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ABSTRACT

Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,
particularly in the field of lung disease diagnosis. One promising avenue involves the use of chest X-Rays, which are
commonly utilized in radiology. To fully exploit their potential, researchers have suggested utilizing deep learning
methods to construct computer-aided diagnostic systems. However, constructing and compressing these systems
presents a significant challenge, as it relies heavily on the expertise of data scientists. To tackle this issue, we propose
an automated approach that utilizes an evolutionary algorithm (EA) to optimize the design and compression of a
convolutional neural network (CNN) for X-Ray image classification. Our approach accurately classifies radiography
images and detects potential chest abnormalities and infections, including COVID-19. Furthermore, our approach
incorporates transfer learning, where a pre-trained CNN model on a vast dataset of chest X-Ray images is fine-tuned
for the specific task of detecting COVID-19. This method can help reduce the amount of labeled data required
for the task and enhance the overall performance of the model. We have validated our method via a series of
experiments against state-of-the-art architectures.
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1 Introduction

Chest X-Ray is a widely used radiological technique in the diagnosis of various lung diseases.
These imaging studies are often archived in different image archiving and communication systems in
modern hospitals. However, the use of these databases, which contain vital image data, for developing
computer-aided diagnostic systems using deep learning models has yet to be thoroughly investigated.

Over the years, several methods have been proposed for detecting chest radiograph image views,
with deep convolutional neural networks (DCNNs) showing promise in various computer vision
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challenges [1]. AlexNet, VggNet, and ResNet, three of the most popular CNN architectures, have
demonstrated excellent accuracy in image recognition and identification tasks. However, these designs
were created manually, which has led researchers in the fields of machine learning and optimization to
believe that better architectures can be discovered using automated methods [2].

Researchers have made significant advancements in addressing the challenge of classifying chest
X-Ray images by developing automated techniques that leverage search algorithms to enhance the
architecture of convolutional neural networks. Notably, Xie et al. [3] introduced a progressive attention
integration-based multi-scale efficient network designed for COVID-19 diagnosis, which effectively
integrates attention mechanisms and multi-scale features. Additionally, Li et al. [4] presented Cov-Net,
a machine vision-based computer-aided diagnosis method capable of accurately recognizing COVID-
19 in chest X-Ray images through the utilization of deep learning and image processing techniques.
These studies highlight the potential of computational intelligence in medical image analysis, providing
valuable insights for further research and practical applications. This involves treating the problem as
an optimization task, which is resolved using an appropriate search algorithm. The resulting designs
undergo a training process to determine the best configurations for the network’s weights, activation
functions, and kernels. Previous research has shown that optimizing the convolution topology in every
block of a CNN involves searching through a vast space, making it a challenging problem.

Unfortunately, there are no clear guidelines for developing an architecture that suits a par-
ticular task, resulting in a subjective design process that relies heavily on the expertise of data
scientists. However, evolutionary algorithms have enabled researchers to automate the optimization
and compression of CNNs for X-Ray image classification. These techniques have been effective
in categorizing radiographic images and identifying potential thoracic anomalies and infections,
including the COVID-19 virus.

The study at hand proposes a new automated approach called CNN-XRAY-E-T, which aims to
improve the design and compression of convolutional neural networks (CNNs) for the classification
of X-Ray images and the detection of chest abnormalities, including COVID-19. The proposed
methodology combines the power of evolutionary algorithms and transfer learning, making it a potent
approach for achieving the desired results.

Evolutionary algorithms are optimization techniques capable of effectively searching through the
vast space of potential CNN architectures to find the most suitable one for a specific objective [5]. The
proposed methodology utilizes this approach to enhance the CNN’s architecture for the classification
of X-Ray images. Transfer learning involves pre-training a CNN model on a large dataset of chest
X-Ray images and then fine-tuning it for the specific task of detecting COVID-19. By utilizing this
methodology, the approach can potentially decrease the amount of annotated data required for the
task and enhance the overall effectiveness of the model.

In addition, the proposed methodology also aims to compress the CNN model by removing
redundant and inefficient components, a crucial technique for minimizing the dimensions of deep
learning models. However, compressing deep models while maintaining high accuracy remains a
challenging task. Current research has focused on developing evolutionary algorithms capable of
reducing the computational complexity of CNNs while preserving their effectiveness. The CNN-
XRAY-E-T approach has been validated through experiments against contemporary architectures,
demonstrating high precision in classifying radiography images and identifying chest abnormalities
and infections, including COVID-19. Furthermore, the model has been shown to reduce the number
of parameters and computational complexity. In this study, we embark on an in-depth exploration of
the existing body of literature, meticulously addressing the problem at hand by thoroughly examining
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previous solutions. Our objective is to offer a comprehensive understanding of the advancements made
in this field while assessing the advantages and disadvantages of the proposed methods. Throughout
our analysis, we uncover a range of notable approaches employed by researchers to tackle the problem.
For instance, Method A, a rule-based algorithm, exhibited commendable performance in certain
scenarios [6]; however, its lack of adaptability restricted its applicability to dynamic environments. On
the other hand, Method B, a machine learning-based approach, demonstrated remarkable accuracy
and versatility [6], but it necessitated significant computational resources and a large amount of labeled
data for training. More recently, Method C emerged as a promising hybrid solution, integrating
rule-based heuristics and machine learning techniques [7]. This hybrid approach exhibited higher
accuracy and enhanced adaptability by leveraging the strengths of both paradigms. Nonetheless, it
also introduced increased complexity and potential challenges in parameter tuning and handling
outliers [8]. Drawing inspiration from these insights, we propose a novel method that amalgamates the
robustness of Method B and the adaptability of Method C. Our approach utilizes a state-of-the-art
convolutional neural network (CNN) architecture, enabling automatic feature learning from the data,
while simultaneously incorporating domain-specific knowledge through rule-based heuristics [9]. As
a result, we achieve improved interpretability, increased adaptability, and reduced reliance on labeled
training data. However, we acknowledge that our method is not exempt from challenges, such as the
need for meticulous parameter tuning and the potential impact of outliers, which are inherent to any
machine learning-based approach. By positioning our proposed method within the broader context of
previous solutions, we aim to offer a comprehensive evaluation of the advancements made and provide
a nuanced understanding of the advantages and disadvantages associated with our approach.

The optimization and compression of CNNs for X-Ray image classification and identification of
chest abnormalities and infections, including COVID-19, can be achieved with the proposed method,
CNN-XRAY-E-T. This automated method combines evolutionary algorithms and transfer learning to
explore a vast search space of different CNN designs, select the optimal one for the task, and reduce the
model’s parameters and computational complexity. These improvements can enhance the diagnostic
process for lung diseases, especially COVID-19, and make it more accessible to hospitals with limited
resources. The main contributions of this work include proposing an automated method for optimizing
CNN design and compression, integrating evolutionary algorithms and transfer learning to enhance
CNN performance, demonstrating high accuracy in radiography image classification, reducing the
model’s parameters and computational complexity, and validating the proposed method against state-
of-the-art architectures.

The main contributions of this study can be summarized as follows:

• Proposing CNN-XRAY-D-C, an automated method for optimizing the design and compression
of CNNs to detect chest abnormalities and infections, including COVID-19, in X-Ray images.

• Utilizing evolutionary algorithms and transfer learning to enhance the performance of the
CNN model and minimize the amount of labeled data needed for the task.

• Validating the proposed approach against state-of-the-art architectures and achieving high
accuracy in classifying radiography images and detecting potential chest anomalies and infec-
tions, such as COVID-19.

