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ABSTRACT

This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials.
By utilizing this model, the macroscopic constitutive parameters of granular materials with different microstruc-
tures are expressed as sums of microstructural information. The microstructures under consideration can be
classified into three categories: a medium-dense microstructure, a dense microstructure consisting of one-sized
particles, and a dense microstructure consisting of two-sized particles. Subsequently, the Cosserat elastoplastic
model, along with its finite element formulation, is derived using the extended Drucker-Prager yield criteria.
To investigate failure behaviors, numerical simulations of granular materials with different microstructures are
conducted using the ABAQUS User Element (UEL) interface. It demonstrates the capacity of the proposed model
to simulate the phenomena of strain-softening and strain localization. The study investigates the influence of
microscopic parameters, including contact stiffness parameters and characteristic length, on the failure behaviors of
granular materials with microstructures. Additionally, the study examines the mesh independence of the presented
model and establishes its relationship with the characteristic length. A comparison is made between finite element
simulations and discrete element simulations for a medium-dense microstructure, revealing a good agreement in
results during the elastic stage. Some macroscopic parameters describing plasticity are shown to be partially related
to microscopic factors such as confining pressure and size of the representative volume element.
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1 Introduction

Granular materials are composed of solid particles and inter-particle voids, which exhibit nonlin-
earity, heterogeneity, and other microscopic characteristics that usually cause complex failure behavior,
i.e., localized failure phenomena for granular materials [1–4]. A thorough understanding of the failure
behavior of granular materials is important to improve the prediction of natural disasters such as
landslides and mudslides. Discrete element models (DEMs) are physically closer to the discrete nature
of granular materials [5]. In addition, the models provide convenient and accurate simulations of failure
behaviors by using microscopic geometric information. However, since solid particles in practice
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are numerous, there are limitations of DEMs to solve engineering problems by the computational
scale. Therefore, it is appropriate and feasible to use continuum modeling or multiscale modeling
for mechanical behaviors of granular materials, and the development of appropriate models to
characterize the mechanical behaviors is crucial within continuous medium mechanics [2,6,7].

Granular materials have been studied using the Cosserat continuum theory [8–11]. There is a
degree of freedom (DOF) related to the micro-rotation of the particles, as well as characteristic
lengths describing the microstructures. Therefore, the Cosserat continuum theory can provide the
regularization mechanism to solve the pathological mesh dependence problem in simulation on the
width of strain localization, which usually results from the loss of ellipticity of the control equations
in the classical continuum theory [10]. However, these are still some problems for models based
on classical or traditional Cosserat continuum theory to study mechanical behaviors of granular
materials, because deformation modes for microstructures in granular materials cannot be completely
predicted by these models, or effects of microscopic mechanisms such as relative sliding and rotation
and particle arrangement cannot be correctly reflected on the strain localization and size effect of
granular materials. Nevertheless, the importance of the deformation mode caused by the microstruc-
tures has been emphasized in previous studies [12,13]. Chang et al. [13] developed a microstructural
or micromechanical-based Cosserat continuum model of granular materials, where microstructural
effects and interactions are taken into account. As a result, Cosserat constitutive relationships can
be obtained based on macroscopic measures that reflect discrete properties [14]. However, their work
used an isotropic contact density distribution hypothesis, which describes only partial microstructural
information and does not consider the arrangement of particles and their voids in the material. Many
studies have developed macroscopic continuum models based on the isotropic or anisotropic contact
density distribution hypothesis [4,7,15–18]. However, studies on continuum models that consider
microstructures with more detailed information are still being carried out. Chang et al. [19] proposed a
first gradient micromechanics-based model using Voronoi cells through two-dimensional rhombic and
hexagonal packings. Chang et al. [20,21] proposed a micromechanics-based Cosserat model using a
two-dimensional micro-scale lattice network to simulate the fracture of concrete. Using a micro-scale
Voronoi cell model, Li et al. [22] proposed a micromechanically informed macroscopic constitutive
model of the effective Cosserat continuum for granular materials. To identify elastic constants of
granular materials, Zhou et al. [23] developed a micromechanical Cosserat model based on an elliptical
granular assembly. Xiu et al. [24,25] used a micromechanics-based micromorph model to analyze wave
propagation behaviors in granular crystals with different microstructures. However, studies based on a
micromechanics-based continuum model that can be used to provide more specific information about
microstructures, i.e., to comprehensively and thoroughly reveal effects of microstructural information
or interactions on failures of granular materials, are still lacking.

