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ABSTRACT

Shear-type structures are common structural forms in industrial and civil buildings, such as concrete and steel frame
structures. Fault diagnosis of shear-type structures is an important topic to ensure the normal use of structures.
The main drawback of existing damage assessment methods is that they require accurate structural finite element
models for damage assessment. However, for many shear-type structures, it is difficult to obtain accurate FEM. In
order to avoid finite element modeling, a model-free method for diagnosing shear structure defects is developed in
this paper. This method only needs to measure a few low-order vibration modes of the structure. The proposed
defect diagnosis method is divided into two stages. In the first stage, the location of defects in the structure
is determined based on the difference between the virtual displacements derived from the dynamic flexibility
matrices before and after damage. In the second stage, damage severity is evaluated based on an improved frequency
sensitivity equation. The main innovations of this method lie in two aspects. The first innovation is the development
of a virtual displacement difference method for determining the location of damage in the shear structure. The
second is to improve the existing frequency sensitivity equation to calculate the damage degree without constructing
the finite element model. This method has been verified on a numerical example of a 22-story shear frame structure
and an experimental example of a three-story steel shear structure. Based on numerical analysis and experimental
data validation, it is shown that this method only needs to use the low-order modes of structural vibration to
diagnose the defect location and damage degree, and does not require finite element modeling. The proposed
method should be a very simple and practical defect diagnosis technique in engineering practice.
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1 Introduction

The shear-type structure is a common structural form in industrial and civil buildings, such as
concrete and steel frame structures. For example, many high-rise residential buildings can be classified
as the shear-type structures due to the particularly high stiffness of the floor compared to the columns.
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It is known that structural failures are inevitable due to the environmental corrosion, material fatigue,
disaster loads, and other factors. In order to ensure residential safety, it is necessary to carry out
structural health monitoring and defect diagnosis. Due to the large volume and numerous components
of building structures, traditional non-destructive testing techniques such as ultrasound, radiographic
testing, and penetration testing cannot complete defect diagnosis of large building structures. In the
past few decades, methods for diagnosing structural damage using response parameters of structures
under static or dynamic loads have been continuously studied in depth. The theoretical basis for this
type of method is that faults in structures can cause changes in structural static and vibration response
parameters [1-4]. In practice, the response data of structures can be measured through special testing
equipment and then their changes can be used to diagnose structural fault conditions.

