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ABSTRACT

The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the tool
will generate significant noise and vibration, negatively impacting the accuracy of the forming and the surface
integrity of the workpiece. Hence, during the cutting process, it is imperative to continually monitor the tool wear
state and promptly replace any heavily worn tools to guarantee the quality of the cutting. The conventional tool wear
monitoring models, which are based on machine learning, are specifically built for the intended cutting conditions.
However, these models require retraining when the cutting conditions undergo any changes. This method has no
application value if the cutting conditions frequently change. This manuscript proposes a method for monitoring
tool wear based on unsupervised deep transfer learning. Due to the similarity of the tool wear process under varying
working conditions, a tool wear recognition model that can adapt to both current and previous working conditions
has been developed by utilizing cutting monitoring data from history. To extract and classify cutting vibration
signals, the unsupervised deep transfer learning network comprises a one-dimensional (1D) convolutional neural
network (CNN) with a multi-layer perceptron (MLP). To achieve distribution alignment of deep features through
the maximum mean discrepancy algorithm, a domain adaptive layer is embedded in the penultimate layer of the
network. A platform for monitoring tool wear during end milling has been constructed. The proposed method was
verified through the execution of a full life test of end milling under multiple working conditions with a Cr12MoV
steel workpiece. Our experiments demonstrate that the transfer learning model maintains a classification accuracy
of over 80%. In comparison with the most advanced tool wear monitoring methods, the presented model guarantees
superior performance in the target domains.
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1 Introduction

The health monitoring system for the tool can detect the wear state of the tool during the cutting
process. It is capable of offering process decision support to engineers or automatic production control
systems. The conventional tool monitoring methods establish a tool wear state recognition model
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that relies on historical cutting conditions. After that, the model can be employed to oversee new
cutting tools under identical circumstances. The research conducted in the studies has yielded plentiful
research results [1–3]. Especially with the advancement of deep learning technology, models based on
deep learning have outperformed traditional models in recognizing the wear state of tools [4,5].

There are two kinds of methods for tool wear monitoring: the direct monitoring method and
the indirect monitoring method. The direct monitoring method primarily utilizes machine vision
technology for the purpose of measuring tool wear. Zhang et al. obtained tool wear images from
the online CCD camera [6]. Qin et al. used a dynamic image sequence for face milling tool wear
monitoring [7]. Nevertheless, the measurement that relies on machine vision must be actively involved
in the cutting process. The chips and cutting fluid greatly affect the measurement results. Applying
it to the production site is a challenging task. The indirect monitoring method establishes a pattern
recognition model that recognizes the tool wear status through monitoring signals. Indirect monitoring
of tool wear can be achieved through the use of machining signals, which include current signal,
vibration signal, acoustic emission signal, and force signal. The cutting force signal can provide
direct feedback on the level of tool wear. The downside is that the measurement of cutting force will
significantly affect the production process. The measuring equipment is too expensive to be widely
utilized. The stress wave generated by chip deformation in the cutting contact area is the acoustic
emission signal. Some studies have indicated that the acoustic emission signal can indirectly indicate
the tool wear states [8,9]. However, acoustic emission signals place high demands on signal acquisition
and storage. Current signals is also utilized to predict tool wear [10,11]. The advantage of this signal
is that it is easy to obtain. However, the current signal transmission path is lengthy, causing the loss
of high-frequency signals that reflect the change in cutting state. The cutting vibration signal can
indicate the contact status between the tool and the workpiece. It possesses the suitable frequency
bandwidth. The installation of the acceleration sensor is convenient, and it has been widely utilized by
researchers. Kilundu et al. successfully conducted tool condition monitoring in metal cutting through
the analysis of vibration signals on a singular spectrum [12]. Stavropoulos et al. investigated the
mechanism of generating face milling vibration signals [13]. High spindle speed can blur the time-
domain characteristics of vibration signals, making signal analysis and processing greatly difficult.