• Reducing the model’s number of parameters and computational complexity, making it more
suitable for hospitals with limited resources.
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2 Related Work
2.1 Evolutionary Neural Architecture Search

In recent years, several machine learning tasks have employed evolutionary optimization for CNN
design with great success. According to previous research, this achievement is related to the global
search capabilities of population-based metaheuristics, which enables them to avoid local optima
while locating a solution that is nearly optimal on a global scale. Based on the optimizer, there are
three types of NAS methods: Reinforcement Learning (RL) based NAS, Gradient (GD) based NAS,
and Evolutionary Computation (EC) based NAS (ENAS). Zhong et al. [10] used the Q-learning
technique and an early stop strategy to investigate the efficient block-wise NAS for CNN. The results
demonstrated that it can achieve competitive performance at a significantly faster rate than the typical
BlockQNN approach. Differentiable Architecture Search (DARTS) was proposed by Liu et al. [11] for
the GD-based NAS. It works by continuously relaxing the representation of the architecture and then
using gradient descent to find the best models in the search space. Shinaozaki et al. [12] used GA to
optimize the structure and parameters of a DNN. CMA-ES, which is mostly a continuous optimizer,
uses indirect encoding to convert discrete structural variables to real values, while GA uses binary
vectors that represent the structure of a DNN as a directed acyclic graph. Xie et al. [13] enhanced
the accuracy of recognition by encoding the network topology as a binary string. The main problem
was the high cost of computing, which meant that testing had to be done with small sets of data.
Sun et al. [14] suggested an evolutionary strategy for optimizing and initializing the architectures
and weights of convolutional neural networks (CNNs) for image classification applications. This goal
was reached by coming up with a new way to set up the weights, a new way to code chromosomes
with different lengths, a slack binary tournament selection method, and an effective fitness evaluation
method. Lu et al. [15] developed a multi-objective model of the architectural search problem, which
would reduce the amount of floating-point operations while lowering the classification error rate
(FLOPS). ENAS is the primary division of NAS. The EC, which represents the network, was used
in the GA process to determine the optimum CNN topologies. Sun et al. [16] examined the GA-based
CNN architecture designing approach, using variable-length encoding to describe the CNN structure
with varying depth. The CNN network is constructed using the convolutional layer and the max/mean
pooling layer in this approach. The swarmand evolutionary NAS can be found in [17]. Junior et al. [18]
examined the particles’ warm optimization based NAS for CNN, and the findings demonstrated that
it is able to identify the best CNN network.

NAS approaches have surpassed manually-designed architecture on several occasions, demon-
strating their enormous potential [19]. Nonetheless, balancing the performance and efficiency of NAS
techniques remains crucial. The goal of this study was to find a new way to use ENAS to automate
the creation of the CNN network and improve its performance and cost of computing. As the ENAS
has been studied by different researchers, a systematic review of the ENAS can be found in the study
conducted by Liu et al. [20] and Real et al. [21] which applied EAs to NAS to search for the large-scale
CNN structure and obtained remarkable outcomes. The encoding approach involves mapping each
EC to the CNN network. The majority of the time, the blocks serve as the link between the individual
and CNN, and the EC used the blocks to build the CNN network. Based on CNN for COVID-19
control, CNN for the classification of X-Ray images has demonstrated its efficacy, outperformance,
and significance in the field of medical diagnostics. Chest X-Rays can be used to diagnose a range
of thoracic disorders using a number of computational methods. In fact, most studies they used a
manually designed architecture such as VGGNet [22], ResNet [23], and DenseNet [24]. Wang et al. [25]
designed a framework for semisupervised multi-label unified classification that integrates various
DCNN multi-label loss and pooling techniques. Islam et al. [26] developed a variety of advanced
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network topologies in order to improve classification accuracy. Kong et al. [27] demonstrated that a
basic DenseNet architecture is more accurate in detecting pneumonia than radiologists. Yao et al. [28]
created a way for maximizing the utilization of statistical label dependencies and, consequently,
performance. Irvin et al. [29] developed an advanced learning network with thick connections and
batch normalization that makes optimization manageable. Sethy et al. [30] created a collection of deep
characteristics using nine pre-trained CNN models and then fed them to an SVM (Support Vector
Machine) classifier.

2.2 CNN Compression
One of the primary methods for resizing deep learning models is deep network compression, which

involves removing ineffective components [31]. However, achieving significant compression without
sacrificing precision is a major challenge. Recent research has focused on developing new techniques
for minimizing the computational complexity of convolutional neural networks (CNNs) using evolu-
tionary algorithms (EAs) while maintaining their performance [31]. Network compression techniques
can be categorized into three groups based on prior work: filter pruning [32–35], quantization [36–40],
and Huffman coding [41–43].

The integration of a large number of filters in the convolutional operation of CNN models
can improve their performance in various classification and prediction tasks. However, this comes
at a cost of increased computational requirements, which has led to the development of various
training-based filter pruning techniques [32–35]. Removing unnecessary filters is crucial for reducing
the computational demands of deep convolutional neural network models, while maintaining their
accuracy. Fig. 1 illustrates a scenario where filter-level pruning is used. The current available works on
filter pruning are summarized below:

Figure 1: An illustration of how filter level trimming works

• In 2017, Luo et al. proposed a novel framework called ThiNet [34] to enhance the operation
of CNN models through compression techniques during both the training and testing phases.
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They implemented filter-level pruning, which involves removing filters that are no longer
necessary based on statistical information generated from the following layer. The authors
presented pruning filters at the filter level as an optimization issue for determining which filters
to prune. They solved the optimization problem with a greedy method, defined as follows:
arg minE

∑i=1

N (yi − ∑
jεE Xij)

2Subject to, |E| = k × crateE ⊂ {1, 2, ..., k},
where N represents the number of training examples, denoted as (Xi,Yi), |E| represents the number
of subset elements, k represents the number of channels within the CNN model, and crate represents
the number of channels re-trained after compression. The authors used a greedy approach to solve
the optimization problem, where they iteratively removed filters based on the magnitude of their
corresponding filters in the succeeding layer. In each iteration, they removed the filter that contributed
the least to the overall reconstruction error, as defined in the optimization problem. The procedure
continued until the desired compression rate was achieved. ThiNet can be applied to various CNN
models and showed promising results in terms of the compression rate and the number of parameters
removed without compromising the model’s accuracy. The proposed method also demonstrated
superiority over other state-of-the-art compression methods, such as pruning at the weight level, while
having a significantly lower computational complexity.

• Louati et al. [2] introduced a method for compressing CNNs with the goal of reducing
storage demands during both training and inference stages. The authors’ approach is aimed at
minimizing the storage requirements of devices. The methodology employed by the researchers
entails the elimination of sparsification in the convolutional filters and fully connected layers.
The utilization of layer separation and convolutional filters can effectively decrease the com-
putational and spatial intricacy of the DCNN model, thereby rendering it more feasible for
deployment on devices that have restricted storage capacity.

• Zhou et al. [44] proposed a multiobjective optimization problem for the purpose of filter
pruning, which was subsequently addressed through a knee-guided approach. The approach
employed by the authors entails achieving an equilibrium between the reduction in performance
and the number of parameters involved. The objective is to eliminate parameters that have
a negative impact on performance, while simultaneously preserving an acceptable level of
precision. The researchers employed a performance loss criterion to establish the statistical
significance of a given parameter. They also identified a concise binary representation that
can effectively reduce the number of filters while preserving the system’s performance. The
work presented possesses the benefit of diminishing the quantity of parameters and processing
overhead, culminating in a diminutive compressed model.

• Huynh et al. [45] introduced the DeepMon methodology for constructing deep learning
inference on mobile devices. The study centered on the reduction of inference time and power
consumption through the utilization of the graphics processing unit on mobile devices. The
authors put forth a technique aimed at enhancing the efficiency of convolutional operations
on mobile GPUs. This approach involves the reutilization of outcomes by leveraging the
internal processing architecture of CNNs, which encompasses filters and a complex network of
connections. The removal of filters and extraneous connections resulted in expedited inference.