In recent years, many methods have been developed for structural fault diagnosis by using static
or dynamic response parameters. Yang et al. proposed a fast static displacement analysis method for
structural damage detection using flexible disassembly perturbation [5,6]. Peng et al. [7] developed
a method for determining the damage location of beam structures by using redistribution of static
shear energy. Li et al. [8] proposed a flexible method for damage identification of cantilever structures,
such as high-rise buildings and chimneys, using a few dynamic modal data. Koo et al. [9] proposed
a damage quantification method for shear buildings based on the modal data measured by ambient
vibration. It is found from the experimental study that the damage quantity of the proposed method is
very consistent with the actual damage quantity obtained from the static pushdown test. Zhu et al. [10]
proposed an effective damage detection method for shear buildings by using the change of the first
mode shape slope. An eight-layer numerical example and a three-layer experimental model verify the
effectiveness of the method. Xing et al. [1 1] proposed a substructure method that allows local damage
detection of shear structures. Their method only needs three sensors to identify the local damage of any
floor of the shear structure building. The feasibility of the proposed method is tested by simulation and
experiment on a five-storey building. Su et al. [12] developed a simple and effective method to locate
the floors where the property (stiffness and mass) changes during the shear building life cycle. The
floors that may be damaged are determined by comparing the natural frequencies of the substructure
at different stages of the building life cycle. Sung et al. [13] conducted a comprehensive experimental
verification of the damage induced deflection method for shear building damage detection. The results
showed that the damaged floor was successfully located, and the damage rate estimated by the damage
induced deflection method was consistent with the damage rate calculated by numerical simulation.
Panigrahi et al. [14] developed a method based on residual force vector and genetic algorithm to
identify damages of multi-layer shear structures from sparse modal information. Li et al. [15] proposed
a data-driven method for seismic damage detection and location of multi-degree-of-freedom shear-
type building structures under strong ground motions. The proposed method is based on the joint
realization of time-frequency analysis and fractal dimension characteristics. An et al. [16] carried out
the application research of damage location method based on impact energy in real-time damage
detection of shear structures under random base excitation. The performance of their method in
damage detection was experimentally verified using a laboratory scale 6-layer shear structure model.
Wang et al. [17] proposed a damage identification method for the shear-type building based on
proper orthogonal modes. The experimental results show that this method can effectively identify
the location and severity of shear building structure damage. Mei et al. [18] proposed an improved
substructure based damage detection method to locate and quantify damage in shear structures.
Luo et al. [19] proposed a new method for extracting the spectral transfer function and detecting
damage of shear frame structures under non-stationary random excitation. Shi et al. [20] studied the
damage localization by using the curvature of the lateral displacement envelope in the shear building
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structure. The finite difference method and interpolation method are used to evaluate the modal
curvature and frequency response function for damage localization. Mei et al. [21] presented a new
substructure damage detection method based on the autoregressive moving average exogenous input
(ARMAX) model and the optimal sub-mode assignment (OSPA) distance to locate and quantify the
damage. Paral et al. [22] proposed a damage assessment method based on artificial neural network,
which takes the change of the first mode slope damage index as the input layer of the artificial neural
network. The effectiveness of their method is proved by the experimental tests of the three-story
steel shear frame model. Liang et al. [23] carried out the damage detection of shear buildings by
frequency-change-ratio and model updating algorithm. Ghannadi et al. [24] used a new bio-inspired
optimization algorithm to identify the damage location and severity of the multi-layer shear frame.
Do et al. [25] developed a new damage detection method based on output-only vibration information
for shear-type structures. Zhao et al. [26] proposed a two-step modeling method based on wavelet
frequency response function estimation and least squares iterative algorithm to identify structural
vibration modal parameters. Liu et al. [27] studied schemes to repair earthquake damage from the
aspects of load transfer path, enclosure structure, beam column nodes, and structural stiffness. It was
found that the seismic performance of masonry walls can be greatly improved after being wrapped
in reinforced concrete or seismic zones. Niu [28] proposed a damage detection method for shear
frame structures based on frequency response function. The influence of noise on damage detection is
greatly suppressed by simultaneously increasing the number of equations and reducing the unknown
coefficients. Yang et al. [29,30] studied dynamic model reduction and used modal sensitivity for fault
diagnosis based on the reduced model. Tan et al. [31] proposed a model- calibration-free method
for damage identification of shear structures using modal data. The advantage of the proposed
method is that the model-free calibration characteristics can avoid the need to calibrate the mass and
stiffness parameters of the structure. Roy [32] proposed a new formula to establish the expression of
damage severity in the form of mode shape slope. The derived closed-form solution directly relates the
percentage of damage strength to the derivative of the vibration mode change in the shear building.

Although great progress has been made in damage diagnosis of shear structures, there are still
many difficulties that need to be further studied to overcome. The main disadvantage of the existing
methods described above is that accurate structural finite element model (FEM) is required in these
methods to perform the damage assessment. However, it is difficult to obtain accurate FEMs for many
shear-type structures. It is an urgent need in engineering practice to study defect diagnosis methods
that do not require accurate finite element models. For this purpose, a FEM-free method for defect
diagnosis of the shear structure is developed in this paper, which only needs to measure a few low-order
vibration modes of the structure. The proposed defect diagnosis method is divided into two stages. In
the first stage, the location of the defect is determined based on the virtual displacement difference
derived from the dynamic flexibility matrix before and after damage. In the second stage, the damage
severity is evaluated based on the improved frequency sensitivity equation. The main innovations of the
proposed method lie in two aspects. The first is the development of a virtual displacement difference
method for determining the location of damage in the shear structure. The second is to improve the
existing frequency sensitivity equation to calculate the damage degree without constructing FEM. The
proposed method has been validated on a numerical model of a 22-story shear-type frame structure
and a three-story steel shear structure model. Based on numerical analysis and experimental data
validation, it is shown that the proposed method can diagnose the defect location and damage degree
only by using the lower order modes of structural vibration, and does not require finite element
modeling. The proposed method should be a very simple and practical defect diagnosis technique
in engineering practice.