Researchers have proposed time domain-based methods [14,15], frequency domain-based meth-
ods [16,17] and time-frequency domain-based methods [18] for different research purposes in terms of
the analysis and processing methods of monitoring signals. The time-domain method utilizes statistical
theory to determine the characteristics of signals. It offers advantages such as requiring a small
amount of computation and being ideal for real-time monitoring. The features of the domain are
highly susceptible to the working conditions. The frequency-domain method is the most widely used
analysis method in prognostics and health management. The signal spectrum or envelope spectra [19]
comprises substantial vibration source information. In comparison to the amplitude attenuation in
the time domain during the propagation process, the frequency component can essentially remain
unaffected. The limitation is that the change of frequency components over time cannot be observed.
The method that operates in the time-frequency domain is capable of handling non-stationary signals.
The main disadvantages lie in the excessive computational demand and the significant amount of
data redundancy. The tool cutting monitoring signal exhibits a non-stationary nature within a single
spindle rotation cycle, and remains stationary between multiple rotation cycles. The monitoring task’s
focus should be on detecting changes in signal characteristics throughout the entire cutting life, rather
than just in one rotation cycle. Hence, the frequency domain-based analysis and processing method is
capable of meeting the requirements of tool wear monitoring.
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Researchers primarily utilize machine learning methods to develop a sophisticated nonlinear
mapping model that connects monitoring signal characteristics and tool wear states in terms of mod-
eling methods. Currently, neural network models, fuzzy inference models, Bayesian network models,
and support vector machine models are extensively utilized in the field of tool wear monitoring.
Xie et al. utilized the Least Squares Support Vector Machine, optimized through Particle Swarm
Optimization, to achieve the recognition of milling cutter wear status [20]. Azmi et al. have proposed a
neuro-fuzzy model for predicting carbide tool wear, which enables timely decision-making regarding
tool re-conditioning or replacement [21]. Zhang et al. employed a deep autoencoder to reduce the
dimensionality of features and developed a deep multi-layer perception system that estimated tool
wear with an error of 8.2% on test samples [22]. In recent years, researchers have utilized deep learning
technology for the monitoring of tool wear. Qin et al. have proposed a dual-stage attention model for
tool wear prediction, which has achieved satisfactory prediction results [23]. The performance of three
long short-term memory network (LSTM) deep learning models was analyzed by Shah et al. in tool
wear prediction, and the results indicated that the stacked LSTM model achieved the best results [24].
The deep learning technology model possesses remarkable nonlinear fitting and feature extraction
capabilities. The prediction is that deep learning technology will have a vast application in the field of
tool wear monitoring research.

The state recognition model based on historical condition will fail when the cutting condition
changes. The primary reason for this is the monitoring signal characteristics of the cutting process
that will vary with the operating conditions. The model that has been trained cannot adapt to the new
operating conditions. If we create a new dataset and train new models for new working conditions, it
will undoubtedly require a substantial amount of resources. This method has no practical value when
the working conditions are constantly changing. Hence, it is imperative to conduct further research
on the tool wear monitoring approach amidst the real cutting scenario. Several researchers have
conducted research on monitoring tool wear during diverse cutting conditions. Li et al. calculated time-
frequency intrinsic feature of acoustic emission signals that is independent of the cutting condition [25].
Pan et al. found force coefficients, which do not vary with milling parameters [26]. These methods
depend on the artificial prior knowledge to extract signal characteristics across operating conditions.
They cannot be utilized when there is insufficient prior knowledge. The interest of researchers has been
drawn to the research of a tool wear monitoring method that does not require specific prior knowledge.

Transfer learning is a type of machine learning technique that leverages the similarity between
two dissimilar domains to transfer knowledge [27]. As the degree of tool wear increases for the
cutting process, the contact stiffness between the rake face and flank of the milling inserts and
the workpiece remains constant, regardless of the cutting conditions. The contact stiffness governs
the frequency distribution characteristics of vibration signals. If transfer learning is used to migrate
the tool wear law from the old working condition to the new working condition, it will become easier to
monitor tool wear under multiple working conditions. Feuz et al. utilized the new technique, known as
Feature-Space Remapping [28], to facilitate the transfer of knowledge between domains with dissimilar
distribution spaces. Jiang et al. proposed a multi-label metric transfer learning algorithm that jointly
takes into account the divergence of instance space and label space distribution [29]. Lee et al. utilized a
recently developed multi-objective instance weight to address domain discrepancy [30]. When it comes
to monitoring tool cutting, the same feature and label spaces are observed across diverse working
conditions, albeit their probability distributions vary. Thus, the transfer learning between two cutting
conditions primarily addresses the issue of probability distribution discrepancy, specifically domain
adaptation. Reducing the distribution discrepancy of two types of monitoring data is possible through
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domain adaptation. The prediction function, which has been trained on the basis of the old working
condition data, aims to minimize the prediction error on the new working condition.

