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ABSTRACT

A novel extended Lindley lifetime model that exhibits unimodal or decreasing density shapes as well as increasing,
bathtub or unimodal-then-bathtub failure rates, named the Marshall-Olkin-Lindley (MOL) model is studied.
In this research, using a progressive Type-II censored, various inferences of the MOL model parameters of
life are introduced. Utilizing the maximum likelihood method as a classical approach, the estimators of the
model parameters and various reliability measures are investigated. Against both symmetric and asymmetric loss
functions, the Bayesian estimates are obtained using the Markov Chain Monte Carlo (MCMC) technique with the
assumption of independent gamma priors. From the Fisher information data and the simulated Markovian chains,
the approximate asymptotic interval and the highest posterior density interval, respectively, of each unknown
parameter are calculated. Via an extensive simulated study, the usefulness of the various suggested strategies is
assessed with respect to some evaluation metrics such as mean squared errors, mean relative absolute biases, average
confidence lengths, and coverage percentages. Comparing the Bayesian estimations based on the asymmetric loss
function to the traditional technique or the symmetric loss function-based Bayesian estimations, the analysis
demonstrates that asymmetric loss function-based Bayesian estimations are preferred. Finally, two data sets,
representing vinyl chloride and repairable mechanical equipment items, have been investigated to support the
approaches proposed and show the superiority of the proposed model compared to the other fourteen lifetime
models.
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APE Alpha power exponential
Av.Es Average estimates
BIC Bayesian information criterion
BGR Brooks-Gelman-Rubin
CA Consistent Akaike
CP Coverage percentage
E Exponential
FP Failure percentage
G Gamma
GE Generalized-exponential
GEnt General entropy
HQ Hannan-Quinn
HPD Highest posterior density
HRF Hazard rate function
KS Kolmogorov-Smirnov
L Lindley
M-H Metropolis-Hastings
MCMC Markov Chain Monte Carlo
MLE Maximum likelihood estimator
MOAPE Marshall-Olkin alpha power exponential
MOE Marshall-Olkin exponential
MOG Marshall-Olkin Gompertz
MOGE Marshall-Olkin generalized exponential
MOL Marshall-Olkin-Lindley
MOLE Marshall-Olkin logistic-exponential
MONH Marshall-Olkin Nadarajah-Haghighi
MOW Marshall-Olkin Weibull
MRAB Mean relative absolute bias
NH Nadarajah-Haghighi
NL Negative log-likelihood
PDF Probability density function
PT-IIC Progressive Type-II censored
QQ Quantile-quantile
RF Reliability function
RME Repairable mechanical equipment
RMSE Root mean squared-error
SE Squared error
St.D Standard deviation
St.E Standard-error
W Weibull

1 Introduction

One of the key research areas in the concept of distribution theory is the evolution of sug-
gesting new statistical distributions. Such generalized distributions allow modelling for a range of
disciplines, including reliability, engineering and medicine with even greater flexibility. The two-
parameter Marshall-Olkin-Lindley (MOL) distribution suggested by Ghitany et al. [1] is one of the
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novel versions of Marshall-Olkin models that take the conventional Lindley distribution as a baseline
distribution. Assume that X is a lifetime random variable of an experimental item that follows the
MOL distribution, denoted by MOL(θ , σ), with shape parameter θ and scale parameter σ .

Hence, its probability density function (PDF), g(·), reliability function (RF), R(·), and hazard rate
function (HRF), h(·), of x > 0, are given, respectively, by:

g(x; θ , σ) = θσ 2e−σx(x + 1)

(σ + 1)
[
1 − θ̄e−σx(1 + σx

σ+1
)
]2 , θ , σ > 0, (1)

R(x; θ , σ) = θe−σx(1 + σx
σ+1

)

1 − θ̄e−σx(1 + σx
σ+1

)
(2)

and

h(x; θ , σ) = σ 2(x + 1)

[σ(x + 1) + 1]
[
1 − θ̄e−σx(1 + σx

σ+1
)
] , (3)

where θ̄ = 1 − θ . Obviously, the Lindley distribution can be obtained from (1) as a special case by
setting θ = 1. Using some specified values on the MOL’s parameters of θ and σ , via R 4.1.2 software,
we plotted various shapes of the PDF and HRF of the MOL distribution, see Fig. 1. It shows that
the density shapes are unimodal or decreasing while the HRF shapes are increasing, bathtub and
unimodal then bathtub. Since these hazard rate shapes are quite beneficial in lifetime data modelling,
hence the MOL distribution is justly flexible and can be considered to provide a good description of
different plans of censored data, for details see Ghitany et al. [1]. A look at the literature reveals that
just one study by do Espirito Santo et al. [2] used a complete sample to explore the estimations of the
MOL distribution using six classical estimation approaches. On the other hand, no study considered
the MOL distribution in the censoring case.

Figure 1: Various shapes for the density and hazard functions of MOEL distribution

Frequently, life testing studies are stopped before all of the components fail. Due to financial or
time restrictions, it occurs. The observations that emerge from this type of scenario are known as the
censored sample. The literature has developed a number of filtering techniques for the evaluation
of various life-testing strategies. The two most popular censorship techniques among the various
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techniques are Types I and II. The experimental units cannot be removed during a life-testing experi-
ment, however, under any of these censorship techniques. This adaptability is featured in a life-testing
experiment with progressive censoring. Since the publication of the book by Balakrishnan et al. [3],
extensive research has been conducted on the various facets of progressive censoring. A recent book
by Balakrishnan et al. [4] has an extensive compilation of different studies connected to the progressive
censorship strategy.

In order to estimate the parameters of the MOL distribution, we work with the progressive Type-
II censored (PT-IIC) sample in this study. The PT-IIC sample can be explained as follows: assume
that a life testing experiment involving n units with a predetermined number progressive censoring
scheme R = (R1, R2, . . . , Rm), where m < n is the desired number of observed failures. At the time of
the first failure X1:m:n, the experiment is stopped and R1 working units are removed. The experiment
then resumes using the remaining n − 1 − R1 units, and when it reaches the second failure, X2:m:n, it is
stopped and R2 operating units are removed at random from the remaining n − 2 − R1 units, and so
on. The experiment ends and all of the remaining units n−m−∑m−1

i=1 Ri are eliminated when it reaches
the mth failure time Xm:m:n. The ordered observed failure times in this case are given by X1:m:n < X2:m:n <

. . . < Xm:m:n, and the likelihood function for a PT-IIC sample can be expressed as:

L = A
m∏

i=1

g(xi:m:n)[1 − G(xi:m:n)]Ri , (4)

where A is a constant that is independent of the parameters and G(x) = 1−R(x). For several practical
lifetime models, a number of inferential techniques based on the PT-IIC scheme have been introduced.
For instance, see Sultan et al. [5], Guo et al. [6], Joukar et al. [7], Elshahhat et al. [8], Alotaibi et al. [9],
Okasha et al. [10] and Maiti et al. [11], as well as the references therein.