2772 CMES, 2024, vol.138, no.3

2 Theoretical Development
2.1 Damage Localization by the Virtual Displacement Difference

In this section, the virtual displacement difference method is proposed for defect localization
of shear-type structures. For an undamaged structure with n degrees of freedom (DOFs), the free
vibration modes can be computed by the following generalized eigenvalue problem as:

(K=2WM)p, =0 (1)

o/ My, =1 (2)

where K and M are the stiffness and mass matrices of the FEM of the undamaged structure, A, is the
r-th eigenvalue (angular frequency), ¢, is the mass-normalized eigenvector (mode shape). Note that A,
and ¢, (also called as the r-th eigen-pair) can be also obtained by the dynamic test on the undamaged
structure without FEM. A structure with n-DOFs will have n independent eigen-pairs, i.e., r = 1 ~ n.
Thus Eqs. (1) and (2) can be rewritten for n eigen-pairs as:

KV = MYA 3)
VMY =] (4)
where [ is a n-dimensional identity matrix, W is the eigenvector matrix and A is the eigenvalue matrix as:
V=g, .0l (5
Ay
A=| - ©)
A
From Eq. (4), one has
U= WM (7)
(V) = Mw (8)

Combining Eq. (3) with (7), one has
K = MYAYV'M )

From Eq. (9), the inverse matrix of K (i.e., the flexibility matrix F) can be obtained as:
F=K'= (WM A" (M) (10)

Using Egs. (7), (8), and (10) can be simplified as:
F=K'=wA'yT (11)

Using Eqs. (5), (6) and (11) can be rewritten as:

"
F=K'=>" 09! (12)
r=1 r
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The eigenvalues of structural vibration are generally sorted from small to large, thatis, 0 < A, <

. 1
Ay < A3 < ---. This means that the reciprocal ordering of eigenvalues is exactly the opposite as o >
1
1 1 .
= > = > ... > 0. Thus Eq. (12) can be approximated as:
2 3
1
F~ —,0" 13
Z PRAL (13)

where m is the number of the lower-frequency modes in the dynamic test of the undamaged structure. It
is known that the appearance of structural defects usually only results in changes in structural stiffness
or flexibility, while the mass generally does not change. For a damaged structure, the similar equations
can be derived as follows:

(Ky = AaM) @, =0 (14)
oMo, =1 (15)
1
— -1 __ T
El e ; )\_‘#(Pdr(/)d,‘ (16)
GRS |
Fix > A_%%{ (17)
dr

in which K is the stiffness matrix of the damaged system, A, and ¢, are the corresponding eigenvalue
and mode shape, F, is the damage flexibility matrix. Note that A, and ¢, can be also obtained by
the dynamic test on the damaged structure without FEM. From Eqs. (13) and (17), the change of the
dynamic flexibility matrix due to fault can be approximately computed by:

s 1
AF~ D, (gwwdi — %/ ) (15
=1 d ¥

From a static perspective, the displacement before and after structural damage under a certain
static load can be obtained as follows:

E=F-I (19)
E1=Fq-l, (20)

where & and &, are the displacement vectors before and after structural damage under the certain static
load /,. For shear-type structures, it can be assumed that a unit force is applied at the free end of the
structure to obtain a virtual load vector of /, = (1,0,0,---,0)". Note that the purpose of applying a
unit force at the free end of the shear structure is to ensure that each layer of the structure can undergo
shear deformation, as shown in Fig. 1a. If this unit force is applied to the middle layer, the layers above
the load position will not undergo shear deformation, as shown in Fig. 1b. Thus the loading scheme
of Fig. 1b will not be able to identify the possible damage in the layers above the load location by
the shear deformation. In view of this, the virtual load should be applied to the free end of the shear
structure (i.e., the top layer) as shown in Fig. 1a. Note thatin Fig. 1a, the floors are numbered from top
to bottomas 1,2, ... , n. Thus the virtual load vector corresponding to Fig. lais/, = (1,0,0,---,0)"
since only the element corresponding to the unit force at the first floor is 1 and the other elements
are zeros. If the floors are numbered from bottom to top as 1, 2, ... , n, as shown in Fig. Ic, the
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corresponding virtual load vector will be /, = (0,0, --- , 0, 1)" since only the element corresponding to
the unit force at the highest floor is 1 and the other elements are zeros.