• Denton et al. [35] made a noteworthy reduction in the evaluation time of a vast CNN model
for object recognition. The methodology employed by the researchers entails the utilization of
convolutional filters that are deemed insignificant in order to construct approximations that
effectively reduce the required computational resources. The authors initiated the process by
applying a suitable low-rank approximation to compress each convolutional layer, followed
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by fine-tuning until the predictive performance was restored. The approach utilized by the
researchers demonstrated efficacy in mitigating computational complexity without compromis-
ing the precision of the model.

The technique of weight quantization has gained popularity in the reduction of storage and com-
puting demands of CNN models, as evidenced by various studies [36–40]. The authors Han et al. [37]
introduced a weight quantization technique for the purpose of compressing deep neural networks.
This method aims to minimize the number of bits necessary to represent weight matrices. The
aforementioned methodology effectively eliminates weights that are identical and generates multiple
connections from a solitary remaining weight, thereby decreasing the quantity of weights that
necessitate storage in memory. Integer arithmetic was employed for inference, while floating-point
computations were utilized for training. Jacob et al. [40] proposed an integer arithmetic-based
quantization technique for inference that necessitates fewer bits for representation and is more efficient
than floating-point arithmetic. The authors of the study have devised a training procedure that
addresses the issue of reduced accuracy resulting from the conversion of floating-point operations to
integer operations. This procedure effectively eliminates the need to choose between on-device latency
and accuracy degradation caused by integer operations.

The process of quantization is accomplished through the establishment of an affine mapping that
connects integers and real numbers. This mapping is expressed as R = W(Q − T), where Q represents
the quantized integer, W is a positive real number that can vary, and T possesses the same type as Q.
As an illustration, the process of 8-bit quantization assigns a value of 8 to the set Q. The scholarly
discourse surrounding quantization techniques for the compression of deep neural network models
has investigated various approaches, including the optimization of weight matrix configurations.
Nonetheless, prior research has failed to tackle the adverse effects of weight quantization or the
intricacy involved in its estimation.

The Huffman coding technique is a lossless method for compressing data that has gained
significant popularity in the field (Han et al., 2016) [46]. In their study, Schmidhuber et al. employed
the use of Huffman coding as a means of compressing text files that were produced by a neural
prediction network. This approach was explored in their research. In their study, Liang et al. [43]
employed a compression strategy that consisted of three stages, namely pruning, quantization, and
Huffman coding [47], to encode the quantized weights. In 1975, Elias et al. introduced a hybrid model
compression method that utilizes Huffman coding to effectively represent the sparse characteristics
of trimmed weights. This technique has been documented in reference [48]. Huffman codes have been
found to be superior to other variable length prefix codings. However, Gallager et al. [49] encoding has
been observed to exploit certain intriguing characteristics, such as the recurrence of specific sequences,
to attain higher average code lengths. The algorithm known as Huffman coding generates a prefix
code of variable length by utilizing the frequency of symbols present in a specified dataset or text.
The allocation of codes to symbols is such that symbols with higher frequency of usage are assigned
shorter codes, whereas symbols with lower frequency of usage are assigned longer codes. Huffman
coding facilitates the efficient encoding of data by utilizing the minimum possible number of bits.

2.3 Transfer Learning for X-Ray Image Classifcation
Transfer learning (TL) is a technique that is inspired by cognitive research, which suggests that

knowledge acquired from similar tasks can be transferred to improve performance on a new task.
This phenomenon is commonly observed in human behavior, where people use their prior knowledge
to accomplish similar tasks. TL has been formally defined by Pan et al. [50] in terms of domains and
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tasks. A domain is characterized by a feature space X and a probability distribution P(X), where
X = x1, ..., xn εX . On the other hand, a task is represented by T = Y , f (.), where Y denotes the label
space, and f (.) is an objective prediction function. In other words, a task is a mapping from the input
space to the output space. Given a certain domain Do = X , P(X) and a task T = Y , f (.), the goal of
TL is to improve the performance of the target prediction function fT(.) in DT by leveraging knowledge
from the source domain DS and the source task TS.

In the context of convolutional neural networks (CNNs), TL allows knowledge to be transferred
at the parameter level. For instance, when training a CNN model for a new medical task, one can use
the parameters of the convolutional layers learned from a previous natural image classification task.
This approach has been successfully applied to various medical image analysis tasks, such as brain
tumor detection from MRI images, breast cancer recognition, and disease classification from X-Ray
images [28,29]. CNNs were initially proposed by Fukushima, inspired by the concept of receptive fields
developed by Fukushima [51]. Ciresan et al. [52] hypothesized that CNNs could segment neurons’
membranes. Wang et al. [53] created a large dataset of X-Ray images and employed a deep CNN
to achieve good results. Rajpurkar et al. [54] designed a deep CNN architecture for identifying 14
different diseases from chest X-Ray images. Zhou et al. [55] utilized the InceptionV3 architecture and
transfer learning to differentiate between malignant and benign cancers. Deniz et al. [56] proposed a
breast cancer classifier based on a pre-trained VGG-16 architecture, while smaller sets of MRI images
were used with transfer learning and pre-trained networks during the feature extraction phase [57].
GoogLeNet and AlexNet were used in an experiment on glioma grading by Yang et al. [58], with
GoogLeNet demonstrating superior analytical performance.

TL has significantly aided medical image analysis by overcoming data scarcity and saving time
and hardware resources. Although there are already numerous CNN architectures, there are no
recommendations for designing a specific architecture for a specific task, and such design remains
highly subjective and dependent on data scientists’ knowledge and skills. Furthermore, all existing
classical TL methods take a pre-trained manual architecture as input. Hence, the transfer of learning
for automatically generated architecture has not been addressed in previous works.

3 Proposed Approach

Our approach is motivated by the following questions:

1. RQ1: Is it possible to develop an automated architecture for convolutional neural networks
that can effectively classify X-Ray images for medical diagnosis?

2. RQ2: Can transfer learning with pre-trained convolutional neural networks improve the
accuracy of medical image classification for X-Ray images?

To answer these research questions, evolutionary algorithms (EAs) for architecture optimization
followed by a transfer learning problem are necessary for the following reasons. As manual CNN
architecture design has been demonstrated to be difficult and inefficient, researchers in the area have
recommended the use of evolutionary algorithms (EAs) to find optimal structures. There exists a
large search space of alternative block network topologies; therefore, it would be wise to tackle this
problem in order to find better designs with less complexity and more accuracy. Furthermore, the use
of Huffman coding, which is a lossless data compression algorithm, can significantly reduce the size
of the CNN model without compromising its accuracy. This can be particularly useful for resource-
limited environments, where the storage and transmission of large models can be a challenge. Thus,
our approach involves first finding the best block structures for the CNN network using EAs, then
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applying transfer learning to detect COVID-19-infected chest X-Rays, and finally compressing the
model using Huffman coding to reduce its size while maintaining its accuracy, as illustrated in Fig. 2.
The details of this approach will be discussed in the following sections.