Supervised transfer learning still requires a labeled target domain dataset. Unsupervised transfer
learning does not necessitate labeled data from the target domain for training, thereby offering greater
flexibility in applications. During the production process, it is effortless to obtain the monitoring
data of the cutting process. However, the process of labeling monitoring data incurs significant labor
costs. Frequent monitoring of new working conditions and frequent training of new models cannot
be accomplished easily. Clearly, the unsupervised transfer learning method is capable of handling this
application scenario. Liao et al. proposed a dynamic distribution adaptation algorithm that enables
the estimation of the effects of both marginal and conditional distributions simultaneously [31].
Li et al. utilized the maximum mean square discrepancy method to assess the similarity between the
historical tool and the new tool features [32]. Furthermore, the machine learning model can be utilized
to learn implicit distribution distance measurement in addition to employing explicit distribution
distance measurement [33,34]. However, the complexity and training difficulty of the model are
increased by the implicit distance measurement. No experiment has been conducted to demonstrate
that the result obtained through implicit feature transformation is superior to that obtained through
explicit feature transformation [35].

Due to the frequent changes in cutting conditions for flexible production lines, the development
process of tool wear is intricate, resulting in challenges in monitoring tool wear. Furthermore, this
particular cutting process necessitates a diverse range of cutting tools, each with their own unique
wear development process. The unsupervised transfer learning technology allows for the maximization
of the utilization of limited labeled data and plentiful unlabeled data. The realization of unlabeled
data diagnosis can be achieved through knowledge transfer. This study proposes a new tool wear
states recognition method, aiming to address the issue of monitoring tool wear in multiple working
conditions. The model can be utilized to achieve the recognition of tool wear state in new working
conditions without the need for label data. The primary contributions of this paper include: (a) We
propose a method for monitoring tool wear states, which utilizes both the labeled historical monitoring
data and the unlabeled new condition monitoring data to facilitate the training of the model. The
classification of tool wear states under both new and old conditions has been accomplished; (b) In
this paper, we combine one-dimensional convolutional network and multi-layer perceptron network
to build a double-flow tool wear monitoring deep neural network. Additionally, a domain adaptive
layer is embedded to achieve deep feature alignment; (c) The optimized maximum mean discrepancy is
utilized to restrict the data distribution disparity between two operating conditions, ultimately aiding
in the alignment of the deep feature distribution.

The rest of this paper is organized as follows: Section 2 summarizes the fundamental theories of
related technologies and methods. Section 3 details the proposed tool wear state monitoring method
that utilizes unsupervised deep transfer learning. Section 4 features experiments that are conducted
and the experimental results that are displayed and analyzed. In Section 5, the conclusion is finally
presented.

2 Background and Preliminaries
2.1 Tool Wear State Monitoring

During the cutting process, the contact zone between the tool and the workpiece or chips
experiences high temperatures and high pressure. It is inevitable that tools will wear and break. Based
on the tool wear states and trend, the wear process under single cutting conditions can be roughly
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divided into three stages, as depicted in Fig. 1. The average value of flank wear (VB) is used to indicate
the amount of tool wear. During the initial wear stage, tools quickly wear down due to micro-peaks and
cracks on the rake face and flank of the tool and the small radius of the new cutting edge. However, the
overall length of the stage is brief. During the initial wear stage, the cutting edge becomes continuous
and smooth, marking the beginning of the normal wear stage. The tool is capable of maintaining a
wear state for an extended period of time. Severe wear stage signifies that the cutting edge has been
significantly passivated with a series of small chippings at the end of the normal wear stage. At this
stage, the cutting conditions will progressively worsen, resulting in increased wear and chipping that
will ultimately cause the tool to fail. Heavy tool wear can lead to severe cutting vibrations, which may
even cause the CNC machine to shut down. Hence, it is imperative to actively monitor tool wear to
prevent the tools from wearing out and to replace them in a timely manner.

Figure 1: Tool wear states curve

2.2 Deep Transfer Learning Based on Data Distribution Adaptation
Machine learning-based tool wear monitoring methods typically utilize labeled monitoring data

to train models for tool wear recognition. The trained model is then utilized to diagnose the monitoring
data under the identical operating conditions. When the cutting conditions are altered, the distribution
characteristics of the monitoring data will also alter, culminating in the failure of the trained wear
recognition model. In order to transfer knowledge from labeled data to new operating conditions, it is
imperative that the machine learning model can automatically adapt to these new conditions through
unsupervised transfer learning.

The deep transfer learning methodology utilizes deep networks for transfer learning. Compared
to traditional non-deep transfer learning methods, deep transfer learning directly enhances the perfor-
mance of prediction models on various tasks [36]. It is based on data distribution adaptation, directly
extracting features from the original monitoring data to realize the end-to-end pattern recognition. In
particular, it utilizes adaptive layers to accomplish the domain adaptation. According to the principle
of transfer learning theory, transfer learning task has two data domains, namely the source domain
Ds = {(xi, yi)}Ns

i=1 and the target domain Dt = {xj}Nt
j=1. They have the same feature distribution and label

distribution, that is Xs = Xt, Ys = Yt. However, the joint probability space of features and labels is
different, that is Ps(x, y) �= Pt(x, y). The deep transfer learning method’s unified learning objective can
be calculated as

f ∗ = argmin
f ∈I

1
B

B∑

i=1

� (f (υixi), yi) + λR(Bs,Bt), (1)
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where υ ∈ R
Ns , υi ∈ [0, 1] is the feature weight, R(·, ·) is a computational expression for the distribution

difference between two domains, λ is a training hyperparameter, f (·) is a function used to distinguish
the wear state, �(·, ·) is the discriminant error metric function, B represents a batch of samples.