1 §— force=1 1@ n g@—= force=1

1 1 1

i@ i @—= force=1 i@
NE— 4

n @ ne 1®

777 777 777

(a) (b) (c)
Figure 1: (a) A virtual load at the top floor (floors are numbered from top to bottom as 1, 2, ... , n);

(b) A virtual load at the middle layer; (¢) A virtual load at the top floor (floors are numbered from
bottomtotopas1,2, ... ,n)

Therefore, the virtual displacement difference vector A& can be obtained as:
AE = AF -, (21

According to the research results of the reference [33], it has been proven that the displacement
difference vector for the linear structure before and after damage under the same static load will
undergo a sudden change at the damage location. Thus the location of the fault in a shear structure can
be determined by the location of the element value mutation in the vector A&. The virtual displacement
difference vector A is also called as the defect localization vector. It should be emphasized that the
vector A& can be obtained from Eq. (21) only by testing the low-frequency modal data of the free
vibration of the shear structure before and after damage, without requiring a finite element model.
This means that the defect localization of the structure can be carried out without the need to establish
a FEM of the structure in advance.

2.2 Damage Quantification by the Improved Frequency Sensitivity

An assessment of the defect severity is necessary to estimate the remaining life of the structure or to
determine whether maintenance is required. To this end, an improved frequency sensitivity algorithm
is developed for fault quantification of the shear structure. According to the FEM theory, the total
stiffness matrix K of the undamaged structure can be obtained by the sum of all the elementary stiffness
matrices as:

K=>K (22)

where K; is the i-th elementary stiffness matrix, NV is the number of all elements of the structure. In
most cases, structural damage only leads to a decrease in structural stiffness without causing a change
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in mass. The reduction in local stiffness can be represented by multiplying a reduction coefficient by
the elementary stiffness matrix. Therefore, the total stiffness matrix considering structural damage can
be expressed as:

N
K= (1+e)Kk, (23)
i=1
where ¢, is a reduction coefficient reflecting the severity of the defect in the i-th element. &; is a number
located in the interval [—1, 0]. Theoretically, &; = 0 denotes that the i-th element has not been damaged,
—1 < & < 0indicates partial damage to the i-th element, and ¢; = —1 indicates complete damage to
the i-th element. By performing partial derivatives on Eq. (1) with respect to the variable ¢;, one has:

¢, oA,

K —0M) 2= (MK ), (24)
d&; d&;

. . oA, ¢, . .

in which . and B are the frequency and mode shape sensitivities, respectively. Eq. (1) can be
(9,' 8[

rewritten by the matrix transpose as:

[(K—2M)g] =0 (25)

According to the FEM theory, the stiffness and mass matrices K and M are both symmetric
matrices. Thus Eq. (25) can be expanded by considering the symmetry of K and M as:

¢! (K = 3,M) =0 (26)
Multiplying Fq. (24) by ¢ and using Eq. (26), one has
oA,
0=<pf(a M—K,.)<p, (27)
&;
Eq. (27) can be expanded as:
A,
e, (‘P,.TM%) = ¢/ K, (28)
Substituting Eq. (2) into (28) yields
A,
= ¢/ K, (29)
d&;

The eigenvalue (i.e., angular frequency) variation AX, due to the faults in the structure can be
calculated by:

AN, = Ay — A (30)

Substituting Eq. (23) into (1) yields as:

(z (1+e)K — )»,M) ¢, =0 31)
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Eq. (31) shows that A, is a implicit function of the variables ¢, &,, - - - , ey, 1.6, A, = f (61,85, , En).
Thus the change of A, due to the changes of ¢, ¢,, - - - , &y can be approximated by using Taylor’s series
expansion and ignoring higher-order derivatives as:

A
A)\’V = 8[ 4 32
Z 5 (32)

As stated before, the defect location has been determined based on the damage location vector A&
in the first stage. The following quantitative evaluation of defects is divided into two situations: single
defect and multiple defects. For single defect case, assuming that the i-th element is determined to be
a damaged element, Eq. (32) is simplified as:

oA,
AN, = &— (33)
d¢&;
Substituting Eq. (29) into (33) yields

In the above derivation, g, is the mass-normalized mode shape obtained by solving the eigenvalue
problem based on structural FEM. To avoid constructing FEM, Eq. (34) can be improved by replacing
the mode shape calculated from FEM with the tested mode shape as:

AL, =&, (7' Kip,) (35)
where @, represents the measured mode shape of the undamaged structure. Generally, the first
vibration mode is the easiest to measure and has the highest accuracy. Thus the fault coefficient can
be calculated using the first vibration mode from Eq. (35) as:
Al

7 K7,

Note that K; in Eq. (36) can be directly obtained by the interlayer stiffness of the i-th element
of the shear structure without the need to establish structural FEM. It is known that the elementary
stiffness matrix of the shear structure in local co-ordinates can be expressed as:

COREITL -1
K,«—?[_l 1 } (37)

where E denotes the elastic modulus, 7 denotes the moment of inertia, L is the shear element length,
12EI

(36)

E;

and is also called as the interlayer stiffness. Eqs. (36) and (37) indicate that the fault coefficient

3
of the structure can be solved directly using the tested vibration mode and the interlayer stiffness of
the individual element, without the need to construct a FEM of the entire structure.