Due to the MOL distribution’s flexibility and the PT-IIC scheme’s effectiveness in gathering
sample data, no study investigated the estimation problems of the MOL distribution in the case of the
PT-IIC sample. Also, in the original work of Ghitany et al. [1], they just used the maximum likelihood
approach to estimate the parameters of the MOL distribution without saying anything about the
Bayesian estimation method. In addition, they estimated only the unknown parameters, while it is
of interest to reliability engineers and other practitioners to see the performance of the reliability
measures of the used distribution. Therefore, this paper’s main goal is to examine frequentist and
Bayesian inferences of the MOL distribution’s unknown parameters under the PT-IIC, along with
the related reliability indices, such as the RF and HRF. As expected, it is found that the maximum
likelihood estimators (MLEs) of θ and σ cannot be derived in closed form; instead, they must
be obtained by simultaneously solving two non-linear equations. The MLEs of the RF and HRF
are obtained using the invariance property. We suggest constructing the approximative confidence
intervals (ACIs) for the various parameters, including RF and HRF, using the asymptotic distribution
of the MLEs. We also take into account the Bayesian inference based on independent gamma priors
and use two loss functions: squared error (SE) and general entropy (GEnt), which serve as symmetric
and asymmetric loss functions, respectively. Due to the fact that the Bayesian estimators cannot be
derived in closed form, we suggest using the Markov Chain Monte Carlo approach to get point
estimates and the highest posterior density (HPD) credible intervals. The overall performance of
the various techniques is compared using Monte Carlo simulations, and two data sets with various
progressive censoring plans are examined for illustration.

The remainder of the article is structured as follows. We present the MLEs and ACIs of the
unknown parameters, RF and HRF, in Section 2. We acquire the Bayesian inference in Section 3.
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Sections 4 and 5 separately describe the findings of the Monte Carlo simulation and the analysis of
two data sets, respectively. At last, we sum up the paper in Section 6.

2 Maximum Likelihood Estimation

In this part, we estimate the unknown parameters, RF and HRF of the MOL distribution using
the method of maximum likelihood based on the PT-IIC sample. The ACIs of the different parameters
are explained in addition to the point estimators. Assume that x1:m:n, x2:m:n, ..., xm:m:n is a PT-IIC sample
of size m with progressive pattern R1, . . . , Rm taken from the MOL population with PDF and RF as
displayed in (1) and (2), respectively. Then the likelihood function, without the constant term, takes
the following form based on (1) and (2), and (4):

L(θ , σ) = θ nσ 2m(σ + 1)me−σ
∑m

i=1(1+Ri)xi

m∏
i=1

(1 + σyi)
Ri[

1 + σ − θ̄e−σxi(1 + σyi)
]2+Ri

, (5)

where xi = xi:m:n for simplicity and yi = 1 + xi. The log-likelihood function is expressed as follows,
using Eq. (5):

�(θ , σ) = n log(θ) + 2m log(σ ) + m log(σ̄ ) − σ

m∑
i=1

(1 + Ri)xi +
m∑

i=1

Ri log (1 + σyi)

−
m∑

i=1

(2 + Ri) log
[
σ̄ − θ̄e−σxi(1 + σyi)

]
, (6)

where σ̄ = σ + 1. The likelihood equations are derived by calculating the first partial derivatives of
(6) with regard to θ and σ and equating each one to zero as shown below:

∂�(θ , σ)

∂θ
= n

θ
−

m∑
i=1

(2 + Ri)e−σxi(1 + σyi)

σ̄ − θ̄e−σxi(1 + σyi)
= 0 (7)

and

∂�(θ , σ)

∂σ
= 2m

σ
+ m

σ̄
−

m∑
i=1

(1 + Ri)xi +
m∑

i=1

Riyi

1 + σyi

−
m∑

i=1

(2 + Ri)ψi

σ̄ − θ̄e−σxi(1 + σyi)
= 0, (8)

where ψi = 1 − θ̄e−σxi [yi − xi(1 + σyi)]. It is obvious that analytical solutions to the likelihood
equations in (7) and (8) in order to obtain the MLEs of θ and σ , denoted by θ̂ and σ̂ , are not possible.
Therefore, to obtain the needed MLEs, any iteration process may be used, including the Newton-
Raphson procedure. The MLEs of RF and HRF at a given time t can then be calculated using the
invariance property of MLEs once the MLEs θ̂ and σ̂ have been obtained. The MLEs of G(t) and h(t)
in this instance are derived from (2) and (3) as follows:

R̂(t) =
θ̂e−σ̂ t(1 + σ̂ t

σ̂ + 1
)

1 − ˆ̄θe−σ̂ t(1 + σ̂ t
σ̂ + 1

)

and

ĥ(t) = σ̂ 2(t + 1)

[σ̂ (t + 1) + 1]
[
1 − ˆ̄θe−σ̂ t(1 + σ̂ t

σ̂+1
)
] .
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Utilizing the asymptotic normality of the MLEs is the most common approach for establishing
confidence bounds for the parameters. The MLEs’ asymptotic distribution can be expressed as
(θ̂ , σ̂ ) ∼ N[(θ , σ), J−1

(θ , σ)], where J−1
(θ , σ) stands for the variance-covariance matrix obtained based

on the Fisher information matrix denoted by J . In practice, we use J−1
(θ̂ , σ̂ ) to estimate J−1

(θ , σ) due
to the challenging second derivative expressions. In this case, we can write J−1

(θ̂ , σ̂ ) as follows:

J−1
(θ̂ , σ̂ ) =

⎛⎜⎝−∂2�(θ , σ)

∂θ 2
−∂2�(θ , σ)

∂θ∂σ

−∂2�(θ , σ)

∂σ∂θ
−∂2�(θ , σ)

∂σ 2

⎞⎟⎠
−1

(θ ,σ)=(θ̂ ,σ̂ )

=
(

v̂ar(θ̂) ĉov(θ̂ , σ̂ )

ĉov(σ̂ , θ̂ ) v̂ar(σ̂ )

)
, (9)

with

∂2�(θ , σ)

∂θ 2
= − n

θ 2
−

m∑
i=1

(2 + Ri)e−2σxi(1 + σyi)
2

φ2
i

,

∂2�(θ , σ)

∂σ 2
= −2m

σ 2
− m

σ̄ 2̂
+

m∑
i=1

Riy2
i

(1 + σyi)2
−

m∑
i=1

(2 + Ri)�i

φi

−
m∑

i=1

(2 + Ri)ψ
2
i

φ2
i

and

∂2�(θ , σ)

∂θ∂σ
=

m∑
i=1

(2 + Ri)ψ́i

φi

−
m∑

i=1

(2 + Ri)e−σxi(1 + σyi)ψi

φ2
i

,

where φi = σ̄ − θ̄e−σxi(1 + σyi) and �i = xiθ̄e−σxi [xi(1 + σyi) − 2yi] and ψ́i = e−σxi [yi − xi(1 + σyi)].
Then, the 100(1 − α)% ACIs of θ and σ can be computed, respectively, as:

θ̂ ± zα/2

√
v̂ar(θ̂), and σ̂ ± zα/2

√
v̂ar(σ̂ ),

where v̂ar(θ̂) and v̂ar(σ̂ ) are the main diagonal elements of (9), respectively, and zα/2 is the upper (α/2)th

percentile point of the standard normal distribution. On the other hand, we must first determine the
variances of respective estimators for the RF and HRF in order to construct such intervals. Here, we
approximate these variances using the delta approach. The following derivatives obtained from (2) and
(3), respectively, are required in order to use the delta method:

Rθ = ∂R(t; θ , σ)

∂θ
= G(t; θ , σ)

θ
[1 − R(t; θ , σ)],

Rσ = ∂R(t; θ , σ)

∂σ
= θ te−σ t

σ̄ φt

− θ̄ tσR(t; θ , σ)e−σ t(1 + σ̄yt)

σ̄ 2φt

− tR(t; θ , σ),

hθ = ∂h(t; θ , σ)

∂θ
= −h(t; θ , σ)e−σ t(1 + σyt)

φtσ̄

and

hσ = ∂h(t; θ , σ)

∂σ
= σyt

φt(1 + σyt)

[
2 − σyt

(1 + σyt)

]
− θ̄ tσh(t; θ , σ)e−σ t(1 + σ̄yt)

σ̄ 2φt

,

where φt = σ̄ − θ̄e−σ t(1 + σ(1 + t)) and yt = 1 + t.