Deep transfer learning utilizes the random gradient descent technique of small batch data in deep
learning to achieve the learning objectives. The gradient of the network for learning parameters can
be calculated as

∇� = ∂�(f (xi), yi)

∂�
+ λ

∂R(Bs,Bt)

∂�
, (2)

where � represents the parameters to be learned for the deep network. If the weight and bias are the
parameters that need to be learned by the network, θ = {W , b}.

2.3 Data Distribution Alignment
The characteristics of monitoring data vary under different operating conditions. For tools

with similar wear laws, the difference in data characteristics is primarily reflected in the marginal
distribution. The optimization goal, which is to achieve domain adaptation, requires the continuous
reduction of distribution discrepancy, as measured by the distribution discrepancy. The maximum
mean discrepancy is widely used in machine learning to measure the difference between two probability
distributions.

Among the many statistical distance metrics, the maximum mean discrepancy is one of the most
widely used distributed distance metrics in transfer learning. It calculates the distribution distance
of two probabilities in the reproducing kernel Hilbert space (RHKS) [37]. It was initially utilized
in the two-sample test in statistics. Ps represents the marginal distribution of the source domain.
X s = {xi}Ns

i=1 ⊂ R
d is the data set sampling from Ps. Pt represents the marginal distribution of the

target domain. X t = {xi}Nt
i=1 ⊂ R

d is the data set sampling from Pt. Ex∼Ps [g(x)] and Ex∼Pt [g(x)] are
the mathematical expectation of g(x) in the source domain and target domain, respectively. g(x) is
a continuous function in the sample space. The maximum mean discrepancy between the marginal
distribution of the target domain and the marginal distribution of the target domain is defined as

MMD (G, Ps, Pt) � sup
g∈G

∣∣∣∣Ex∼Ps [g (x)] − Ex∼Pt [g (x)]
∣∣∣∣ , (3)

where G represents a set of functions g, and sup
g∈G

(·) represents the supremum.

To ensure a sufficiently large space, G is set as the unit sphere H in the RHKS, using the kernel
function to determine its value. From the reproducibility of RHKS, Ex∼P(x)[g(x)] = ∫

H g(x)P(x)dx
will be a continuous functional of g. The Riesz representation theorem guarantees the existence of a
feature mapping φ(x) that successfully implements the transformations, which involves mapping from
the original space to RKHS. It makes Ex∼P[g(x)] = 〈Ex∼Pφ(x), g〉H. Eq. (3) can be further expressed as

MMD (H, Ps, Pt) = sup
g∈H,||g||H≤1

∣∣∣∣〈Ex∼Ps [φ(x)], g
〉
H − 〈

Ex∼Pt [φ(x)], g
〉
H

∣∣∣∣

= ∣∣∣∣Ex∼Ps [φ(x)] − Ex∼Pt [φ(x)]
∣∣∣∣

H

, (4)

where 〈·, ·〉 represents the inner product operation, and ||·||H represents the norm in space H.

The square of MMD is then utilized as a calculation trick, allowing the function’s expectation
to be converted into the expectation of the inner product through the kernel estimation method. The
calculation of the inner product of two vectors in the mapping space can be achieved without the need
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for an explicit expression φ(x). To enhance the algorithm’s efficiency in practice, MMD is calculated
linearly as follows:

D̂2
H (Ps, Pt) =

∣∣∣∣∣∣

∣∣∣∣∣∣
1
ns

∑

xi∈Ds

φ (xi) − 1
nt

∑

xj∈Dt

φ
(
xj

)
∣∣∣∣∣∣

∣∣∣∣∣∣

2

H

, (5)

D̂2
H (Ps, Pt) = 1

n2
s

ns∑
i=1

ns∑
j=1

K
(
xs

i , xs
j

) + 1
n2

t

nt∑
i=1

nt∑
j=1

K
(
xt

i, xt
j

)

− 2
nsnt

ns∑
i=1

nt∑
j=1

K
(
xs

i , xt
j

) , (6)

where K(·, ·) is the reproducing kernel function of space H, D̂2
H (Ps, Pt) is an unbiased estimator of

MMD (H, Ps, Pt) [38].