For multiple defect case, more vibration modes besides the first vibration mode are needed to solve
the fault coefficients. The number of the used vibration modes should be greater than or equal to the
number of damage locations determined by the above damage localization approach. Without losing
generality, Eq. (32) can be expanded for multiple defects to

Al &
: =S 1: (38)
AA,, )
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dej 3€j

s=|: - (39)
O Pm
de; 3.9/'

where the matrix S is also obtained by using the measured mode shapes instead of the theoretical mode
shapes computed by FEM. This improvement can avoid establishing the overall FEM of the structure.
From Eq. (38), all the fault coefficients can be computed by:
& A,
e (40)
A)\‘Iﬂ

In Eq. (40), the superscript “4” denotes the matrix generalized inverse. Finally, the damage
severity of shear structures can be evaluated based on the calculation results of Eq. (40). Fig. 2 shows
the flow chart of the proposed algorithm to explain the process more clearly.

&j

Measure the vibration modes of the
undamaged and damaged structure
through the vibration test system

l

Compute the dynamic flexibility
change by Equation (18)

}

Determine the fault location based on
Equation (21)

l

Compute the frequency sensitivity by
Equation (29) using the tested mode
shape

A

Compute the fault coefficients by
Equation (36) for single defect or (40)
for multiple defects

l

Fault diagnosis

Figure 2: Flowchart of the proposed algorithm

3 Validation by the Numerical Model

A 22-story shear frame structure shown in Fig. 3a is used to verify the feasibility of the presented
approach. The stiffness and mass of each floor in Fig. 3a are k, = k, = 1296, k; = - -+ = ky, = 1024,
m, =m, =72, and m; = - - - = my, = 64, respectively. The node numbers from the ground to the roof
of this shear structure are 1, 2, ..., and 23, as shown in Fig. 3b. Two defect scenarios are simulated in
this numerical example. The first defect scenario assumes a 15% reduction in the interlayer stiffness
of the fifth floor. The second defect scenario assumes that the stiffness of the 5th and 16th floors
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is reduced by 20% and 15%, respectively. Note that the reduction of interlayer stiffness is achieved
through the reduction of stiffness parameter k;. For example, ks = 1024 of the undamaged structure
changes to be k5 = 0.85 x 1024 = 870.4 of the damaged structure, resulting in a 15% reduction in
the interlayer stiffness of the fifth floor for the first defect scenario. In this example, only the first and
second vibration modes are used for defect diagnosis. A 3% level of data noise is added to the vibration
modes of the damaged structure to simulate the measurement errors. Tables | and 2 present the eigen-
frequencies and modal shapes obtained by the FEMs of the undamaged and damaged structures. Note
that the node number is different from the floor number as shown in Fig. 3b. The node 1 in Table 2
corresponds to the fixed end of the structure. For this numerical example, the frequencies and modal
shapes are obtained from the FEM by solving the above eigenvalue in Eq. (1). The data with noise
in these tables are used to simulate the corresponding values obtained from the dynamic test in a real
scenario. Note that these modal data can be obtained through vibration testing experiments for a real
scenario in practice. For example, the data used in the following experimental structure is the actual
test data, as shown in the next section.

m,,

P FIOOI'—JJ . NO(IC-E.}
ky
Iy
Floor-21 Node-22
klll |
1y
k,
m, T
K | S——— Floor-2 Node-3
i m
—1 Floor-1 ¢ Node-2
k
: Node-1
/! Ty
(a) (b)

Figure 3: (a) A 22-story numerical shear frame structure; (b) Floor number and node number

Table 1: Eigen-frequencies of the undamaged and damaged structures

Scenario Eigen-frequency

)\.1 )\.2
Undamaged 0.0794 (0.0792)x 0.7111 (0.7108)
The first defect scenario 0.0783 (0.0781) 0.7069 (0.7066)
The second defect scenario 0.0775 (0.0774) 0.6943 (0.6940)

Note: xThe values in brackets represent the data with noise.