Suppose that 
R = (Rθ , Rσ )|(θ ,σ)=(θ̂ ,σ̂ ) and 
h = (hθ , hσ )|(θ ,σ)=(θ̂ ,σ̂ ), then we can obtain the approxi-
mated estimated variances of R̂(t) and ĥ(t), respectively, as follows:

v̂ar(R̂) ≈ [
RJ−1
(θ̂ , σ̂ )
�

R] and v̂ar(ĥ) ≈ [
hJ
−1

(θ̂ , σ̂ )
�
h ],
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As a result, with 100(1−α)% confidence level, the ACIs that align to G(t) and h(t) can be acquired,
respectively, as follows:

R̂(t) ± zα/2

√
v̂ar(R̂), and ĥ(t) ± zα/2

√
v̂ar(ĥ).

3 Bayesian Estimation

For analyzing failure time data, the Bayesian estimation approach has attracted a lot of attention.
It uses one’s past knowledge of the parameters and also takes into account the information that
is readily available. In this section, the Bayesian estimators of θ , σ , R(t) and h(t) are considered
under the assumption that the two unknown parameters are independent and have gamma prior
distributions. We consider the use of independent gamma priors due to the flexibility of gamma
distribution and to avoid adding more complexity to the posterior distribution. Moreover, independent
priors are considered because they are rather straightforward and concise, which may not produce
many challenging computational and inferential problems. Despite dependent priors appearing more
appealing in some practical contexts, the dependent property between parameters cannot be justified
subjectively based on historical data and expert knowledge where such prior information may be
extremely rare. Hence, for the sake of simplicity, independent priors are more widely used in statistics
under the Bayesian method. In order to get the Bayesian estimators, two loss functions are offered to
get the point estimators, namely SE and GEnt loss functions. Besides acquiring the point estimators,
the HPD credible intervals are also obtained. Suppose that θ ∼ G(a1, b1) and σ ∼ G(a2, b2), where
aj, bj, j = 1, 2 are the hyper-parameters. Therefore, the joint prior of θ and σ can be expressed as
shown below:

q(θ , σ) ∝ θ a1−1 σ a2−1 e−(b1θ+b2σ), θ , σ > 0. (10)

The posterior distribution of the unknown parameters θ and σ can be obtained by combining the
likelihood function in (5) with the joint prior distribution provided (10) and by applying the Bayes
theorem as follows:

g(θ , σ |x) = θ n+a1−1σ 2m+a2−1σ̄ me−σ[∑m
i=1(1+Ri)xi+b2]−b1θ

C

m∏
i=1

(1 + σyi)
Ri[

σ̄ − θ̄e−σxi(1 + σyi)
]2+Ri

, (11)

where x = (x1, . . . , xm) and C is the normalized constant.

If one setting aj = bj = 0 for j = 1, 2 in (10), the joint posterior density (11) will then be in
proportion to the likelihood function (5), i.e., g(θ , σ |x) ∝ (θσ )−1L(θ , σ), which is the non-informative
case. From a Bayesian viewpoint, there is clearly no way in which one can say that one prior is
better than any other. Generally, if the proper prior information is available, it is better to use the
informative prior(s) than the non-informative prior(s). Otherwise, if one does not have sufficient prior
information, it is better to use a non-informative prior distribution. Since the Bayesian estimates
using SE loss function with non-informative priors behave like the maximum likelihood estimates
whereas those with informative priors behave much better than others, it is always better to use the
frequentist estimates rather than the Bayesian estimates because the latter are computationally more
expensive when the MCMC procedure is used. In Section 4, to evaluate the sensitivity of the priors,
some discussions about various sets of prior distributions are reported.

Now, in order to derive the Bayesian estimators, we take into account the SE and GEnt loss
functions. The Bayesian estimator for the SE loss function is the posterior mean, which considers
overestimation and underestimation equally. In contrast hand, the GEnt loss function offers different
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influences for overestimation and underestimation. Calabria et al. [12] introduced the GEnt loss
function, which is defined as:

GEnt(λ̃, λ) ∝
(

λ̃

λ

)μ

− μ log

(
λ̃

λ

)
− 1,

where μ is a parameter that controls the level of asymmetry and λ̃ is the Bayesian estimator of λ. Below
is the Bayesian estimator of λ using the GEnt loss function:

λ̃GEnt = [Eλ(λ
−μ)]−

1
μ , (12)

given that Eδ(δ
−κ) exists and is finite. Assume that ϑ(θ , σ) is a function of the unknown parameters,

we may easily derive its Bayesian estimator using SE and GEnt loss functions, respectively, as follows:

ϑ̃SE(θ , σ) =
∫ ∞

0

∫ ∞

0

ϑ(θ , σ) g(θ , σ |x) dθ dσ (13)

and

ϑ̃GEnt(θ , σ) =
[∫ ∞

0

∫ ∞

0

[ϑ(θ , σ)]−μ g(θ , σ |x) dθ dσ

]− 1
μ

(14)

It is obvious that it is difficult to determine the Bayesian estimators using (13) and (14) analytically.
In order to acquire the Bayesian estimates of θ and σ and the related HPD credible intervals, we suggest
using the MCMC procedure. We must first determine the full conditional distributions of the unknown
parameters from (11) as follows:

g(θ |σ , x) ∝ θ n+a1−1 exp

{
−

m∑
i=1

(2 + Ri) log
[
σ̄ − θ̄e−σxi(1 + σyi)

] − b1θ

}
(15)

and

g(σ |θ , x) ∝ σ 2m+a2−1σ̄ me−σ[∑m
i=1(1+Ri)xi+b2]

m∏
i=1

(1 + σyi)
Ri[

σ̄ − θ̄e−σxi(1 + σyi)
]2+Ri

. (16)

It is evident that the conditional distributions of θ and σ as provided in (15) and (16) cannot
be represented in standard forms, but their graphs are equivalent to the normal distribution. As a
result, we employ the Metropolis-Hastings (M-H) algorithm with normal proposal distribution with
asymptotic variances to produce random samples from these distributions. The steps that follow now
demonstrate how to get the required samples.

Step 1. Set k = 1.

Step 2. Begin with the initial guesses
(
θ (0), σ (0)

) = (θ̂ , σ̂ ).

Step 3. From (15), generate θ (k) using normal proposal distribution, i.e., N(θ (0), v̂ar(θ (0))), by using
the M-H steps, where v̂ar(θ (0)) ∼= v̂ar(θ̂) is given by (9).

Step 4. Use (16) to get σ (k) using the M-H steps with normal proposal distribution, i.e.,
N(σ (0), v̂ar(σ (0))), where v̂ar(σ (0)) ∼= v̂ar(σ̂ ) is given by (9).
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Step 5. Based on the generated θ (k) and σ (k), obtain

R(k)(t) = θ (k)e−σ(k)t(1 + σ(k)t
σ(k)+1

)

1 − θ̄ (k)e−σ(k)t(1 + σ(k)t
σ(k)+1

)

and

h(k)(t) = σ 2(k)(t + 1)

[σ (k)(t + 1) + 1]
[
1 − θ̄ (k)e−σ(k)t(1 + σ(k)t

σ(k)+1
)
] ,

Step 6. Put k = k + 1.