3 Proposed Methodology
3.1 The Framework of the Proposed Method

Representations of tool wear in monitoring data will vary in the actual tool cutting environment,
thereby reducing the diagnostic accuracy of the diagnosis model based on machine learning. When
cutting conditions are frequently changing, it results in a significant increase in labor costs to re-
label data under new conditions and train new models. As such, the current paper suggests a method
for recognizing the wear state of tools based on unsupervised deep transfer learning. The domain
adaptation method, which involves feature re-representation of deep learning, is utilized to address
the discrepancy of deep features under varying operating conditions. We have built a deep transfer
learning network that utilizes 1DCNN and MLP, and employed an unsupervised training approach
to facilitate the adaptation to new operating conditions. Fig. 2 presents the research framework of this
paper.

3.2 Monitoring Signal Analysis and Processing
To ensure minimal intervention of the monitoring system in the original production system while

monitoring tool wear in the actual cutting environment, the cost of the monitoring system should
be kept as low as possible. As per the analysis in Section 1, the vibration signal acquisition sensor is
effortless to install, and the signal frequency range is commendable. The vibration signal can accurately
indicate the contact status between the tool and the workpiece, making it ideal for monitoring tool
wear. Therefore, vibration signals can be used as the only signal for indirect monitoring of tool wear.
The industrial camera is employed to capture images of milling inserts flank. Fig. 3 illustrates the data
preprocessing process discussed in this paper.

The vibration acceleration signal obtained from CNC machines comprises a significant quantity
of idle stroke data and noise, which cannot be utilized directly. Firstly, the signal amplitude is utilized
to detect the effective cutting data and the empty stroke data. The effective cutting data remains, while
the empty stroke data is discarded. The effective cutting data is then segmented using a particular
sample length. The stiffness of contact between the rake face and flank of milling inserts and the
workpiece will vary due to tool wear. Furthermore, the cutting vibration signal’s frequency distribution
will vary according to the contact stiffness. In order to analyze the tool wear states, the study selects
the frequency spectrum of cutting vibration signals. To obtain the spectrum data, the segmented
data is firstly Fourier transformed. Afterwards, to facilitate the extraction of frequency distribution
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characteristics from the feature extraction model, the spectral data is normalized within the sample.
Finally, the samples for tool wear recognition model training and testing are intercepted in the main
frequency band of the spectrum.

Figure 2: The framework of the proposed method
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Figure 3: Monitoring data preprocessing process

To ensure accurate identification of tool wear states, this paper categorizes tool wear into four
distinct states based on VB and the trend of the tool wear curve. In the present study, an industrial
camera is utilized to capture images of the flank. The camera parameters will determine the scale for
the pictures. After that, the area of wear is measured and calculated. Finally, the wear area is converted
into the actual VB value, which is then categorized into four wear states.

3.3 Tool Wear State Recognition Model Based on Unsupervised Transfer Learning
The network for recognizing the wear state of tools discussed in this paper is depicted in Fig. 4. The

network is a structure that combines both source and target domain networks, forming a dual-flow
system. The source domain network is a supervised classification network that is utilized to carry out
the tool wear states classification task based on historical working condition data. The target domain
network is an unsupervised network that is utilized to carry out the tool wear states classification task
amidst the new operating condition data. The spectrum of the vibration data is a one-dimensional
array. 1D convolution is more appropriate for handling 1D data compared to 2D convolution. Thus,
the article utilizes 1D convolution to analyze spectral data. The network consists of 1D convolution
layers (Conv layer) that share the same domain, as well as domain-shared full connection layers (Dense
layer). The source domain network has been trained to obtain the optimal network parameters on
the source domain. This training task pertains to the model pre-training discussed in Section 3.5.
Table 1 shows the neural network parameters and activation function of each layer. Currently, there
is no research that can demonstrate the effectiveness of utilizing more adaptive units in enhancing
the model’s performance. The adaptation layer is placed on the penultimate layer, which serves as
the transfer of knowledge. The adaptation layer employs the maximum mean difference algorithm
to restrict the distribution discrepancy between two parallel networks. The realization of feature
alignment between the new and the old working conditions can be achieved.