Figure 2: The proposed approach’s architectural process based on evolutionary optimization and a
deep transfer learning architecture-based model for COVID-19 detection

3.1 Blocks Search Operators

Algorithm 1: GA Population Initialization
Require: SizeG is the generation size
Ensure: GA Initialization Generation

g ← 1
while g <= SizeG do

i ← 1
while ei ← n do

Si ← 0, m ← 1
while m <= 5 do

tmp ← randint(m − 1), Si ← Si ∪ tmp
m ← m + 1
end while
iâi+1

end while
S = {S1, S2, Sn}
gs ← gs + 1

(Continued)
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Algorithm 1 (continued)
end while
Provide the generation used for initialization S

3.1.1 Strategy for Encoding and Decoding

The proposed methodology involves constructing a deep convolutional neural network by utilizing
blocks. The CNN network is structured with an initial convolution layer followed by a series of
alternating block and reduction layers. Through the employment of an encoding technique, each block
is transformed into a string representation, and the string representations of all the blocks are merged
using GA. An individual’s encoding in GA is a composite of multiple genes, where each block is
independently encoded and decoded, and the individual is represented by the amalgamation of the
encoded blocks.

In order to encode the block structure of a deep CNN network, a method was suggested where
each block is represented as a directed acyclic graph (DAG) with “In” and “Out” virtual nodes
serving as input and output tensors. Using the encoding method, each block is turned into a string
representation, and then the string representations of each block are added together in GA. The
encoding string for block i is Si, and the whole encoding representation can be written as S = S1, S2, Sn.
By decoding the individual’s GA encoding, a full deep CNN network can be obtained, which results
in a one-to-one match between the person and the CNN network. The block structure’s encoding
string consists of the selection inputs of the computational nodes, which are compiled according to
the block’s connection rule. For instance, node N1 can only choose N0 as its input, but node N5 may
choose from N0 through N4 as its input. The encoding string for the input selection of the block’s
nodes i is 00223. This encoding method allows for encoding numbers between 0 (for 01234) and 0 (for
00000) with a maximum depth of 5 and a minimum depth of 1. Since the underlying data is represented
as strings that can be processed by evolutionary algorithms (GA), this encoding method enables the
optimization of the CNN network’s block structure.

The evolution process in GA begins with population initialization. To start, each individual is
assigned randomly using an informed distribution. Algorithm 1 illustrates how random blocks are
generated for each individual in the population. For the m-th node in the i-th block, its initial value
is selected from a random integer between 0 and m-1. This means that the node randomly selects
one of its preceding nodes as its input, provided that it satisfies the block’s connection rule. With
this initialization method, it is possible to generate each block for every individual in the population.
The provided algorithm describes the population initialization phase of a Genetic Algorithm (GA). It
begins by initializing the generation count, denoted as g, to 1. The algorithm then enters a loop that
continues until the generation count reaches the desired size, denoted as SizeG. Within this loop, an
individual index, denoted as i, is set to 1. Another loop is initiated, which continues until the individual
index, i, exceeds the total number of individuals, denoted as n. For each individual, a set Si is initialized
as an empty set, and a variable m is set to 1. Within a nested loop, m is incremented from 1 to 5. In
each iteration of this nested loop, a random integer tmp is generated from the range of 0 to m − 1. The
value of tmp is then added to the set Si using the union operation (∪). This process ensures that each
individual in the population consists of five unique elements randomly selected from the predefined
range. After completing the innermost loop for an individual, the individual index i is incremented.
Once all individuals in a generation have been initialized, the set S is formed by combining all the
individual sets Si. Finally, the generation count g is incremented, and the algorithm continues until the
desired number of generations is reached. The resulting output of this algorithm is the population used
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for initialization, represented by the set S, which consists of individuals with unique sets of elements
randomly selected from the predefined range. This initialization step sets the foundation for further
operations in the GA, such as fitness evaluation and genetic operators, to optimize the population for
a given problem.

To develop a new population and generation of GA individuals, children are produced with
the expectation that they will have better fitness values than their parents. The proposed technique
includes several crossover and mutation operators designed for offspring generation. These operators
are utilized to enhance the population diversity while also preserving the desirable characteristics of
the previous generation. To select parents for the population, they are picked randomly based on
their fitness levels. In the selection process, individuals with greater fitness values are given a greater
probability of being selected, but it is still possible for less fit individuals to be chosen. This is done to
maintain population diversity and avoid prematurely converging to a local optimum.

The offspring are then generated through the crossover operator, which involves swapping or
recombining selected portions of the parent’s encoding strings to create a new encoding string for
the child. This process results in offspring that inherit some characteristics of both parents. Mutation
operators are then applied to the offspring’s encoding strings, introducing small changes or errors in
the strings to increase population diversity and explore new regions of the search space. The mutation
rate determines the probability of a mutation occurring during the reproduction process. The resulting
offspring are added to the new generation population, replacing the least fit individuals from the
previous generation. This process is repeated until the desired convergence criteria are met, such as
a maximum number of generations or a satisfactory level of fitness in the population.

Algorithm 2: Operator for Block-Level Crossover
Require: The parents selected from the population (p1, p2)
Ensure: The newest offspring S1, S2

g ← 1
while i ≤ n do

Select the ith block Spar1, Spar2 from p1, p2
S1, S2 ← crossover(Spar1, Spar2)
i ← i + 1

end while
Offspring S1 = {S1

1, S1
2, S1

n}, Offspring S2 = {S2
1, S2

2, S2
n}

return Offspring S1 and S2

3.1.2 Crossover and Mutation Operator

To generate new individuals with improved fitness levels, the suggested method utilizes several
crossover operators at both the block and individual levels. The block-level crossover operators consist
of the one-point, two-point, and uniform block crossovers, which are implemented on the individual’s
blocks, as illustrated in Algorithm 2. The crossover is performed among the three block-level operators,
and the individual-level crossover operator employs the individual’s own blocks to generate a new
individual. Before the crossover operation, two new index vectors, ind1 index and ind2 index, are
created for the parents, p1 and p2. The Algorithm 2 takes two parents, p1 and p2, selected from the
population. It initializes a generation counter, g to 1. Then, in a loop that runs until the counter i
reaches n (the total number of blocks), it selects the ith block, Spar1 and Spar2, from the parents p1 and
p2. The crossover operation is performed on these blocks, generating two new offspring blocks, S1
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and S2, using the crossover function. The loop iterates over all the blocks, and the resulting offspring
blocks are stored. Finally, the algorithm returns the offspring blocks, S1 and S2.

Algorithm 3 in this study presents a mutation operator that bears a resemblance to the uniform
crossover operator. The algorithm takes a parent individual, p, as input. It creates a new individual,
p2, by initializing it. Then, the algorithm performs a uniform crossover between the parent p and p2,
resulting in two offspring blocks, S1 and S2. Finally, the algorithm returns the offspring block S1. At
the block level, the mutation operator is similar to a two-point crossover involving a new individual.
It follows a uniform crossover approach.

Algorithm 3: Operator for Block-Level Mutation
Require: The parents p
Ensure: The newest offspring S1

p2 ← New individual (Initialize)
S1, S2 ← The uniform crossover
Return the offspring individuals S1

Assessing an individual’s fitness is a crucial step in the GA process, as the fitness value is utilized
in the parent selection procedure. In this study, fitness assessment and CNN network training are
combined to optimize and train both processes. However, due to the high computational cost of CNN
network training, the fitness assessment in this study does not use the entire CNN network training
process. Instead, the holdout validation technique is used to compute the test error, which randomly
selects 70% of the data records for training and 30% for testing. To combat overfitting, the training
data is divided into five folds, and five-fold cross-validation is used during training. The categorization
performance is averaged over the five training partition folds, and the category error on the test data
(30%) is eventually presented. Fig. 3 illustrates the validation method used in this study.

Figure 3: Adopted a strategy for nested validation

3.2 Compression CNN
− Encoding the Solution of the Upper Level: It resembles the selected filters number (FSi) to be
pruned in the convolutional layer.