This study uses a micromechanics-based Cosserat constitutive model, in which the macroscopic
constitutive modulus tensors are obtained by microstructural information. Different microstructures
of granular materials are determined by particle’s arrangements, sizes, void ratios and coordination
numbers, and it can categorize microstructures into a medium dense one and two dense ones. Using
this micromechanics-based Cosserat model, macroscopic constitutive modulus tensors are determined
for granular materials with different microstructures. In addition, a micromechanics-based Cosserat
elastoplastic model is proposed using an extended Drucker-Prager yield criterion, and this model
provides the finite element formulation. Numerical simulations are performed using the User Element
(UEL) interface in ABAQUS to investigate the capacity of the model and the influences of microscopic
parameters on modeling of failure behaviors of granular materials with different microstructures. Mesh
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independence is analyzed for the presented model. The results are compared with those based on DEM
to associate some macroscopic parameters with microscopic ones.

2 Basic Equations for the Cosserat Continuum Theory

According to the Cosserat continuum theory, material points are treated as infinitesimal solids
with characteristic lengths. There are three translational DOFs and three rotational DOFs, namely
the displacement vector u = {

u1 u2 u3

}T
and the rotation vector ω = {

ω1 ω2 ω3

}T
. Afterward,

basic equations in Cosserat continuum theory are given by [26]:

1) Kinematic equations

εij = ui,j − eijkωk, κij = ωi,j (1)

where εij and κij are respectively the strain and the micro-curvature, eijk is the Levi-Civita notation, and
i, j, k = 1, 2, 3.

2) Elastic constitutive relationships

σij = Cijklεij, μij = Dijklκij (2)

where σij and μij are the stress and the couple stress, respectively, and Cijkl and Dijkl are constitutive
modulus tensors expressed as follows:

Cijkl = G
[
(1 + a) δikδjl + (1 − a) δilδjk + 2ν

1 − 2ν
δijδkl

]
(3)

Dijkl = 2Glc

(
δikδjl + bδilδjk + cδijδkl

)
(4)

where δij is Kronecker delta, G and ν are the shear modulus and Poisson’s ratio, a, b and c are the
additional Cosserat constants, and lc is a characteristic length. a is the ratio between the Cosserat
shear modulus Gc and the shear modulus G: Gc = aG.

3) Balance equations and boundary conditions{
σij,i + fj = 0
μij,i + ejklσkl + mj = 0

(5)

where fj and mj are respectively the external force and couple.{
niσij = tσ

j

niμij = mμ

j

(6)

in which tσ

j and mμ

j are tractions of the force and the couple stress, respectively, and ni is the normal
vector.

3 The Micromechanics-Based Cosserat Model for Granular Materials with Different Microstructures
3.1 Micromechanics-Based Cosserat Constitutive Relationships

The micromechanics-based Cosserat model can identify the constitutive modulus tensors in
Eqs. (3) and (4) by microstructural information. And the previous studies [7,13,24] have given the
micromechanics-based micromorphic constitutive relationships. The micromorphic model considers
the material point (in Fig. 1) as a deformable body with additional DOFs relative to the macroscopic
deformation, while the Cosserat model considers it as a rigid body with additional rotational DOFs.
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It is noted that the Cosserat model can be considered as a reduced micromorphic model if the relative
deformation is ignored for the micromorphic model. Then, we can obtain the micromechanics-based
Cosserat constitutive modulus tensors in Eqs. (3) and (4). And our previous study [18] has a similar
derivation process, so it is omitted here to save space. Then, the modulus tensors are shown in Eq. (7)
below:⎧⎪⎨
⎪⎩