3.4 Model Learning Task
The tool wear state recognition model presented in this paper encompasses two fundamental

learning tasks. The first task is the classification of source domains, while the second one involves
minimizing distribution discrepancies between domains.
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Figure 4: Tool wear state recognition model

Table 1: The structure and parameters of the proposed neural network

Parameters

Layers Filters/units Kernel size Stride Activation function

Conv 1 4 30 5 Leaky ReLU
Conv 2 8 10 3 Leaky ReLU
Conv 3 4 3 1 Leaky ReLU
Dense 1 32 Leaky ReLU
Dense 2 16 / / Leaky ReLU
Dense 3 8 Softmax

Source domain classification task: g : X → Z represents the feature extractor that is responsible
for mapping the sample data to the deep feature vectors. The classifier, represented by f : Z → Y ,
is utilized to map the deep feature vectors to prediction labels. �g is the parameter set of the feature
extractor, and �f is the parameter set of the classifier. The optimization direction of this task is to
reduce classification error. The specific optimization goal can be expressed as

min
�g�f

1
Nb

Nb∑

i=1

Len

(
f
(
g

(
xi

s

))
, yi

s

)
, (7)

where xs represents the data of the source domain, ys is the one-hot code of labels, Len(·, ·) represents
the Categorical Cross Entropy loss function.
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Inter-domain distribution discrepancy minimization task: to estimate the inter-domain distribution
discrepancy, Eq. (6) can be utilized to generate deep feature vectors that originate from both the source
domain and the target domain network adaptation layer. The Eq. (8) defines the task of minimizing
the discrepancy between domains in distribution.

min
�g�f

D̂2
H (g (Bs), g (Bt)) (8)

3.5 Model Training Method
The model training method of the proposed transfer learning model is as follows, drawing upon

the two learning tasks outlined in Section 3.4:

(1) Model pre-training: the labeled data samples from the source domain are utilized to train
the source domain network, thus endowing the model with the fundamental capability for source
domain classification. Eq. (7) presents the optimization objective. The Mini-batch Stochastic Gradient
Descent algorithm is utilized to modify neural network parameters. The Adam optimization algorithm
is utilized to fine-tune the learning rate. In the literature, neural networks typically employ normal
training methods. As a result, the source domain classification network has good performance on test
samples.

(2) Transfer learning training: the aim of transfer learning is to overcome the disparity in
distribution between the target and source domains by bridging the gap in the deep feature space.
Simultaneously, the capability for classifying source domain data should be maintained. The opti-
mization target is Eq. (9), where α serves as a weight parameter to govern the learning process. The
training method for transfer learning is identical to that of pre-training.

min
�g�f

1
Nb

Nb∑

i=1

Len

(
f

(
g

(
xi

s

))
, yi

s

) + αD̂2
H (g (Bs), g (Bt)) (9)

(3) Tool wear state recognition of target domain data: after model training, the classification
network, which is composed of feature extractor and classifier, can be utilized to assess the tool wear
state of the target domain’s monitoring data.

4 Experiment and Discussion
4.1 Setup

To verify the performance of the proposed model, a full-life cutting experiment was conducted on
milling tools in a 3-axis vertical CNC machine center (FEELER VMC650). A quick-feed milling cutter
is utilized in the experiment, which has four inserts. The workpiece material is annealed Cr12MoV die
steel. The vibration sensor (PCB 357B03) is employed to gather the cutting vibration of the CNC
machine spindle. The machine tool spindle has three mutually perpendicular sensors installed. The
data acquisition recorder (NI PXIE-1078) is utilized to store vibration signal data. The sampling
frequency is 128,000 Hz. An industrial camera (KEYENCE CV-035 M) is utilized to capture the
images of the flanks of four inserts. Fig. 5 displays the experimental platform.

The implementation of this experiment should be relatively straightforward and enable the
collection of a substantial amount of high-quality vibration monitoring data. The experiment solely
utilizes a single type of tool, workpiece, and material. This paper primarily investigates the transfer of
models across various process parameters. Model transfer between different tools and workpieces is
not included. The milling task involves multi-parameters plane milling, which is carried out through
plane reciprocating cutting. The workpiece plane size is 200 mm ∗ 200 mm. The cutting conditions
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are set by altering the radial cutting depth, milling direction, spindle speed and feed per tooth. In
Table 2, a variety of processing parameters are presented. For every working condition, the cutting
area measures 200 mm ∗ 50 mm. The cutting process under each operating condition is completed with
a single step. A cutting cycle is completed by performing 54 steps. The cutting process is repeated 65
times throughout the entire life span. During the experimental cutting process, the vibration data is
collected continuously and images of the flank are collected after each cycle.

Figure 5: Cutting experimental platform

Table 2: Cutting process parameters

Radial cutting depth (mm) Milling direction Spindle speed (rpm) Feed per tooth (mm)

6, 12, 18 up, down 1500, 2000, 2500 0.1, 0.2, 0.3

4.2 Monitoring Data Processing
The method outlined in Section 3.2 is utilized to process the monitoring data in order to obtain the

training dataset for the model. The threshold of 100 points is selected as the judgment criterion (2 m/s2)
to detect the effective cutting stroke and the empty stroke signal segments. To obtain the original
cutting vibration signal sample, the effective cutting stroke signal is divided by 1 s. Fig. 6 depicts the
cutting vibration signal in the 30th cutting cycle under various operating conditions.