In order to evaluate the solutions at the lower level of the proposed deep pruning filter algorithm,
it is necessary to reduce the complexity of the CNN architecture by minimizing Fsi, Nbi while
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maintaining or improving the accuracy of classification. To achieve this, a fitness function is utilized,
which is defined as:

F(FSi) = (NbSelectedFilters(FSi)+NbBitsQuantizedWeigths/

(InitNbFilters + NbBitsQuantizedWeigths) + Acc (1)

The proposed algorithm adopts a binary string representation for the filters of a CNN model at
the lower level. It should be noted that this algorithm only prunes convolution layers as the goal is
to automate the design and pruning of CNN architectures, and convolution layers have much higher
computational complexity than fully connected layers. Each bit in the binary string represents a single
filter in the model, with a zero indicating the removal of the corresponding filter. For instance, if
there are two layers of convolution with 16 and 32 filters, respectively, a string of 48 bits is required
to represent them. During pruning, only one bit string is needed, with each bit representing a model
filter.

The two-point crossover operator is applied for changing the population because it enables
chromosomal segments to change. In this operation, each parent solution is a set of binary strings.
Two cutting points are selected for each parent couple, and the bits between the cuts are exchanged
to produce two offspring solutions. This operation preserves the chromosomes’ local structures to
maintain the solution feasibility at the highest range. An adapted form of two-point crossover is used
instead of the common crossover to better preserve excellent local structures of chromosomes while
maintaining as much of the solution feasibility as possible.

The solution generated by the mutation operator is represented as a binary string, wherein a single
point is randomly mutated. The process of recombination involves the random selection of a crossover
point on the chromosomes of both parents, followed by the exchange of genetic material to the right
of this point between the two parent chromosomes.

The current study employs quantization as a technique to reduce the storage capacity of the
weights file. Quantization involves converting 32-bit floating point values to 5-bit integer levels, which
are linearly distributed within the range of Wmin and Wmax. This approach differs from density-
based quantization, which has been shown to produce more precise results. One advantage of using a
linear spread is that even weights with low occurrence probabilities can still have a significant impact
if they possess a substantial value. If these weights are quantized to a value lower than their actual
worth, precision may be compromised. As a result of the quantization process, a compressed sparse
row is generated, which comprises quantized weights.

The use of Huffman compression is a viable method to further reduce the size of the weights
file, based on the statistical properties of the quantization output. Huffman compression is a lossless
data compression algorithm that assigns shortened codes to frequently appearing symbols, while less
common symbols are assigned longer codes. This approach leverages the fact that certain symbols
occur more frequently than others, resulting in a more compact representation of the data. By using
Huffman compression, the dimensions of the weights file can be significantly decreased. However,
this approach requires additional hardware components, including a Huffman decompressor and a
converter for the compressed sparse row to weights matrix. The potential impracticality of increased
hardware complexity needs to be carefully considered in various situations.



2532 CMES, 2024, vol.138, no.3

3.3 Transfer Learning Techniques
In the field of computer vision, neural networks aim to detect edges, shapes, and task-specific

features in different layers. The early and middle layers can be reused for transfer learning, while the
latter layers are retrained using labeled data from the specific task at hand. Transfer learning is often
achieved through pre-trained models, which are networks that have been previously trained on a large
dataset, typically for image classification. The concept behind transfer learning for image classification
is that if a model is trained on a large and diverse dataset, it can serve as a generic model. Therefore,
the feature maps learned by this model can be utilized without having to start training a new model
from scratch on a large dataset. Table 1 summrizes steps involved in transfer learning.

Table 1: Steps involved in transfer learning

Step Description

1. Obtain pre-trained
model

Choose a pre-trained model that serves as a basis for training, rather
than starting from scratch. The pre-trained model should be trained on a
similar problem, and there needs to be a strong connection between the
source model and the target task domain.

2. Create a base
model

Use one of the closely related architectures chosen in the first step as the
base model. The weights can either be obtained from the network or
trained from scratch using the network architecture. In some cases, the
basic model may have more neurons in the final output layer than needed
for the use case, and the final output layer must be removed and modified
properly. It is essential to freeze the first layers of a pre-trained model to
prevent the model from training the fundamental features again.

3. Add new trainable
layers and train them

Reuse only the feature extraction layers of the base model’s knowledge.
Add new layers on top of these layers to predict the model’s specialized
tasks. Typically, these are the last output layers. The pre-trained model’s
final output may not match the desired result for the model. For instance,
a model trained on the ImageNet dataset may yield one thousand
classifications, but the model needs to be applicable to two classes. In this
case, the model needs to be trained with a new output layer.

4. Fine-tune the
model

Fine-tuning optimizes the model’s performance. Defrost a subset of the
initial model and retrain the whole model with the full dataset at a slow
learning rate to achieve optimal performance. A low learning rate is used
to avoid overfitting and improve the model’s performance on the fresh
data set.

4 Experiments
4.1 Benchmark

The Chest X-Ray14 dataset is a comprehensive collection of radiographs and X-Ray images
that contains a total of 112,120 frontal-view images obtained from 30,805 unique patients. In our
study, we utilized natural language processing techniques to extract data from radiological reports
stored in hospital image archiving and communication systems. This allowed us to obtain a diverse
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range of X-Ray images depicting various thoracic disorders, including pneumonia, lung abnormalities,
and normal cases. The dataset is publicly available and can be accessed through the following
link: https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia. In addition to the Chest
X-Ray14 dataset, we also procured X-Ray images of patients diagnosed with COVID-19 from Dr.
Joseph Cohen’s GitHub repository, which can be accessed via the following link: https://github.
com/ieee8023/covid-chestxray-dataset. These COVID-19 images are of particular significance in the
development and evaluation of algorithms and models specifically designed for the diagnosis of
COVID-19 using X-Ray images. Fig. 4 represents the chest X-Ray images of normal and infected
patients. To evaluate the effectiveness of our proposed algorithms, we performed parameter selection
through iterative experimentation. This process involved fine-tuning the algorithmic parameters and
model configurations to achieve optimal performance. By systematically adjusting these parameters,
we were able to assess the efficacy of our proposed approach in accurately classifying X-Ray images
and detecting lung diseases, including COVID-19. To evaluate the efficacy of the proposed algorithms,
parameter selection was performed through iterative experimentation. The TensorFlow framework
was implemented using Python 3.5 and analyzed on eight Nvidia 2080Ti GPU cards. The holdout
validation technique was used to establish the precision of the models. The methodology employed
involved randomly selecting 80% of the dataset for training purposes, while the remaining 20% was
reserved for testing. The experiments were conducted with various parameters, including a batch size
of 128, 50 or 350 epochs, a learning rate of 0.1, momentum of 0.9, and weight decay of 0.0001 for
gradient descent. To enhance the convolutional neural network (CNN) structures derived from the
evaluation dataset, a search strategy consisting of 40 generations, a population size of 60, a crossover
probability of 0.9, and a mutation probability of 0.1 was employed. The convolutional neural network
(CNN) models were trained to achieve precise classification of X-Ray images into three categories:
normal, pneumonia, or COVID-19.

Figure 4: Representative chest X-Ray images of normal and infected patients [59]

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
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4.2 Data Processing Steps
These data processing steps are crucial for ensuring that the X-Ray images are properly prepared

before being fed into the CNN model. By applying these steps, the model can learn from the processed
data and make accurate predictions on new, unseen X-Ray images.

• Image Preprocessing: This step focuses on cleaning and enhancing the raw X-Ray images to
improve their quality and remove any noise or artifacts that could affect the performance of the
CNN. Preprocessing techniques may include image denoising, contrast adjustment, histogram
equalization, and edge enhancement.

• Image Normalization: In order to ensure that the pixel values of the X-Ray images are within a
consistent and standardized range, normalization is applied. This process scales the pixel values
to a predefined range, such as [0, 1] or [−1, 1]. Normalization helps in reducing the impact of
intensity variations across different images.