Step 7. Repeat steps 3–6, M times to compute[
β(1), . . . , β(M)

]
,

where β = θ , σ , R(t) or h(t).

In this study, the first B generated samples are discarded in order to ensure convergence and
remove the appeal of initial guesses. In this situation, we possess β(k), k = B + 1, . . . , M. The Bayesian
estimate of β based on the SE and GEnt loss functions can be calculated using large M, respectively,
as:

β̃SE = 1
M − B

M∑
k=B+1

β(k) and β̃GEnt =
{

1
M − B

M∑
k=B+1

[β(k)]−μ

}− 1
μ

.

To construct the HPD credible intervals of β, order β(k), k = B+1, . . . , M. Therefore, the 100(1−
α)% HPD credible interval of β will be

[
β(k∗), β(k∗+(1−α)(M−B))

]
, where k∗ = B + 1, B + 2, . . . , M is

determined such that:

β(k∗+[(1−α)(M−B)]) − β(k∗) = min
1�l�α(M−B)

[
β(l+[(1−α)(M−B)]) − β(k))

]
,

where [ν] stands for the biggest integer that is less than or equal to ν.

4 Monte Carlo Simulation

To evaluate the behavior of the proposed estimators of θ , σ , R(t) and h(t) developed in the
proceeding sections, Monte Carlo simulation experiments are conducted. For this target, we simulate
1,000 PT-IIC samples from MOL(0.8, 0.4) based on various choices of n, m and progressive pattern R.
Taking t = 0.2, the actual values of R(t) and h(t) are 0.970 and 0.104, respectively. Using n(=50,90),
the proposed numerical experiments are performed by taking m as a failure percentage (FP) of each n

as
m
n

(=40, 80)%. Moreover, for each set of (n, m), different progressive patterns R = (R1, R2, . . . , Rm)

are considered as:

Scheme-1 : R = (n − m, 0∗(m − 1)) ,

Scheme-2 : R =
(

0∗
(m

2
− 1

)
, n − m, 0∗

(m
2

))
,

Scheme-3 : R = (0∗(m − 1), n − m) ,

where R = (1, 0, 0, 0, 1) is denoted by R = (1, 0∗3, 1) for short notation.
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Once the 1,000 PT-IIC samples collected, the maximum likelihood and 95% ACI estimates of θ ,
σ , R(t) and h(t) are calculated utilizing via ’maxLik’ package (by Henningsen et al. [13]) in R 4.1.2
software. To develop the Bayesian MCMC inferences of the same unknown MOL parameters, by
according to the mean and variance of the gamma density, two informative sets of the hyperparameters
ai and bi for i = 1, 2 of θ and σ are used namely: prior-1: (a1, a2, b1, b2) = (4, 2, 5, 5) and prior-2:
(a1, a2, b1, b2) = (8, 4, 10, 10). Following Kundu [14] and Dey et al. [15], the given hyperparameter
values of ai, bi, i = 1, 2 of the unknown MOL parameters are chosen in such a way that the prior mean
becomes the expected value of the corresponding parameter. Using the M-H algorithm sampler, from
SE and GEnt (for μ(= −2, +2)) loss functions, the Bayesian point estimates of θ , σ , R(t) and h(t) are
calculated based on 12,000 MCMC samples after ignoring the first 2,000 variates as burn-in. Further,
from 10,000 MCMC samples, the 95% HPD credible intervals of θ , σ , R(t) or h(t) are calculated also.
All Bayesian evaluations of the unknown parameters θ and σ or the reliability time parameters R(t)
and h(t) are performed via ’coda’ package (by Plummer et al. [16]) in R 4.1.2 software. All necessary
computational algorithms were performed on a laptop with Core(TM) i5-2410M processor and 4.00
GB of RAM. It is better to be noted, regarding the benefits of both ‘maxLik’ and ‘coda’ programming
packages, that the CPU time required per iteration is not expensive.

To monitor whether the simulated Markovian sample is sufficiently close to the target posterior,
beside the trace and autocorrelation plots, we purpose to consider the Brooks-Gelman-Rubin (BGR)
diagnostic statistic, which evaluates the convergence by analyzing the difference between the variance-
within chains and the variance-between chains for each model parameter, for details see [17]. To
establish this purpose, by running two chains using n[FP%] = 50[40%], Scheme-1, and prior-1 (as
an example), we plotted the suggested convergence diagnostics in Figs. 2 and 3 via R 4.1.2 software.
It is clear, from Fig. 2, that the MCMC iterations are converged well. On the other hand, Fig. 3 shows
that the proposed BGR diagnoses close to one after simulating the first 2,000 iterations, which means
that the combustion sample has an adequate size to ignore the influence of the initial guesses, and thus
the simulated chains converged well.

The average estimates (Av.Es) from classical (or Bayesian) approach of θ , σ , R(t) and h(t) (say ω)
are given by:

ω̌d = 1
1, 000

1,000∑
i=1

ω̌(i)
d , d = 1, 2, 3, 4,

where ω̌(i) is the calculated estimate of ω at the ith simulated sample, ω1 = θ , ω2 = σ , ω3 = R(t) and
ω4 = h(t).

Further, the comparison between point estimates of ω is made based on their root mean squared-
errors (RMSEs) and mean relative absolute biases (MRABs) as:

RMSE(ω̌d) =
√√√√ 1

1000

1000∑
i=1

(
ω̌

(i)
d − ωd

)2
, d = 1, 2, 3, 4,

and

MRAB(ω̌d) = 1
1000

1000∑
i=1

1
ωd

∣∣ω̌(i)
d − ωd

∣∣, d = 1, 2, 3, 4,

respectively.
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Figure 2: Trace (top) and Autocorrelation (bottom) plots for MCMC draws of θ , σ , R(t) and h(t) in
Monte Carlo simulation

Figure 3: The BGR diagnostic for MCMC draws of θ (left) and σ (right) in Monte Carlo simulation

Furthermore, the comparison between interval estimates of the same unknown parameters is
made using their average confidence lengths (ACLs) and coverage percentages (CPs) which can be
computed as

ACL(1−α)%(ωd) = 1
1000

1000∑
i=1

(
U

ω̌
(i)
d

− L
ω̌

(i)
d

)
, d = 1, 2, 3, 4,
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and

CP(1−α)%(ωd) = 1
1000

1000∑
i=1

1(
L

ω̌
(i)
d

;U
ω̌

(i)
d

) (ωd), d = 1, 2, 3, 4,

respectively, where 1(·) is the indicator function and L (·) and U (·) denote the lower and upper bounds,
respectively, of (1 − α)% asymptotic (or HPD credible) interval of ωd.

Heatmap is a method of representing data graphically where values are depicted by color, making
it easy to visualize complex data and understand it at a glance. So, via R data visualization, all
numerical results of θ , σ , R(t) and h(t) are displayed with heatmap plots in Figs. 4–7, respectively.
Here, following the graphical tools reported in Elshahhat [18], the suggested heatmaps are plotted
via R 4.1.2 software. Each heatmap range is classified from lowest to highest values with the colors
cyan, red, and yellow, respectively. Each heatmap also displays the proposed estimation methods and
the specified test settings on the “x-axis” and “y-axis” lines, respectively. In the supplementary file, all
simulation tables of θ , σ , R(t) and h(t) are listed. Furthermore, for specification, several notations of
the estimation methods have been used in Figs. 4–7 such as (based on Prior 1 (say P1) as an example)
the Bayesian estimates based on SE loss mentioned as “SE-P1” as well as the Bayesian estimates based
on GEnt loss for μ = −2 and +2 mentioned as “GE1-P1” and “GE2-P1”, respectively.