Cijkl = 1
V

n∑
c=1

Kcu
ik Lc

l L
c
j

Dijkl = 1
V

n∑
c=1

Kcr
nmemkqLc

l R
c
penipLc

j R
c
q + 1

V

n∑
c=1

Gcr
ikLc

l L
c
j

(7)

where c denotes the contact in the volume element, V is the volume of volume element, Kcu,r
kl and Gcr

kl

are contact stiffness parameters in a contact constitutive relation, and Rc
p and Lc

j are respectively the
radius of the reference particle and the branch vector connecting particles’ centroids. It shows that
the constitutive modulus tensors Cijkl and Dijkl are in discrete summation forms of microstructural
parameters including contact stiffness parameters and internal lengths. One object in the study is to
identify Cijkl and Dijkl based on two ways as follows.

Figure 1: Diagrams of Cosserat vs. micromorphic material points

3.2 Identification of Constitutive Modulus Tensors for Granular Materials with Microstructures
(A) Isotropic directional density distribution function of contacts

There is usually a difference in contact stiffness parameters and internal lengths among contacts
within a volume element. The material is assumed to be isotropic to simplify the analysis, and we
consider an isotropic directional density distribution function of contacts ξ (α, β) = 1/4π [13]. Thus,
discrete summation forms can be used to calculate macroscopic constitutive parameters:

Cijkl = 1
V

n∑
c=1

Kcu
ik Lc

l L
c
j = l2NV

∫ π

0

∫ 2π

0

(
Kcu

ik nlnj

)
ξ sin αdβdα (8)

Dijkl = 1
V

n∑
c=1

Kcr
nmemkqLc

l R
c
penipLc

j R
c
q + 1

V

n∑
c=1

Gcr
ikLc

l L
c
j

= l2r2NV

∫ π

0

∫ 2π

0

(
Kcr

nmemkqnlnpenipnjnq

)
ξ sin αdβdα

+ l2NV

∫ π

0

∫ 2π

0

(
Gcr

iknlnj

)
ξ sin αdβdα (9)
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where NV represents the contact density of the volume element, and the size of particle is assumed
to be equal: Lc

j = lnj and Rc
j = rnj. nj is a unit vector normal to the contact plane, and the other

two orthogonal unit vectors, sj and tj are on the contact plane. Then, Kcu,r
ij = Knninj + Kt

(
sisj + titj

)
,

and Gcr
ij = Gnninj + Gt

(
sisj + titj

)
. Kn and Kt (Gn and Gt) are normal and tangential contact stiffness

parameters for contact forces (moments). In this way, macroscopic constitutive parameters can be
expressed in terms of microscopic constitutive parameters by solving these integrals:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ciiii = l2NV

15

(
3Ku

n + 2Ku
t

)
Ciijj = Cijji = l2NV

15

(
Ku

n − Ku
t

)
Cijij = l2NV

15

(
Ku

n + 4Ku
t

)
Cijkl = 0, otherwise

(10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Diiii = l2r2NV

15

(
2Kr

t

) + l2NV

15

(
3Gr

n + 2Gr
t

)
Diijj = Dijji = l2r2NV

15

(−Kr
t

) + l2NV

15

(
Gr

n − Gr
t

)
Dijij = l2r2NV

15

(
4Kr

t

) + l2NV

15

(
Gr

n + 4Gr
t

)
Dijkl = 0, otherwise

(11)

where i �= j.

(B) Specific microstructures

To include more microstructural information, we use three different three-dimensional microstruc-
tures defined by different ordered particle arrangements as shown in our previous study [24]. A
microstructure cell consists of a reference particle and a first ring of neighbors at contacts. Fig. 2 shows
the differences in particle arrangements, void ratios, and coordination numbers in the microstructures.
Therefore, the three microstructures are classified as a medium dense one and two dense ones. It
is noted that we also consider a loose microstructure by a simple cubic arrangement, however, it
should not exist in reality since it shows almost no resistance to shear deformation. Therefore,
the loose microstructure is not investigated in this study. For the medium dense microstructure, it
appears as a hexagonal close-packed arrangement in the x-y plane, and as a cubic arrangement in
x-z and y-z planes. The dense microstructure in one-sized particles is in a hexagonal close-packed
arrangement. Smaller particles are used to fill voids in a simple cubic arrangement to create a dense