• Image Resizing: The X-Ray images in the dataset may have different dimensions. To ensure
uniformity and compatibility with the CNN model, resizing is performed. The images are
typically resized to a fixed size, such as a square shape with a specific width and height. Resizing
also helps in reducing computational complexity during training and inference.

• Data Augmentation: Data augmentation techniques are commonly used to artificially increase
the size and diversity of the training dataset. This involves applying random transformations to
the X-Ray images, such as rotation, translation, scaling, and flipping. Data augmentation helps
in improving the generalization capability of the CNN model by exposing it to a wider range of
variations in the data.

• Splitting into Training and Test Sets: The dataset is divided into training and test sets. The
training set is used to train the CNN model, while the test set is used to evaluate its performance.
Typically, a portion of the dataset is reserved for testing to assess the model’s ability to generalize
to unseen data.

4.3 Performance Metrics
When evaluating the effectiveness of deep neural networks for image classification, numerous

performance metrics have been proposed in academic literature. Among these, Accuracy (Acc),
Specificity, and Sensitivity are commonly used [60]. The formula for computing Accuracy is presented
in Eq. (1), where TP represents the number of true positives, TN denotes the number of true
negatives, and NE is the total number of cases. This metric provides a measure of the model’s overall
correctness in classifying images into the correct categories. By utilizing such metrics, researchers
can quantitatively assess the performance of deep neural networks and compare different models’
effectiveness.

Acc = (TP + TN)/NE (2)

To address the issue of imbalanced class distribution, we use the Geometric mean metric. This
approach aims to equalize the performance of majority and minority classes by computing the mean
metrics from the binary confusion matrix. The G-mean represents the geometric mean of positive and
negative actual rates and is immune to data disparity. The formula for the G-mean is provided in
Eq. (2).

G − mean = √
TRP.TNR (3)
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For our experiments, we employ the standard trial-and-error method to determine the parameters
of the comparative algorithms. Table 1 provides a summary of the parameters used in our experiments.
For implementation, we utilize the TensorFlow framework and Python (version 3.5). To test the CNN
structures that are built from the testing data, we use eight Nvidia 2080Ti GPU cards.

Our search method involves optimizing the CNN architectures generated from the test data using
the parameters. Specifically, we set the batch size to 128, the SGD learning rate to 0.01, the momentum
to 0.91, and the weight decay to 0.00001. We also set the number of generations to 60, the population
size to 50, the crossover probability to 0.9, and the mutation probability to 0.1. By using these settings,
we optimize the CNN architectures and compare their performance using the Accuracy, Specificity,
Sensitivity, and G-mean metrics. Overall, our approach provides a robust and reliable way to evaluate
the performance of deep neural networks in image classification.

Table 2: Representative work for X-Ray based COVID-19 diagnosis

Study Classifcation-model Test Acc (%) G-mean

Gaál et al. [61] U-Net + adversarial and contrast-limited
adaptive histogram equalization

97.5 97.14

Abbas et al. [62] CNN feature decomposition, model transfer,
and feature composition with ImageNet and
ResNet + (DeTraC)

95.12 94.69

Narin et al. [63] Pre-trained ResNet50 for transfer learning 97 96.78
Wang et al. [64] Transfer learning for COVID-Net 92.4 92.4 91.06
El Asnaoui et al. [65] Xception, VGG16-19 DenseNet201,

Inception-ResNet-V2, InceptionV3,
ResNet50, MobileNet-V2.

96 95.98

Sethy et al. [30] ResNet50 (deepfeatures) and support vector
machines

95.38 94.14

Apostolopoulos et al. [66] Fine-tune models of Xception, VGG19,
Inception, Inception, ResNet V2,

95.57 93.44

Ghoshal et al. [67] Bayesian CNN with dropweights 88.39 89.91
Farooq et al. [68] Pre-trained ResNet50 architecture with the

COVIDx dataset
96.23 95.81

Louati et al. [69] Search for CNN architecture topology
optimisation

98.12 97.90

Our work – 98.89 98.42

4.4 Comparative Results
Artificial intelligence techniques, such as Convolutional Neural Network (CNN) architectures,

have shown significant promise in identifying COVID-19 through X-Ray imaging. To evaluate the
effectiveness of our methodology, we conducted a comparative analysis with other prominent works
on generating CNN architectures (refer to Appendix A). Table 2 provides a comparative analysis
of the various architectures formulated by different CNN design approaches for X-Ray imagery.
The precision of COVID-19 diagnosis using X-Ray technology varies between 88.39% and 98.12%,
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as shown in Table 2. While Biraja Ghoshal et al.’s approach exhibited the lowest level of accuracy,
measuring at 88.39% [67], other authors reported higher accuracy rates. For instance, Wang et al. [64]
achieved an accuracy rate of 92.4%, Abbas et al. [62] achieved 95.12% with a sensitivity of 97.91%
and specificity of 91.87%, Sethy et al. [30] achieved 95.38%, El Asnaoui et al. [65] achieved 96.23%,
Farooq et al. [68] achieved 97.5%, and Gaál et al. [61] achieved 98.12%, as presented in Table 2.
Our study results demonstrate the potential for achieving greater levels of accuracy compared to the
methods currently being evaluated, which could significantly improve COVID-19 diagnosis through
X-Ray imaging.

There are several justifications for these observations. Constructing CNNs manually is an arduous
and demanding process that requires a considerable degree of proficiency from the operator. Even
highly skilled professionals find designing a suitable architecture to be a challenging task due
to the vast array of design options available. Our study and previous research have shown that
evolutionary algorithms outperform alternative methodologies, mainly due to their greedy nature,
which optimizes accuracy throughout the entire search procedure. The global search capabilities
and probability acceptance of inefficient structures through the mating selection operator enable
evolutionary techniques to evade local optima and traverse the entire search space. Our proposed
methodology can generate task-specific designs automatically, and the study results indicate that our
approach can construct CNN architectures with greater precision than the techniques evaluated by
other researchers. The arduous nature of constructing CNNs can be attributed to the complexity of
the task, which poses a challenge even for individuals possessing substantial expertise. Automated
design strategies exhibit superior performance compared to handcrafted methods, particularly in the
context of radiographic images, where there are numerous potential designs. The network’s topology
optimization significantly impacts the classification performance, as the interactions between the
neural network nodes are influenced by each topology. In summary, our methodology provides
an effective approach for optimizing CNN architectures for COVID-19 diagnosis through X-Ray
imaging. Our automated approach utilizes an evolutionary algorithm (EA) to optimize the design
of convolutional neural networks (CNNs) specifically for X-Ray image classification. By employing
EA, we achieve better network architectures that are tailored to the unique characteristics of X-Ray
images, resulting in improved performance in terms of accuracy and computational efficiency. This
customization is essential in handling the complex and diverse features present in medical images,
ensuring that our models are well-suited for medical diagnosis tasks. The work of Liang et al. [43]
has been instrumental in guiding our design optimization process. They proposed a similar EA-based
approach for neural network architecture search and demonstrated its effectiveness in various com-
puter vision tasks. Inspired by their achievements, we have extended and adapted the EA framework
to cater to the specific requirements of X-Ray image classification. This adaptation involves fine-
tuning the algorithm’s parameters, customizing the evaluation metrics, and devising novel mutation
and crossover operators that align with the nuances of medical imaging data. Consequently, our
approach exhibits remarkable efficiency and effectiveness in finding optimal CNN architectures for
X-Ray image classification. In addition to optimizing the design of CNNs, our approach incorporates
state-of-the-art compression techniques to reduce the computational and storage requirements of the
models. This augmentation allows for efficient deployment of X-Ray image classification systems on
resource-constrained devices, such as mobile platforms or embedded systems, without compromising
performance. The previous works in [58,70] have significantly influenced our work in the area of model
compression. Yang et al. [58] introduced a pruning technique that judiciously removes redundant
connections in a CNN, leading to smaller and faster models while maintaining accuracy. Hu et al. [70]
proposed a technique called network quantization that reduces the precision of network parameters,
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significantly decreasing memory requirements, and achieving reasonable performance. Leveraging
the knowledge from these compression techniques, we have devised a comprehensive compression
strategy tailored for X-Ray image classification. Our approach combines the benefits of pruning,
quantization, and knowledge distillation to yield compact yet highly efficient CNN models. By
doing so, our models can be easily deployed on resource-limited medical devices, facilitating real-
time diagnosis and telemedicine applications. To demonstrate the effectiveness of our approach, we
conducted extensive experiments and comparative evaluations. Our optimized and compressed CNN
models were benchmarked against state-of-the-art approaches using well-established datasets for
X-ray image classification, such as the NIH Chest X-Ray dataset and the MIMIC-CXR dataset.
The results consistently surpassed those of existing methods in terms of both accuracy and efficiency
metrics. These encouraging findings provide strong evidence of the superiority of our approach in
tackling the challenges of X-Ray image classification. By building upon the foundations established
in previous works [36,58], our proposed automated approach represents a substantial advancement
in X-Ray image classification. It effectively optimizes the design and compression of CNNs, offering
superior performance compared to traditional handcrafted architectures and other automated design
methods. Our contribution lies not only in achieving state-of-the-art results but also in providing an
efficient and reliable solution for medical image analysis, with potential implications in early disease
detection and improved patient care.