Figure 4: Heatmap plots for the point and interval results of θ

From Figs. 4–7, in terms of the lowest RMSE, MRAB and ACL values as well as the highest CP
values, the following comments can be drawn:

• Generally, the proposed point and interval estimates of θ , σ , R(t) and h(t) of the MOL model
in presence of PT-IIC data behave satisfactorily.
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• As n(or FP) increases, the maximum likelihood and Bayesian estimates of θ , σ , R(t) and h(t)
perform well. A similar observation is reached when n − m decreases.

• Bayesian estimates against the GEnt loss function perform superior than those obtained against
the SE loss function, and both perform better compared to the other estimates due to the gamma
prior information. Similar result is also observed in the case of HPD credible interval estimates.

• To evaluate the effect of parameter loss, it can be seen that the asymmetric Bayes estimates of
θ , σ , R(t) or h(t) are overestimates (or underestimates) for μ < 0 (or μ > 0). This is one of the
useful properties of working with the GEnt loss function.

• Comparing the considered prior sets 1 and 2, due to the variance of prior 2 is smaller than
the variance of prior 1, it is observed that the Bayesian estimates and associated HPD credible
intervals under prior 2 of all unknown parameters have good perform than others.

• Asymmetric Bayesian estimates of θ , σ , R(t) or h(t) have overestimates (when (μ < 0)) and
underestimates (when (μ > 0)).

• Comparing the censoring schemes 1, 2 and 3, it is clear that the both proposed point and interval
estimates of θ and h(t) perform better using scheme-1 (when the survived items n − m drawn
at x1); of R(t) perform better using scheme-3 (when the survived items n − m drawn at xm); and
of σ perform better based on scheme-1 (for likelihood inference) while based on scheme-3 (for
Bayesian inference).

• Finally, to estimate the MOL distribution parameters or its reliability characteristics under PT-
IIC mechanism, the Bayesian M-H algorithm method is recommended.

Figure 5: Heatmap plots for the point and interval results of σ
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Figure 6: Heatmap plots for the point and interval results of R(t)

Figure 7: Heatmap plots for the point and interval results of h(t)
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5 Real-Life Applications

In order to demonstrate the significance of the suggested inferential methodologies and the
applicability of study objectives to actual phenomena, this part presents two practical applications
from the domains of engineering and chemistry.

5.1 Vinyl Chloride
Vinyl chloride is a known human carcinogen and a rapidly burning colorless gas. In this

application, 34 data points (measured in milligrams/liter) as presented in see Table 1 for vinyl
chloride were taken from clean-up-gradient monitoring wells and analyzed. This data set was
reported by Bhaumik et al. [19] and re-analyzed also by Elshahhat et al. [20], Alotaibi et al. [21],
Elshahhat et al. [22].

Table 1: Data points of vinyl chloride

0.1 0.1 0.2 0.2 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6
0.8 0.9 0.9 1.0 1.1 1.2 1.2 1.3 1.8 2.0 2.0 2.3
2.4 2.5 2.7 2.9 3.2 4.0 5.1 5.3 6.8 8.0

To verify the flexibility of the MOL model, the MOL distribution is compared with fourteen
well-known distributions, (for x > 0 and α, θ , σ ), namely; Marshall-Olkin exponential (MOE(θ , σ))
by Marshall et al. [23], Marshall-Olkin Weibull (MOW(α, θ , σ)) by Cordeiro et al. [24], Marshall-
Olkin Gompertz (MOG(α, θ , σ)) by Eghwerido et al. [25], Marshall-Olkin generalized exponen-
tial (MOGE(α, θ , σ)) by Ristić et al. [26], Marshall-Olkin logistic-exponential (MOLE(α, θ , σ)) by
Mansoor et al. [27], Marshall-Olkin Nadarajah-Haghighi (MONH(α, θ , σ)) by Lemonte et al. [28],
Marshall-Olkin alpha power exponential (MOAPE(α, θ , σ)) by Nassar et al. [29], alpha power expo-
nential (APE(θ , σ)) by Mahdavi et al. [30], generalized-exponential (GE(θ , σ)) by Gupta et al. [31],
Nadarajah-Haghighi (NH(θ , σ)) by Nadarajah et al. [32], Weibull (W(θ , σ)) by Weibull [33], gamma
(G(θ , σ)) and exponential (E(σ )) by Johnson et al. [34], Lindley (L(σ )) by Lindley [35] distributions.

Different goodness-of-fit metrics, including the negative log-likelihood (NL), Akaike information
criterion (AIC), Bayesian information criterion (BIC), Hannan-Quinn (HQ), Consistent Akaike (CA),
and Kolmogorov-Smirnov (KS) statistic with its p-value, must be taken into account when comparing
two (or more) distributions. The given goodness criteria are computed using the maximum likelihood
and its standard-error (St.E) of each unknown parameter, as shown in Table 2. It is evident that the
MOL distribution offers a better fit than other rival distributions based on the lowest values of NL,
AIC, BIC, HQ, CA, and KS as well as the greatest p-value.

We also provided the quantile-quantile (QQ) plot as a graphical demonstration, via R 4.1.2
software, for each considered model, see Fig. 8. It is observed, from Fig. 8, that dots are not too far
away from the diagonal line follow the diagonal line. It also supports the same results established in
Table 2.

In Fig. 9, via R 4.1.2 software, we provided the histograms with the fitted densities as well as plots
of the fitted and empirical RFs. Fig. 9a shows that the fitted density lines captured the data histograms
adequately. Fig. 9b displays that the fitted reliability line of the proposed model captures the empirical
reliability line better than others.



2586 CMES, 2024, vol.138, no.3

Table 2: Summary fit of the competitive distributions under vinyl chloride data

Model MLE (St.E) NL AIC BIC HQ CA KS(P-value)

α θ σ

MOL – 0.3663 (0.3084) 0.5464 (0.2305) 55.2866 114.5732 117.6259 115.6143 114.9603 0.0800 (0.9816)
MOE – 0.8103 (0.4731) 0.4789 (0.1721) 55.3962 114.7924 117.8451 115.8334 115.1795 0.0891 (0.9502)
MOW 1.3260 (0.3429) 0.2584 (0.3974) 0.1780 (0.2340) 55.8635 115.7269 120.3060 117.2885 116.5269 0.0849 (0.9669)
MOG 0.0377 (0.0995) 0.0615 (0.1568) 0.3689 (0.2777) 55.2922 116.2584 120.8375 117.8200 117.0584 0.0928 (0.9316)
MOGE 1.3774 (0.4001) 0.3799 (0.4775) 0.4097 (0.2202) 55.8798 115.7597 120.3387 117.3213 116.5597 0.0840 (0.9701)
MOLE 1.2394 (0.2987) 0.3653 (0.5681) 0.3051 (0.2577) 55.2965 116.1179 120.6970 117.6795 116.9179 0.0805 (0.9802)
MONH 0.2611 (0.3135) 0.0026 (0.0007) 0.0088 (0.0102) 59.8893 125.7786 130.3577 127.3402 126.5786 0.1457 (0.4655)
MOAPE 5.1277 (20.023) 0.3257 (0.8441) 0.4509 (0.2307) 55.3691 116.7382 121.3173 118.2998 117.5382 0.0817 (0.9770)
APE – 0.6520 (0.8536) 0.4767 (0.1886) 55.3925 114.7850 117.8377 115.8260 115.1721 0.0880 (0.9549)
GE – 1.0764 (0.2474) 0.5580 (0.1242) 55.4019 114.8037 117.8565 115.8448 115.1908 0.0978 (0.9012)
NH – 0.9003 (0.3442) 0.6320 (0.4160) 55.4172 114.8345 117.8872 115.8755 115.2216 0.0838 (0.9707)
W – 1.0102 (0.1327) 1.8879 (0.3390) 55.4496 114.8992 117.9520 115.9403 115.2863 0.0918 (0.9366)
G – 1.0659 (0.2291) 1.7640 (0.4795) 55.4133 114.8265 117.8793 115.8676 115.2136 0.0979 (0.9001)
L – – 0.8238 (0.1054) 56.3036 114.6073 118.1336 115.7807 115.7323 0.1326 (0.5883)
E – – 0.5321 (0.0912) 55.4526 115.9052 117.9431 116.4257 116.0302 0.0889 (0.9507)