The Fourier transform is applied to the vibration signal sample in order to obtain the spectrum
data. The spectrum of varying cutting conditions is depicted in Fig. 7. The figure reveals that the
distribution of spectrum data for varying cutting conditions under the same wear state exhibits
comparable traits, while the magnitude of the amplitude demonstrates significant differences. The
spectrum distribution differs from one cutting condition to another, even though the wear states
remain the same. Finally, the spectrum within the sample is normalized. The initial 4000 spectral data
points are chosen as the training data for the tool wear recognition model. The band needs to be folded
in a specific format, where 2 × 2000.
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Figure 6: X-axis vibration signal under different cutting conditions

Figure 7: X-axis vibration signal spectrum under different cutting conditions

In the present study, the average VB value of four inserts during 65 cutting cycles was determined
using the image processing method outlined in Section 3.2. The health status of the tool is determined
by analyzing the trend and the value of changes. The cycle scopes for the four wear states are as follows:
1–10, 11–44, 45–54, and 55–65. Fig. 8 displays the average wear value curve of the experimental tool.

In the present study, six different cutting conditions were chosen to test the tool wear monitoring
approach outlined in this paper. The principle behind selecting six working conditions is to maximize
the variety of process parameter changes, thereby increasing the complexity of transfer learning.
The power and signal-to-noise ratio of vibration signals vary under different operating conditions.
However, when subjected to the same wear state with varying cutting conditions, the contact stiffness
between the tool and workpiece remains the same, resulting in similar spectral distribution charac-
teristics in their corresponding monitoring samples. Table 3 shows the parameters for six operating
conditions. Each cutting condition is a distinct domain. To conduct unsupervised transfer learning of
the tool wear state recognition model, a set of working condition data will be designated as the source
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domain, while another set will be designated as the target domain. The training task is represented as
“X → Y”. For instance, A → B denotes a transfer learning task that has source domain A and target
domain B.

Figure 8: Average wear value curve

Table 3: The cutting process parameters of six domains

Domain label Spindle speed
(rpm)

Feed per tooth
(mm)

Radial cutting
depth (mm)

Milling direction

A 1500 0.1 6 Up
B 1500 0.2 12 Up
C 2000 0.2 12 Up
D 2000 0.3 18 Down
E 2500 0.1 6 Down
F 2500 0.3 18 Down

4.3 Model Performance Analysis
4.3.1 Algorithm Evaluation Index

The performance of the transfer learning algorithm is evaluated using the transfer loss and transfer
rate, as depicted in Eqs. (10) and (11), respectively. errt,t indicates the error within a domain. The
error occurs when the model is trained on labeled samples from the target domain, and subsequently
tested on the same samples. It may be utilized to characterize the difficulty of classification in the
target domain. The transfer error is referred to as errs,t. The error is the result of testing the transfer
learning model in the target domain. The transfer loss can be used to assess the efficiency of the
transfer learning approach. The transfer learning is more effective when the loss value is smaller.
To compare the performance of different algorithms in the same task, this paper chooses the source
domain classification network in the proposed tool wear state recognition model as the benchmark
algorithm to calculate errt,t

b . The transfer rate Rtl is utilized to assess the efficiency of models on various
tasks. The intra-domain accuracy is used as the denominator, while the transfer accuracy is utilized
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as the numerator, and the results of various transfer tasks are averaged. The transfer rate Rtl has a
positive correlation with the effectiveness of the transfer learning algorithm.

Ltl = errs,t − errt,t
b (10)

Rtl = 1
m

∑m

i=1
[(1 − errs,t)/(1 − errt,t

b )] (11)

4.3.2 Task Weight Parameter Optimization

The task of source domain classification and the task of minimizing the distribution discrepancy
between domains must be completed simultaneously in order to optimize the tool wear state recogni-
tion model in this study. Hyperparameters α are utilized to regulate the model’s optimization direction.
The value of this will have an immediate impact on the model’s final performance. In our study, the
tasks (A → C, B → E, D → F) was used to optimize the task weight.