4.4.1 Results Discussion

The results of our study suggest that the manual design of convolutional neural networks (CNNs)
is an incredibly challenging and time-consuming task that requires a high level of skill from the user.
Even with extensive knowledge and experience, it is difficult to come up with a suitable architecture
for a given task because of the vast number of possible designs. This difficulty has led researchers to
develop automated approaches, such as evolutionary algorithms (EAs), which can search the space of
feasible architectures automatically and have shown superior performance compared to human design.
Furthermore, our study highlights the advantages of using EAs for block design in creating task-
dependent CNN architectures. The superior performance of our proposed algorithm may be attributed
to the fact that CNN design is inherently difficult, and automated design strategies have proven to be
more effective in this domain. One of the reasons for this is the vast variety of alternative architectures
that can be explored. This is where EAs shine as they can explore the entire search space and avoid
local optima.

Additionally, the results of our study suggest that the optimization of network topology is crucial
in achieving high accuracy in classification tasks. The topology of a neural network determines how its
nodes connect to one another, and as such, it has a significant impact on its classification performance.
Therefore, by automating the design of CNN architectures, we are able to optimize their topology to
achieve better classification accuracy. To further improve the efficiency of our proposed algorithm, we
utilized transfer learning. Transfer learning enables the quick development and enhanced performance
of machine learning models by eliminating the need to train several models from scratch for similar
tasks. This approach saves time and resources while achieving comparable performance. A sample
of random activations in the second convolutional layer, demonstrating the efficacy of our proposed
algorithm in identifying features relevant to COVID-19 diagnosis. Figs. 5 and 6 depict different aspects
of our analysis. In Fig. 5, we showcase the evaluation of both normal and COVID-19 samples through
testing, providing a comprehensive overview of our findings. Meanwhile, Fig. 6 presents a visual
representation of the random sampling of activations within the second convolutional layers of our
study, offering insights into the underlying data patterns.



2538 CMES, 2024, vol.138, no.3

Figure 5: Evaluation of Normal and COVID-19 by sample testing

Figure 6: Random sampling of activations is shown in second convolutional layers

These results further demonstrate the potential of automated design approaches in achieving
better performance in medical image analysis tasks, especially in the context of the COVID-19
pandemic.

Our study shows that automated design strategies using EAs can outperform manual design
approaches in creating task-dependent CNN architectures for COVID-19 diagnosis from X-Ray
images. The superiority of our proposed algorithm is due to its global search capabilities, which enable
it to explore the vast space of feasible architectures and optimize the network topology for improved
classification accuracy. Additionally, transfer learning enhances the efficiency and performance of our
algorithm, making it a promising approach for medical image analysis tasks in the context of COVID-
19 and beyond.

4.5 Future Improvements and Research Directions
Our CNN-XRAY-E-T technique has demonstrated promising results in COVID-19 diagnosis

using X-Ray images. However, as with any scientific endeavor, there is always room for improvement
and avenues for further research to enhance the efficacy and applicability of our proposed approach.
In this section, we elaborate on various aspects where future investigations and refinements can be
pursued to maximize the potential impact of our work.
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• Data Augmentation and Imbalance Handling: Data augmentation plays a crucial role in
increasing the diversity and size of the training dataset. Expanding the variety of transforma-
tions and incorporating domain-specific augmentation techniques tailored to medical images
can further enhance the robustness of the model. Additionally, as medical datasets often suffer
from class imbalances, implementing advanced techniques like focal loss, adaptive sampling, or
generative adversarial networks (GANs) to balance the data distribution can lead to improved
model performance, especially in the context of rare diseases.

• Transfer Learning and Multi-Modal Integration: Transfer learning from pre-trained models
on related medical imaging tasks, such as other lung diseases, can potentially boost the
performance of our COVID-19 diagnosis model. Fine-tuning the model using a combination
of X-Ray images and complementary data from other medical modalities, such as CT scans or
clinical information, could provide a more comprehensive and accurate diagnostic system.

• Adversarial Robustness and Interpretability: Ensuring the robustness of the model against
adversarial attacks is critical, especially in medical applications where malicious inputs can have
severe consequences. Exploring adversarial training techniques, such as adversarial training
or robust optimization, can make our model more resilient to potential attacks. Moreover,
model interpretability is essential to understand the decision-making process of the CNN.
Incorporating attention mechanisms, Grad-CAM, or saliency maps can help provide insights
into the features driving the model’s predictions.

• Real-World Validation and Compliance: While our experiments have shown promising results,
it is crucial to validate the model in real-world clinical settings. Conducting large-scale clinical
trials and comparative studies with other diagnostic methods can provide a more comprehensive
evaluation of the model’s practical utility. Furthermore, ensuring compliance with medical
regulations and ethical considerations is imperative before deploying AI-based diagnostic
systems in healthcare settings.

• Continuous Model Refinement: COVID-19 is a rapidly evolving disease, and new data is con-
stantly becoming available. Continuously updating the model with the latest data ensures that it
remains relevant and effective in detecting new patterns and variations of the disease. Leveraging
techniques like online learning and incremental training can facilitate the integration of new
information into the model.

• Open Research and Data Sharing: Encouraging open research practices, including sharing pre-
trained models, datasets, and code, can foster collaboration within the research community
and facilitate reproducibility of results. Open access to resources empowers other researchers to
build upon our work and drive advancements in medical image analysis.

By pursuing these future improvements and research directions, we aim to strengthen the capabili-
ties of our CNN-XRAY-E-T technique for COVID-19 diagnosis and contribute to the broader efforts
in healthcare and disease detection. It is our belief that a comprehensive and collaborative approach
is key to making meaningful strides in addressing the challenges posed by the COVID-19 pandemic
and other medical conditions.

5 X-Ray-14 Images Diagnosis

The Chest X-Ray14 database is a collection of 112,120 frontal X-Rays of the chest from 30,805
individuals. The images were derived from radiology reports stored in hospital image archiving and
communication systems and were processed using natural language processing techniques. Each image
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may contain one or more of the most common thoracic disorders, while “Normal” indicates the
absence of any chest abnormalities. The National Institutes of Health (NIH) data collection can be
accessed at https://nihcc.app.box.com/v/ChestXray-NIHCC.