Taking the first defect scenario without data noise as an example, the specific process of calculating
the damage localization vector A& using the proposed method is as follows:
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(1) Calculate the undamaged flexibility matrix F using Eq. (13) as:
1 1
F~ )L—lwpf + )L—2¢2§02T (41)
The result of F obtained by Eq. (41) is shown in Table 3.
(2) Calculate the damaged flexibility matrix F, using Eq. (17) as:

1 1
Fi~ —oae), + —one,, (42)
)"dl )\'dZ

The result of F, obtained by Eq. (42) is shown in Table 4.
(3) Calculate the flexibility matrix change AF by:
AF=F,—F (43)

The result of AF obtained by Eq. (43) is shown in Table 5.

(4) Calculate damage localization vector A& using Eq. (21) with /, = (0,0,0,0,0,0,0,0,0,0,0,0, 0,
0,0,0,0,0,0,0,0,1)". Fig. 4 gives the calculation result of the defect localization vector A& for the first
defect scenario by the exact data and the data with 3% noise. From Fig. 4, one can find that there is
a mutation between the nodes numbered 5 and 6, which exactly corresponds to the fifth floor. This
means that the fifth floor is where the defect is located. For the second defect scenario, Fig. 5 gives
the calculation results of the defect localization vectors by the exact data and the data with 3% noise.
From Fig. 5, one can find that there is two mutations between the nodes numbered 5, 6, 16, and 17,
which exactly correspond to the 5th and 16th floors. This means that the 5th and 16th floors are where
the defects are located. For the above two defect scenarios, Table 6 presents the calculated severity of
the damages using the data with and without noise. One can find from Table 6 that these calculated
damage severity values are relatively close to the assumed true values in the two defect scenarios. This
indicates that the proposed method can successfully determine the locations and extents of the defects
in this numerical shear structure.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
-0.05 * Node number

Defect localization vector
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Figure 4: The defect localization vector A& for the first defect scenario of the numerical example when
the fifth floor is damaged (x107?)
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Figure 5: The defect localization vector A& for the second defect scenario of the numerical example
when the 5th and 16th floors are damaged (x107%)

Table 6: The calculated severity of the damages for the two defect scenarios

Defect scenario True value Calculated fault coefficient Calculated fault coefficient
(no noise) (with noise)
1 g5 =—0.15 es=—0.174 g5 =—0.175
gs=—0.2 es = —0.244 g5 = —0.237
E16 = —0.15 Ei1g = —0.174 E16 = —0.177

4 Validation by Experimental Data

The proposed approach is validated again using the experiment data measured by Li from a three-
story steel frame structure in reference [34]. The experimental structure, material parameters, and
experimental process are described in detail in reference [34]. Fig. 6 provides the geometric model
of this steel frame structure. From Fig. 6a, this structure is composed of three steel plates and four
rectangular columns. These components are welded to simplify to a rigid shear system of Fig. 6b.
The node numbers from bottom to top of this shear structure are 1, 2, 3, and 4. From vibration
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testing, the first natural frequency and modal shape of the undamaged structure are f; = 3.369 and
¢, =(0.02118, 0.03922, 0.048427)". The second modal data of the undamaged structure are f, = 9.704
and ¢, = (0.048758, 0.02031, —0.03923)". The third modal data of the undamaged structure are f;
= 14.282 and ¢; = (0.037936, —0.04866, 0.022852)". Note that the conversion formula between the
natural frequency f, and the aforementioned angular frequency (i.e., eigenvalue A,) is as follows:

A = Quf)’ (44)
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Figure 6: (a) A three-story experimental shear structure; (b) Simplified shear system corresponding to

the experimental structure; (c) Geometric size of the experimental structure

Some defect scenarios have been tested on this three-story steel frame structure in reference [34].
For the first defect scenario, the cross-sectional width of the lower ends of the four columns for the first
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floor has been reduced from 75 to 51.3 mm by cutting, as shown in Fig. 7a. The geometric dimensions
before and after cutting are used to calculate the shear stiffness of the structure. The formula for
calculating the shear stiffness was given in [34]. The ratio between the shear stiffness difference before
and after cutting and the shear stiffness of the intact structure is used as the true value of the damage
severity. For the first defect scenario, the true value of damage severity calculated based on the shear
stiffness 1s 11.6%. For the second defect scenario, the cross-sectional width of the lower ends of the four
columns for the first floor has been cut from 75 to 37.46 mm as shown in Fig. 7b. The corresponding
true value of damage severity calculated based on the shear stiffness is 21.1%. The third damage
scenario is to reduce the cross-sectional width of all column bottoms in the first floor from 75 to
37.46 mm, and to reduce the cross-sectional width of all column bottoms in the second floor from 75
to 51.3 mm, resulting in a damage degree of 21% and 11% for the first and second floors, respectively.
These three defect scenarios are listed in Table 7.