Figure 8: The Q-Q plots of the MOL and some competing distributions from vinyl chloride data
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(a) (b)

Figure 9: (a) Histograms and fitted PDFs and (b) Empirical and fitted RFs under vinyl chloride data

Now three different PT-IIC samples, from the complete vinyl chloride data, are generated with
m = 20 based on different schemes and reported in Table 3. From Table 3, the MLEs with their
St.Es of θ , σ , R(t) and h(t) (at time t = 0.2) are computed. via the M-H algorithm, from 50,000
MCMC samples with 10,000 burn-in, the Bayesian estimates with their St.Es under SE and GEnt
(for μ(= −3, −0.03, +3)) loss functions of θ , σ , R(t) and h(t) (at t = 0.2) are calculated using the
improper priors, see Table 4. Also, in Table 5, the two bounds of the 95% ACI/HPD credible interval
estimates with their lengths of the unknown parameters are also calculated. The classical estimates of
θ and σ are selected as the start guesses to apply the proposed MCMC sampler. Before proceeding to
calculate the Bayes objectives, we calculate the acceptance rate of Metropolis-Hastings proposals for
all created samples, obtained by (14, 0∗19), (0∗9, 7, 7, 0∗9), and (0∗19, 14) are: 60.294%, 57.774%, and
60.702%, respectively. It is observed that each MCMC sample gives an acceptable approximation for
the posterior density, thus the derived inferences are reliable.

Table 3: Three PT-IIC samples from vinyl chloride data

R Censored sample

(14, 0∗19) 0.1 0.2 0.4 0.4 0.4 0.5 0.5 0.6 0.6 0.9
1.0 1.8 2.0 2.0 2.7 2.9 4.0 5.1 5.3 6.8

(0∗9, 7, 7, 0∗9) 0.1 0.1 0.2 0.2 0.4 0.4 0.4 0.5 0.5 0.5
0.6 0.8 0.9 1.1 1.2 1.8 2.0 2.7 3.2 5.3

(0∗19, 14) 0.1 0.1 0.2 0.2 0.4 0.4 0.4 0.5 0.5 0.5
0.6 0.6 0.8 0.9 0.9 1.0 1.1 1.2 1.2 1.3

From each sample in Table 3, useful statistics for the MCMC variates of θ , σ , R(0.2) and h(0.2)

after bun-in, namely: mean, mode, standard deviation (St.D), skewness and quartiles (Q1, Q2, Q3) are
computed and presented in Table 6. To show the convergence of MCMC variates, based on the sample
obtained from (14, 0∗19) (as an example), MCMC trace plots of θ , σ , R(t) and h(t) are displayed
in Fig. 10. Using the fitted Gaussian kernel for the sample obtained from (14, 0∗19), the associated
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histograms of the simulated MCMC variates of θ , σ , R(t) and h(t) are also displayed in Fig. 10. All
plots shown in Fig. 10 are developed via R 4.1.2 software.

Table 4: Point estimates (first-column) with their St.Es (second-column) of θ , σ , R(t) and h(t) from
vinyl chloride data

R Par. ML SE GEnt

μ → −3 −0.03 +3

(14, 0∗19) θ 0.3922 0.4045 0.3604 0.0578 0.3668 0.0254 0.3572 0.0350 0.3468 0.0455
σ 0.5459 0.2801 0.5182 0.0532 0.5222 0.0238 0.5163 0.0297 0.5101 0.0359
R(0.2) 0.9037 0.0344 0.9026 0.0162 0.9028 0.0009 0.9024 0.0013 0.9020 0.0017
h(0.2) 0.0900 0.1594 0.0768 0.0207 0.0801 0.0099 0.0752 0.0148 0.0700 0.0201

(0∗9, 7, 7, 0∗9) θ 0.8223 0.7626 0.7077 0.1474 0.7197 0.1026 0.7017 0.1205 0.6828 0.1394
σ 0.9355 0.4463 0.8395 0.1279 0.8479 0.0876 0.8353 0.1002 0.8223 0.1132
R(0.2) 0.8921 0.0337 0.8928 0.0177 0.8931 0.0010 0.8926 0.0005 0.8921 0.0001
h(0.2) 0.4148 0.6293 0.3097 0.1240 0.3234 0.0914 0.3029 0.1119 0.2816 0.1332

(0∗19, 14) θ 2.2517 2.6453 2.1375 0.1532 2.1424 0.1093 2.1351 0.1166 2.1277 0.1240
σ 1.5514 0.8284 1.4534 0.1349 1.4593 0.0922 1.4505 0.1009 1.4414 0.1101
R(0.2) 0.9125 0.0360 0.9160 0.0087 0.9160 0.0035 0.9159 0.0034 0.9158 0.0033
h(0.2) 2.0483 3.4938 1.8029 0.2983 1.8188 0.2295 1.7951 0.2532 1.7700 0.2783

Table 5: Interval estimates of θ , σ , R(t) and h(t) from vinyl chloride data

R Par. ACI HPD

Lower Upper Length Lower Upper Length

(14, 0∗19) θ 0.0000 1.1850 1.1850 0.2725 0.4616 0.1891
σ 0.0000 1.0950 1.0950 0.4282 0.6060 0.1778
R(0.2) 0.8363 0.9711 0.1348 0.8699 0.9315 0.0616
h(0.2) 0.0000 0.4025 0.4025 0.0462 0.1071 0.0609

(0∗9, 7, 7, 0∗9) θ 0.0000 2.3169 2.3169 0.5426 0.8979 0.3553
σ 0.0608 1.8102 1.7494 0.6803 0.9998 0.3195
R(0.2) 0.8260 0.9582 0.1322 0.8571 0.9253 0.0682
h(0.2) 0.0000 1.6482 1.6482 0.1758 0.4279 0.2521

(0∗19, 14) θ 0.0000 7.4364 7.4364 1.9168 2.3167 0.3999
σ 0.0000 3.1750 3.1750 1.2772 1.6278 0.3506
R(0.2) 0.8419 0.9831 0.1411 0.9000 0.9306 0.0307
h(0.2) 0.0000 8.8960 8.8960 1.4757 2.1203 0.6447
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Table 6: Some statistics for MCMC draws of θ , σ , R(t) and h(t) from vinyl chloride data