When α = 0, the relationship between the source domain classification cross entropy (SDCE)
and the MMD is shown in Fig. 9. Under this scenario, model training is exclusively carried out for
the purpose of source domain classification task. The curve reveals that during the initial phase of
training optimization, the SDCE value is significant, whereas the MMD value remains small. The
reason for this is that the model employs random initialization. During the process of transmitting
forward to deep space, the original samples are blended with random noise, which causes a difference
in the distribution of deep features between the source domain and the target domain. As the number
of training epochs increases, the model’s ability to match with the source domain classification task
improves, while its applicability to the target domain decreases. The disparity in distribution between
the target and source domains in the deep feature space is increasing. The training outcome will be
that the model is restricted to the source domain data and cannot be applied to the target domain
data. This demonstrates that it is imperative to conduct transfer learning for the tool wear recognition
model in response to alterations in the working condition.

Figure 9: The training process of the proposed model when α = 0

The significance of α can impact the training model’s optimization direction, ultimately determin-
ing its performance in both the target and source domains. Therefore, this study needs to optimize the
value of α. We conducted the model training on three tasks for each α. The mean value of MMD for
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the trained models on the test set, as well as its classification accuracy on the target domain test set,
were both recorded. Fig. 10 illustrates the correlation between the mean value of MMD and α. When
comparing Figs. 9 and 10, it is evident that MMD holds a significant position in model optimization.
When α = 0.3, the MMD value is 1.4, which is nearly 3 times less than the value when α = 0. As
the value of α increases, the adaptability of the deep feature space domain is strengthened, causing a
gradual decrease in the MMD value.

Figure 10: The correlation between the MMD and the task weight

In Fig. 11, the classification accuracy of the model on the test set of target domain is depicted as
α varies. It is evident that any α can enhance the model’s classification accuracy in the target domain.
The accuracy of classification, however, initially surges and ultimately declines as the value progresses.
This indicates that an excessively high value of α will cause the deep features to clump together, leading
to heightened classification complexity and diminished classification precision. The highest model
classification accuracy of 86% was achieved when α = 0.3.

4.3.3 Model Performance Analysis

In order to confirm the effectiveness of the proposed dual-flow model with a domain-adaptive
layer (DFMDA), five transfer learning tasks were developed by utilizing the domains presented in
Table 3 to identify the tool wear state across different cutting conditions. The weight parameter α

was set as 0.3. In order to explain the advantages of the model in this paper, this section reproduces
the methods disclosed in several documents, such as adversarial domain adaptation transfer learning
model (ADATLM) [39], and pretrained transfer learning model (PTLM) [40].

Fig. 12 displays the models’ performance on six learning tasks, and the accuracy are achieved
in the target domain test set. The baseline model 1DCNN, which does not utilize transfer learning,
achieves a classification accuracy of only 55%. It holds no practical significance. On the other hand,
three transfer learning methods considerably enhance the accuracy of target domain testing. The
transfer learning tasks of the method proposed in this paper have achieved the highest test accuracy,
with an accuracy rate of over 80% in the other two transfer learning tasks. This demonstrates that the
method proposed in this paper outperforms the other two methods.
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Figure 11: The correlation between the classification accuracy and the task weight

Table 4: Transfer loss and transfer rate of tool wear states classification (%)

Task errt,t
b 1DCNN ADATLM PTLM DFMDA

A→E 1.96 26.32 19.21 18.65 16.54
A→C 2.12 28.84 20.33 19.32 19.18
E→F 1.85 25.31 18.05 17.42 14.86
B→C 2.20 29.03 20.58 19.67 19.85
B→F 2.24 28.84 21.97 19.88 20.01
C→E 2.64 34.32 23.52 20.35 20.14
Transfer rate 53.54 72.32 75.42 83.25

Figure 12: Model performance comparison on six learning tasks
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Table 4 displays the transfer loss and transfer rate of diverse models in each task. Our proposed
model obtains the lowest transfer loss across four tasks. The transfer rate of up to 83.25% as a multi-
task statistical indicator further validates the robustness of the proposed method.

5 Conclusion

The severe wear of metal tools has an impact on the quality of cutting. To improve the quality
of the workpiece, it is essential to monitor the health states of the tool. This paper proposes a tool
wear states recognition model based on unsupervised transfer learning for multi-condition cutting
environments. The model’s structure is simple and comprises a convolutional neural network and a
multilayer perceptron network. The recognition model is trained using labeled source domain and
unlabeled target domain data, allowing for the implementation of both classification and deep feature
distribution adaptation tasks. The experimental results presented in our study demonstrate that the
proposed model outperforms the methods currently available in the target domain.

In the subsequent phase of research, the study may delve deeper into transfer learning in intricate
situations where a variety of tools and workpieces, including CNC machines, are involved. The method
of distributing data should be improved. In future research, the transfer learning of multiple source
domains could be taken into account to enhance the robustness and applicability of deep learning
models.
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