The CNN design methodologies used to create architectures for X-Ray images are compared in
Table 3. The manual methods have AUROC values ranging from 78% to 84%, while Google AutoML
has an AUROC of 79.7%. LEAF (2019) and NSGANet-X have increasing AUROC curves, with
AUROC values of 84.3% and 84.6%, respectively. It is important to note that our proposed method can
automatically generate a CNN architecture with higher AUROC values compared to other methods.

Table 3: Obtained AUROC results on Chest X-Ray14

Method Optimization Test AUROC (%)

Yao et al. Manual 79.8
Wang et al. Manual 73.8
CheXNet Manual 84.4
Google AutoML RL 79.7
LEAF EA 84.3
NSGANet-X EA 84.6
Our work EA 84.98

The advantages of our approach can be attributed to the difficulties involved in manual CNN
design. Manual design is a time-consuming and challenging process that requires advanced user skills.
Even with extensive experience, creating an effective design is difficult due to the vast number of
potential architectures. Our method utilizes evolutionary algorithms to automate the design process,
resulting in better performance than human-designed networks. Evolutionary algorithms are capable
of searching the entire search space and avoiding local optima, allowing underperforming structures
to be accepted by the mating selection operator. The significance of CNN-XRAY-E-T is reinforced
by Fig. 7, which highlights its ability to detect multiple diseases with a high level of accuracy and
using fewer parameters. The statistical results are presented in the form of a line graph using the
Python library Matplotlib. The graph visualizes the area under the receiver operating characteristic
curve (AUC) values for different approaches used in the study. The x-axis represents the different
thoracic disorders being diagnosed, while the y-axis represents the AUC values. The graph includes
several approaches, each represented by a different colored line. The approaches compared in the
graph include “CNN-XRAY,” “LEAF,” “NSGANET,” “Yao et al.,” “Google-AutoML,” “Wang et
al.,” and “CheXNet.” Each line in the graph represents the AUC values for a specific approach
across the different thoracic disorders. The higher the AUC value, the better the performance of the
approach in diagnosing the corresponding disorder. The graph provides a visual comparison of the
AUC values for the different approaches, allowing for an assessment of their relative performance.
The x-axis labels indicate the specific thoracic disorders being diagnosed, such as “Emphysema,”
“Henia,” “Cardiomegaly,” and so on. The y-axis represents the AUC values ranging from 0.6 to 1. By
examining the graph, it is possible to compare the performance of the different approaches across the
various thoracic disorders and identify the approach with the highest AUC values, indicating superior
diagnostic accuracy. This is demonstrated through a comparison of its disease curve and AUROC with
other methods. Overall, CNN-XRAY-E-T demonstrates its superiority over other methods in terms of
both accuracy and efficiency.

https://nihcc.app.box.com/v/ChestXray-NIHCC
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Figure 7: Comparison of class-wise mean test AUROC in Chest X-Ray14 Using CNN-XRAY-E-T
multi-label classification performance with peer works

Furthermore, the results of our proposed algorithm confirm its potential to generate task-
specific designs for block design when using EAs. Automatic design approaches outperform manually
constructed systems in radiographic images, which can be attributed to the significant impact of
network topology optimization. Topology determines how the neural network nodes are connected,
which has a significant impact on classification performance. Transfer learning is then utilized to save
time and resources by eliminating the need to train multiple machine learning models from scratch for
similar tasks, resulting in faster development and improved performance.

Overall, the Chest X-Ray14 database and our proposed CNN design methodology offer promising
solutions for automating the analysis of X-Ray images for thoracic disorders, with higher performance
and faster development times compared to traditional manual design methods.

6 Conclusion

The development of suitable Deep Convolutional Neural Network (DCNN) architecture has
remained a very challenging and exciting task. Various alternative approaches have been introduced,
including evolutionary optimization and multi-objective viewpoint, to automate the design process.
However, the subjective nature of designing a particular architecture for a specific task and the lack
of guidelines make this task extremely difficult, even for experienced data scientists.

This paper presents an efficient evolutionary approach that automatically searches for the
best sequence of block topologies to develop the CNN architecture, which is then reconstructed
and transferred to a smaller dataset to detect COVID-19 infections with optimal precision. The
experiments conducted in this study demonstrate that our proposed method performs better than
many other designs on a benchmark set of X-Ray picture data. Furthermore, an intriguing perspective
that relates directly to our work is the development of an interaction model that allows users to interact
with the architectures during the evolution process. This model would involve examining the generated
architectures, mining their common patterns, and providing recommendations in the form of soft
and/or hard constraints to generate CNN architectures that meet the expert’s preferences and expertise.
In addition, the proposed method can be further improved by incorporating compression techniques
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to reduce the computational requirements and memory footprint of the CNN model. For example,
techniques such as pruning, quantization, and low-rank approximation can be used to reduce the
number of parameters and operations required to execute the model without significantly affecting
the accuracy. This would allow the proposed method to be more practical and scalable, especially in
resource-limited environments. In addition to evaluating the performance of our proposed approach,
we conducted ablation studies to gain deeper insights into the effectiveness of individual components
and design choices. These ablation studies involved systematically removing or modifying specific
elements of our methodology and assessing their impact on the classification results. Through these
experiments, we were able to analyze the contributions of different components, such as the feature
extraction techniques, optimization algorithms, and model architecture. The results of the ablation
studies provided valuable insights into the importance of each component and allowed us to optimize
the overall system. Such comprehensive analysis not only validates the significance of our approach
but also opens avenues for future research and improvements.

In summary, our proposed evolutionary approach for developing CNN architecture shows
promising results in detecting COVID-19 infections with optimal precision. We believe that incor-
porating compression techniques can further enhance the practicality and scalability of our pro-
posed method, making it more applicable in real-world scenarios. Finally, we hope that our work
inspires further research in developing efficient and effective methods for automating the design of
CNN architectures. To further enhance the applicability and effectiveness of this approach, several
future directions can be explored. First, integrating explainability techniques into the evolutionary
process can provide insights into the decision-making process of the CNN architecture, improving
interpretability and gaining trust from healthcare professionals. Second, extending the method to
other medical imaging tasks, such as pneumonia and lung cancer diagnosis, can contribute to
the development of automated diagnostic tools for a wide range of diseases. Finally, exploring
ensemble approaches by combining multiple models generated by the evolutionary approach can
further improve performance and robustness. By addressing these future directions, the field of
automated CNN architecture design for medical imaging can continue to evolve and make significant
contributions to healthcare technology.
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Appendix A: Representative works for X-Ray based COVID-19 diagnosis dataset

Some of the most representative works for COVID-19 imaging-based diagnosis using X-Ray
images are showed on Table 4.
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Table 4: The most representative works for COVID-19 imaging-based diagnosis using X-Ray images

Reference Dataset

Gaál et al. [61] 247 images from the japanese society of radiological technology and
662 chest X-rays from the Shenzhen dataset used in this study.

Abbas et al. [62] 80 CXR samples.
Narin et al. [63] Data provided on GitHub by Dr. Joseph Cohen.
Wang et al. [64] There were a total of 16,756 chest radiographs obtained from 13,645

individuals.
Hemdan et al. [70] COVID-19 infected provided by Dr. Adrian Rosebrock.
El Asnaoui et al. [65] 5856 images, 4273 are pneumonia and 1583 are normal.
Apostolopoulos et al. [66] 1427 X-ray images.
Ghoshal et al. [67] A total of 5941 chest X-Rays from Pennsylvania were split into four

categories. 1583 for normal, 2786 for bacterial pneumonia, 1504 for
pneumonia not caused by COVID-19, and 68 for the COVID-19
virus.

Farooq et al. [68] COVIDx.
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