o) 3
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> L
450mm 450mm
¥
|60mm Inﬂmm
¥ . i L3
;4 " w
“51.3mm i 7 37 46mm
Fall g L.
9. 5mm 9.5mm
L
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Figure 7: (a) Cut the width of the column bottom from 75 to 51.3 mm; (b) Cut the width of the column
bottom from 75 to 37.46 mm

Table 7: Three defect scenarios of the experimental structure

Defect scenario True value of damage severity
The first story The second story
1 11.6% 0
2 21.1% 0
3 21.1% 11.6%

For the first defect scenario, the measured first-order modal data are f;; = 3.259 and ¢, =
(0.022735, 0.039331, 0.047594)". The second-order modal data are f,, = 9.485 and ¢,, = (0.049417,
0.017683, —0.03968)". The third-order modal data are f;; = 14.209 and ¢,; = (0.035798, —0.04982,
0.02379)". Using only the first vibration mode, the specific process of calculating the damage
localization vector A& using the proposed method is as follows:

(1) Calculate the undamaged flexibility matrix using Eq. (13) as:

! | 0.0994 0.1848 0.2281
sz_w,(plf:Tgo,go{: 0.1848 0.3433 0.4239 | x 10~° (45)
1 @rf) 0.2281 0.4239 0.5234
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(2) Calculate the damaged flexibility matrix using Eq. (17) as:

! { 0.1233 0.2133 0.2581
Fy~ —@upl = ———@aph = [ 02133 0.3689 0.4464 | x 10~° (46)
A 27fa) 0.2581 0.4464 0.5402
(3) Calculate the change of flexibility matrix as:

0.2384 0.2850 0.2993
AF =F,— F = 02850 0.2564 0.2256 | x 10°° (47)
0.2993 0.2256 0.1685

4) Calculate damage localization vector A& using Fq. (21) with [, = (0,0, 1)" as:
4) g & using Eq »=(0,0,1)

0.2384 0.2850 0.2993 0 0.2993
A& = AF -1, =[0.2850 0.2564 0.2256 | x 10°x |0 | = [ 0.2256 | x 10°° (48)
0.2993 0.2256 0.1685 1 0.1685

For convenience, Table 8 gives the calculation results of the defect localization vector A§ shown in
Eq. (48). Note in Table § that the node number is different from the floor number as shown in Fig. 6b.
The node 1 in Table 8 corresponds to the fixed end of the structure. Obviously, the displacement
difference before and after damage under any load is always zero at this fixed end position. Thus the
value corresponding to node 1is 0 in Table 8. From Table &, one can find that there is a largest mutation
between the nodes numbered 1 and 2, which exactly corresponds to the first floor. This means that the
first floor is where the defect is most possibly located. For more accurate damage diagnosis, the fault
coefficients for all floors can be computed by using the measured three frequencies with Eq. (40). The
specific process of calculating the fault coefficients using the proposed method is as follows:

Table 8: The defect localization vector obtained by the first-order modal data for the first defect
scenario of the experimental example (x 107°)

Node number Node 1 Node 2 Node 3 Node 4
A& 0 0.2993 0.2256 0.1685

(1) Calculate the changes of the eigenvalues using Eq. (30) as:

A, Ao — A —28.7829
Ady | = | App— Ay | = | —165.9037 (49)
AXs Az — A3 —82.1089
(2) Calculate the eigenvalue sensitivity matrix S using Eqs. (29) and (39) as:
FoA,  OA,  OAT]
gil giz gis oIKip oK ol K, 0.2515 0.1852 0.0479
S = 8—2 8_2 8_2 = | olKip, ¢IK,p, ¢IKip, | =|13421 0.4569 2.0013| x 10° (50)
& g 08
e I o Ko 9TKpy 07Ky, 0.8124 4.2333 2.8870
|06, 95, 0e;
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(3) Calculate the fault coefficients using Eq. (40) as:

& A, —0.1185
&t =S8 Axr | =0.0068 (51)

&; Ads —0.0050
From Eq. (51), the calculated values of the fault coefficients are &, = —0.1185, &, = 0.0068,
and g; = —0.0050, respectively. Based on these calculated damage severity values, it can be clearly

determined that the first floor is damaged, while the second and third floors are not damaged since
their calculated damage levels are very close to zero. The calculated damage severity value of the first
floor (11.85%) is very close to the true value (11.6%). This indicates that the proposed method can
successfully determine the location and severity of the defect in the experimental steel shear structure.

