blurred imaging. However, the segmentation results show that the
improved network achieves accurate detection and segmentation in these scenes.

Fig. 12 shows the experimental results under dark traffic scenes, with Fig. 12a depicting a single-
lane scene and Fig. 12b depicting a two-lane scene. In dark scenes, changes in target shape, color, and
texture are more pronounced compared to blurred scenes. However, the experimental results show that
the improved algorithm still has good feasibility and accuracy even in these low-discrimination scenes.

4.3 Migration Experiment Validation
To further verify the recognition and segmentation ability of the network model trained by the

algorithm, migration experiments were conducted using the NuScence and Apollo Scape datasets.
The images with relevant category ranges were selected from the dataset, and then randomly selected
test images were used for testing. Fig. 13 shows the test results of the migration experiments.

(a) NuScence dataset

(b) Apollo Scape dataset

Figure 13: Migration experiment test results

4.4 Simulation Environment Validation
To verify the algorithm’s effectiveness, the same network model with a training period of 100 was

selected for simulation experiments in panosim. The simulation environment included two scenarios:
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a sunny day straight road and a snowy day right angle left turn. In the snowy scenario, particle density
was set to 20,000 m−3, and the landing speed was 0.8 m/s. The experiment used a monocular camera
sensor, and the acquired data was transmitted to the bus and then to the specified address through
the specified module for image segmentation by the algorithm. The temperature in a sunny scene is
30 degrees Celsius, the humidity is 60%, the light intensity is 10000 lux, and the incidence angle is 50
degrees. The segmentation results in Fig. 14 show that the improved algorithm effectively segments
objects in the simulated scenes.

(a) Sunny scene (b) Sonwy scene

(c) Frame diagram of the simulation process

Figure 14: Simulation process and result diagram

To evaluate the algorithm’s performance on resource-constrained devices, we conducted opti-
mized inference on the Jetson Nano development board. This board features a 128-core Maxwell GPU,
a 4-core ARM A57 CPU clocked at 1.43 GHz, and 4 GB of 64-bit LPDDR4 memory. Our system
runs on an ARM version of Ubuntu 18.04.6 LTS, with the model’s runtime environment configured
with JetPack 4.6.4, Python 3.6.9, CUDA 10.2.300, cuDNN 8.2.1.32, OpenCV 4.1.1 with CUDA, and
TensorRT 8.2.1.8.

The segmentation results in Fig. 15 depict the successful segmentation of objects in real-world
scenes achieved by our improved algorithm. However, due to the limited computational power of the
Nano deployment board, the individual photo inference speed is relatively slow, as shown in Table 4.
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(a) Host-side inference (b) Nvidia Jetson Nano inference

(c) Nvidia Jetson Nano 

Figure 15: The diagram of edge deployment

Table 4: Network training and loss accuracy

Model Time/ms Device

Base 1848 Nvidia Jetson Nano

Base-GSAM-GRU 1954
Base 1116 i7 CPU, and 8 GB NVIDIA

RTX 2070 SUPER GPUBase-GSAM-GRU 1176

5 Conclusion

This study addressed the problem of information loss in instance segmentation networks. An
enhanced instance segmentation algorithm based on Mask-RCNN was proposed, introducing a
GSAM framework. This framework effectively combined local and global information, mitigating
information loss and local ambiguity of the network during convolution. The channel and spatial
attention modules within the framework work together, providing complementary functions. Addi-
tionally, the inclusion of the CBAM attention mechanism improved the accuracy of the segmenta-
tion algorithms. By leveraging the aforementioned modularity and spatial attention, the attention
mechanism was enhanced to make the CBAM model more suitable for challenging traffic scenarios.
The complexity of the model was partially reduced through enhanced feature extraction, smaller big
convolutions, and the replacement of the channel attention module with a simpler GCT attention
mechanism. Additionally, the introduction of the GRU structure effectively used deep-level informa-
tion and enhanced the network’s learning capacity. When combined with GRU, the original method
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exhibited excellent generalization performance, with significant improvements observed across all
metrics based on experimental findings.

The experiment’s algorithm was executed in Python, which affected its running efficiency a
little below average. However, using C/C++ to write the application process will increase operating
efficiency. It is important to note that the experimental data and equipment imposed limitations on
addressing the recognition of numerous categories in car driving scenes. The follow-up still has room
for improvement. Additionally, the method functions well on the server and can be made lighter in the
future, such as using the Pruning algorithm for deployment on the edge.
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