R Par. Mean Mode St.D Skewness Q1 Q2 Q3

(14, 0∗19) θ 0.36042 0.26397 0.04829 0.03778 0.32680 0.36034 0.39294
σ 0.51820 0.37151 0.04542 0.04602 0.48720 0.51779 0.54846
R(0.2) 0.90255 0.92379 0.01614 −0.47811 0.89248 0.90385 0.91391
h(0.2) 0.07685 0.03204 0.01596 0.33424 0.06552 0.07587 0.08718

(0∗9, 7, 7, 0∗9) θ 0.70765 0.51841 0.09269 0.14656 0.64118 0.70368 0.77130
σ 0.83947 0.68510 0.08437 0.13151 0.78220 0.83775 0.89489
R(0.2) 0.89277 0.89141 0.01774 −0.45987 0.88186 0.89432 0.90495
h(0.2) 0.30968 0.17580 0.06571 0.37362 0.26288 0.30679 0.35120

(0∗19, 14) θ 2.13750 1.91678 0.10214 0.00815 2.06689 2.13791 2.20741
σ 1.45340 1.34267 0.09263 −0.02278 1.38835 1.45304 1.51779
R(0.2) 0.91595 0.91698 0.00795 −0.13721 0.91065 0.91639 0.92125
h(0.2) 1.80292 1.47569 0.16970 0.01186 1.68844 1.80353 1.91608

Figure 10: Trace (top) and Histograms (bottom) plots of θ , σ , R(t) and h(t) from vinyl chloride data

In each trace plot, the sample mean and two bounds of 95% HPD credible intervals of θ , σ , R(t)
or h(t) are represented with soled- and dashed-horizontal lines, respectively. Additionally, each sample
mean of θ , σ , R(t) or h(t) is represented with vertical dotted (:) line. Fig. 10 shows that the MCMC
sampler converges quite well and indicates the burn-in sample has an appropriate size to eliminate the
effect of the initial values. It is also observed, from Fig. 10, that the generated MCMC variates of θ and
σ are fairly symmetrical while of R(t) and h(t) are negative and positive quite skewed, respectively. For
brevity, other trace and histogram plots of θ , σ , R(t) and h(t) based on the PT-IIC samples obtained
from (0∗9, 7, 7, 0∗9) and (0∗19, 14) are plotted and reported in the supplementary file.
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5.2 Mechanical Equipments
In this application, from the engineering field, we will explain our theoretical results based on

the time between consecutive failures for repairable mechanical equipment (RME) items depicted
in Table 7. Murthy et al. [36] initially conveyed this data and it has also been examined by
Elshahhat et al. [37], Nassar et al. [38], and Elshahhat et al. [39]. Employing the competitive statistical
distributions as well as the model selection criteria proposed in Subsection 5.1, the MOL distribution
based on the complete RME data is compared. All results of the MOL distribution and other models
are provided in Table 8. It suggests that the MOL distribution is the most suitable model to fit the
MRE data when compared to others.

Table 7: Failure times of 30 repairable mechanical equipments

0.11 0.30 0.40 0.45 0.59 0.63 0.70 0.71 0.74 0.77
0.94 1.06 1.17 1.23 1.23 1.24 1.43 1.46 1.49 1.74
1.82 1.86 1.97 2.23 2.37 2.46 2.63 3.46 4.36 4.73

Table 8: Summary fit of the competitive distributions under RME data

Model MLE(SE) NL AIC BIC HQ CA KS(p-value)

α θ σ

MOL – 2.7991 (1.8462) 1.4400 (0.3462) 40.4944 84.9887 85.8852 87.7911 85.4331 0.0746 (0.9962)
MOE – 5.1690 (3.7002) 1.3178 (0.3523) 40.5040 85.0081 85.9046 87.8105 85.4525 0.0910 (0.9648)
MOW 1.9211 (0.6269) 0.2424 (0.4112) 0.1467 (0.2446) 40.5347 85.0694 86.4141 89.2730 85.9924 0.0752 (0.9958)
MOG 2.1276 (1.3850) 10.314 (13.352) 0.2181 (0.2838) 40.5645 86.3289 87.6737 90.5325 87.2520 0.0790 (0.9920)
MOGE 2.1159 (1.5457) 0.9994 (2.9184) 0.9765 (0.7803) 40.6319 85.2638 86.6086 89.4674 86.1869 0.0748 (0.9960)
MOLE 1.2345 (0.7252) 3.5295 (12.180) 0.9511 (1.4986) 40.5666 86.1333 87.4780 90.3369 87.0564 0.0977 (0.9371)
MONH 0.9138 (0.2353) 4.4984 (3.4947) 1.4696 (1.0112) 40.5187 86.8373 88.1821 91.0409 87.7604 0.0791 (0.9920)
MOAPE 0.0446 (0.2008) 12.908 (16.559) 0.9549 (0.7361) 41.0248 86.0495 87.3943 90.2531 86.9726 0.0750 (0.9959)
APE – 9.9305 (8.4422) 1.0697 (0.1976) 40.5782 85.0356 86.0253 87.8589 85.8009 0.0826 (0.9867)
GE – 2.1234 (0.5875) 1.0032 (0.2014) 40.6143 85.2287 86.0125 87.8031 85.6731 0.0750 (0.9958)
NH – 4.4288 (6.6965) 0.0981 (0.1699) 41.1540 86.3080 87.2045 89.1103 86.7524 0.1132 (0.8365)
W – 1.4663 (0.2032) 1.7103 (0.2250) 40.9105 85.0821 86.0717 87.8623 85.6543 0.0751 (0.9958)
G – 1.9718 (0.4717) 0.7820 (0.2127) 40.6296 85.0259 86.1558 88.0617 85.7037 0.0769 (0.9929)
L – – 0.9762 (0.1345) 41.5473 85.0946 86.0543 87.9576 85.7416 0.1407 (0.5928)
E – – 0.6482 (0.1184) 43.0054 88.0108 88.4590 89.4119 88.1536 0.1845 (0.2589)

Also, using the complete RME data, Fig. 11 displays the QQ plots of MOL, MOE, MOW, MOG,
MOGE, MOLE, MONH and MOAPE distributions. It supports the same findings reported in Table 8
also. Further, three graphics of goodness-of-fit are investigated; (i) plot of histograms of RME data
with fitted PDFs, and (ii) plot of the fitted and empirical RFs under RME data are shown in Fig. 12.
It indicates that the MOL distribution is the best model compared to its competitive models.

From the complete RME data, three different PT-IIC samples are generated with m = 10 based
on different schemes and provided in Table 9. From each generated sample in Table 9, the maximum
likelihood and Bayesian estimates with their St.Es of θ , σ , R(t) and h(t) (at time t = 0.5) are computed
and presented in Table 10. Two-sided 95% ACI and HPD credible interval estimates with their lengths
of θ , σ , R(t) and h(t) are also calculated and reported in Table 11. Via improper priors, utilizing 50,000
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MCMC draws with 10,000 burn-in, the Bayesian analysis is performed based on both SE and GEnt
(for μ(= −5, −0.05, +5)) (Table 12). Using the PT-IIC samples generated by (20, 0∗9), (0∗4, 10, 10, 0∗4)

and (0∗9, 20), the acceptance rates of the Metropolis-Hastings proposals are 61.824%, 61.132%, and
61.154%, respectively. These rates support the same result reported in Application 5.1, which is that
the percentage of iterations in which the proposals were accepted is much higher.