For the second defect scenario, the measured first-order modal data are f;; = 3.113 and ¢, =
(0.024117, 0.039364, 0.046881)". The second-order modal data are f,, = 9.302 and ¢,, = (0.049711,
0.016267, —0.03992)". The third-order modal data are f;; = 14.136 and ¢,; = (0.035067, —0.05014,
0.024199)". Using only the first vibration mode, the damage localization vector A¢ obtained by the
proposed method is given in Table 9. From Table 9, one can find that there is a largest mutation
between the nodes numbered 1 and 2, which exactly corresponds to the first floor. This means that the
first floor is where the defect is most possibly located. For more accurate damage diagnosis, the fault
coefficients for all floors can be computed by the proposed method as: e, = —0.2608, &, = —0.0061,
and &; = 0.0256, respectively. Based on these calculated damage severity values, it can be clearly
determined that the first floor is damaged, while the second and third floors are not damaged since
their calculated damage levels are very close to zero. The calculated damage severity value of the
first floor (26.08%) is close to the true value (21.1%). This indicates that the proposed method can
successfully determine the location and severity of the defect in the experimental steel shear structure.

Table 9: The defect localization vector obtained by the first-order modal data for the second defect
scenario of the experimental example (x 1079)

Node number Node 1 Node 2 Node 3 Node 4
A& 0 0.6741 0.5850 0.5111

For the third defect scenario, the measured first-order modal data are f;, = 3.076 and ¢, =
(0.023253, 0.039779, 0.046968)". The second-order modal data are f,, = 9.192 and ¢,, = (0.051655,
0.014387, —0.03813)". The third-order modal data are f;; = 13.660 and ¢,; = (0.032448, —0.05058,
0.026788)". Using only the first vibration mode, the damage localization vector A& obtained by the
proposed method is given in Table 10. From Table 10, it can be observed that there is a large mutation
between nodes 1 and 2, and a small mutation between nodes 2 and 3, which correspond to the first and
second floors, respectively. This means that the first and second floors are where the defects are most
possibly located. Note that the number of floors in this structure is only three, so the mutation feature
is not as obvious as those structures with many floors. For more accurate damage diagnosis, the fault
coefficients can be further computed by the proposed method as: e, = —0.2145, &, = —0.1053, and
g, = —0.0230, respectively. Based on these calculated fault coefficients, it can be clearly determined
that the first and second floors are damaged, while the third floor is not damaged since its calculated
damage level is close to zero. The calculated damage severity values of the first and second floors
(21.45% and 10.53%) are close to the true values (21.1% and 11.6%). This indicates that the proposed
method can successfully identify the location and severity of multiple defects in the structure.
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Table 10: The defect localization vector obtained by the first-order modal data for the third defect
scenario of the experimental example (x 107°)

Node number Node 1 Node 2 Node 3 Node 4
A& 0 0.6426 0.7631 0.6720

5 Conclusions

In this paper, a new method of defect localization and quantitative evaluation is developed
for the diagnosis of shear-type structural defects. The greatest advantage of the proposed method
is that only a few low-frequency vibration modes of the shear structure need to be measured for
defect diagnosis, without requiring a FEM of the structure. The proposed method completes the
task of damage diagnosis through the first stage of defect localization and the second stage of defect
quantitative evaluation. The proposed method has been successfully verified on a numerical model and
an experimental model. According to the computation results, some conclusions can be summarized
as follows. (1) For the numerical example, the location and severity of defects in the shear structure
can be correctly diagnosed using only the first two vibration modal data. The proposed method can
successfully identify defects in the structure even under the interference of 3% level noise. (2) For
the experimental example, the most obvious mutation location in the damage location vector also
corresponds to the location of the defect in the shear structure. The improved frequency sensitivity
method can further accurately diagnose the damage in the shear structure and obtain the severity of the
damage. (3) The method proposed in this paper does not require an overall FEM of the structure and
complex mathematical operations during implementation, so it is particularly suitable for engineering
applications. It has been shown that the proposed method may be very effective for defect diagnosis
of shear-type structures.
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