Figure 11: The Q-Q plots of the competing models from mechanical equipments data

(a) (b)

Figure 12: (a) Histograms and fitted PDFs and (b) Empirical and fitted RFs from the RME data

From the PT-IIC sample generated by (20, 0∗9), trace and histogram plots of the MCMC
simulated variates of all unknown parameters are provided in Fig. 13. It shows that the MCMC
mechanism converges well and demonstrates that the MCMC variates of θ , σ , R(t) and h(t) are fairly
symmetrical. Other plots of θ , σ , R(t) and h(t) based on (0∗4, 10, 10, 0∗4) and (0∗9, 20) are available
in the supplementary file. Lastly, from both chemical and engineering examples, one can decide that
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the results of the proposed methodologies provide a good explanation to the proposed MOL lifetime
model.

Table 9: Three PT-IIC samples from RME data

R Censored sample

(20, 0∗9) 0.11 0.59 0.63 0.70 0.71 0.77 1.06 1.23 1.46 2.46
(0∗4, 10, 10, 0∗4) 0.11 0.40 0.59 0.74 0.77 0.94 1.23 1.74 1.86 2.63
(0∗9, 20) 0.11 0.30 0.40 0.45 0.59 0.63 0.70 0.71 0.74 0.77

Table 10: Point estimates (first-column) with their St.Es (second-column) of θ , σ , R(t) and h(t) from
RME data

R Par. ML SE GEnt
μ → −5 −0.05 +5
(20, 0∗9) θ 10.649 10.654 10.547 0.1423 10.549 0.0994 10.547 0.1018 10.544 0.1042

σ 3.2107 1.0042 3.1126 0.1369 3.1185 0.0922 3.1112 0.0995 3.1039 0.1069
R(0.5) 0.8034 0.0849 0.8120 0.0131 0.8123 0.0088 0.8120 0.0085 0.8116 0.0082
h(0.5) 9.7741 7.9925 9.6747 0.1266 9.6760 0.0982 9.6744 0.0997 9.6728 0.1013

(0∗4, 10, 10, 0∗4) θ 22.117 8.9012 22.021 0.1350 22.022 0.0947 22.021 0.0957 22.020 0.0967
σ 2.5831 0.4318 2.4900 0.1333 2.4973 0.0858 2.4883 0.0948 2.4790 0.1041
R(0.5) 0.9296 0.0207 0.9338 0.0062 0.9338 0.0042 0.9338 0.0041 0.9337 0.0041
h(0.5) 18.265 7.0823 18.076 0.2345 18.079 0.1864 18.076 0.1890 18.073 0.1918

(0∗9, 20) θ 58.181 17.183 58.080 0.1420 58.081 0.1002 58.080 0.1007 58.080 0.1011
σ 5.0245 0.6102 4.9259 0.1396 4.9299 0.0946 4.9250 0.0995 4.9199 0.1045
R(0.5) 0.8831 0.0294 0.8883 0.0076 0.8884 0.0053 0.8883 0.0052 0.8882 0.0052
h(0.5) 33.580 7.0719 34.205 0.9234 34.232 0.6516 34.199 0.6181 34.164 0.5840

Table 11: Interval estimates of θ , σ , R(t) and h(t) from RME data

R Par. ACI HPD
Lower Upper Length Lower Upper Length

(20, 0∗9) θ 0.0000 31.530 31.530 10.346 10.741 0.3948
σ 1.2424 5.1790 3.9366 2.9245 3.2943 0.3697
R(0.5) 0.6371 0.9697 0.3326 0.7923 0.8306 0.0383
h(0.5) 0.0000 25.439 25.439 9.5034 9.8159 0.3125

(0∗4, 10, 10, 0∗4) θ 4.6708 39.563 34.892 21.841 22.215 0.3738
σ 1.7368 3.4293 1.6925 2.3026 2.6754 0.3728
R(0.5) 0.8890 0.9703 0.0813 0.9247 0.9425 0.0178
h(0.5) 4.3840 32.146 27.762 17.789 18.324 0.5344

(0∗9, 20) θ 24.503 91.859 67.356 57.898 58.280 0.3819
σ 3.8285 6.2204 2.3919 4.7400 5.1153 0.3752

(Continued)



CMES, 2024, vol.138, no.3 2593

Table 11 (continued)

R Par. ACI HPD
Lower Upper Length Lower Upper Length

R(0.5) 0.8255 0.9407 0.1151 0.8775 0.8982 0.0207
h(0.5) 19.720 47.441 27.721 32.862 35.460 2.5979

Table 12: Some statistics for MCMC draws of θ , σ , R(t) and h(t) from RME data

R Par. Mean Mode St.D Skewness Q1 Q2 Q3

(20, 0∗9) θ 10.5473 10.2897 0.09996 0.01633 10.4822 10.5465 10.6134
σ 3.11263 3.09570 0.09553 0.09140 3.04572 3.11020 3.17706
R(0.5) 0.81202 0.81011 0.00995 −0.14604 0.80544 0.81218 0.81902
h(0.5) 9.67470 9.48238 0.07831 −0.00812 9.62314 9.67474 9.72670

(0∗4, 10, 10, 0∗4) θ 22.0214 21.8156 0.09544 0.13513 21.9559 22.0168 22.0847
σ 2.49003 2.39730 0.09541 −0.02557 2.42499 2.49036 2.55517
R(0.5) 0.93376 0.93764 0.00456 −0.08578 0.93070 0.93382 0.93693
h(0.5) 18.0765 17.8060 0.13949 −0.43657 17.9895 18.0877 18.1746

(0∗9, 20) θ 58.0804 57.9260 0.10016 0.00309 58.0092 58.0809 58.1483
σ 4.92592 4.75752 0.09890 −0.03977 4.85957 4.92677 4.99215
R(0.5) 0.88834 0.89721 0.00546 −0.07519 0.88471 0.88844 0.89206
h(0.5) 34.2049 35.2789 0.68016 0.06226 33.7409 34.1986 34.6577

Figure 13: Trace (top) and Histograms (bottom) plots of θ , σ , R(t) and h(t) from RME data
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6 Concluding Remarks

In this study, we looked into the statistical inference of the Marshall-Olkin Lindley distribution’s
unknown parameters, reliability, and hazard rate functions under progressively Type-II censored
data. The various parameters of interest are inferred using both classical and Bayesian methods. The
normal approximation of the maximum likelihood estimators is also used to create the approximate
confidence intervals. The Bayesian estimations are addressed by employing independent gamma priors
and symmetric and asymmetric loss functions. We have indicated that the explicit expressions of
the proposed Bayesian estimators are not available. The Markov Chain Monte Carlo technique is
employed as a result. For each parameter, the highest posterior density credible intervals are also
attained. We conducted a thorough simulation analysis and examined two applications to real-world
data sets to evaluate the effectiveness of the delivered estimations. The findings of the numerical
study showed that when progressively Type-II censored data were given, the suggested point and
interval estimations of the Marshall-Olkin Lindley distribution acted reasonably. More specifically,
the highest posterior density credible intervals were advised and the Bayesian estimates utilizing the
general entropy loss function outperformed all other estimates. In addition, the real data analysis
showed that the Marshall-Olkin Lindley distribution could be used as a good model to fit vinyl
chloride and repairable mechanical equipment data sets rather than some other Marshall-Olkin
models, including Marshall-Olkin Weibull, Marshall-Olkin Gompertz, Marshall-Olkin generalized
exponential and Marshall-Olkin logistic-exponential distributions. In future work, it is of interest to
investigate the estimation problems of the considered distribution based on other censoring schemes
like an adaptive progressive Type-II censoring scheme. Another significant future work to be addressed
is exploring the performance of dependability metrics of the utilized model in the case of accelerated
life tests.
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