microstructure in two-sized particles. Smaller particles with a radius
(√

3 − 1
)

r are tangent to larger

ones. It is noted that a microstructure must have a cell V as its minimum element, and then a granular
assembly is made of microstructures with periodic arrangements of cells in Fig. 2. For simplicity
and clarity, granular materials based on the isotropic contact density distribution are shortened to
GMiso, and granular materials with medium dense and two dense microstructures are shortened
to GMmedium, GMdense_onesized and GMdense_twosized, respectively. And Table 1 shows the
different coordination numbers and void volume ratios of the three microstructures.



2310 CMES, 2024, vol.138, no.3

Figure 2: Schematic diagram for cells of three microstructures
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Table 1: Coordination numbers and void volume ratios for different microstructures

Microstructures Medium dense dense_onesized dense_twosized

Coordination number 8 12 14
Void volume ratio (%) 39.5 26.0 27.2

Then, the constitutive modulus tensors of these granular materials with different microstructures
can be obtained by directly solving the discrete summations as shown in Eq. (7). And the constitutive
modulus tensors are derived and shown as follows:

(1) Medium dense microstructure⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1111 = C2222 = 3l2

4V

(
3Ku

n + Ku
t

)
, C3333 = 2l2

V
Ku

n

C1212 = C2121 = 3l2

4V

(
Ku

n + 3Ku
t

)
C3131 = C3232 = 3l2

V
Ku

t , C1313 = C2323 = 2l2

V
Ku

t

C1122 = C2211 = C1221 = C2112 = 3l2

4V

(
Ku

n − Ku
t

)
Cijkl = 0, otherwise

(12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1111 = D2222 = 3l2

4V

(
r2Kr

t + 3Gr
n + Gr

t

)
, D3333 = 2l2

V
Gr

n

D2121 = D1212 = 3l2

4V

(
3r2Kr

t + Gr
n + 3Gr

t

)
D1313 = D2323 = 2

3
D3131 = 2

3
D3232 = 2l2

V

(
r2Kr

t + Gr
t

)
D2211 = D1122 = D1221 = D2112 = − 3l2

4V

(
r2Kr

t − Gr
n + Gr

t

)
Dijkl = 0, otherwise

(13)

(2) Dense microstructure in one-sized particles⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1111 = 4l2

3V

(
2Ku

n + Ku
t

)
, C2222 = C3333 = l2

2V

(
5Ku

n + 3Ku
t

)
C1212 = C2121 = C3131 = C1313 = 2l2

3V

(
Ku

n + 5Ku
t

)
, C2332 = C3223 = l2

6V

(
5Ku

n + 19Ku
t

)
C2211 = C3311 = C1122 = C1221 = C1133 = C1331 = C2112 = C3113 = 2l2

3V

(
Ku

n − Ku
t

)
C3232 = C3322 = C2323 = C2233 = 5l2

6V

(
Ku

n − Ku
t

)
Cijkl = 0, otherwise

(14)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1111 = 4l2

3V

(
r2Kr

t + 2Gr
n + Gr

t

)
, D2222 = D3333 = l2

2V

(
3r2Kr

t + 5Gr
n + 3Gr

t

)
D2121 = D3131 = D1212 = D1313 = 2l2

3V

(
5r2Kr

t + Gr
n + 5Gr

t

)
D3232 = D2323 = l2

6V

(
19r2Kr

t + 5Gr
n + 19Gr

t

)
D2211 = D3311 = D1221 = D1331 = D2112 = D1122 = D3113 = D1133 = − 2l2

3V

(
r2Kr

t − Gr
n + Gr

t

)
D3322 = D2332 = D3223 = D2233 = − 5l2

6V

(
r2Kr

t − Gr
n + Gr

t

)
Dijkl = 0, otherwise

(15)

(3) Dense microstructure in two-sized particles⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1111 = C2222 = C3333 = 4l2

3V

(
2Ku

n + Ku
t

)
C2121 = C3131 = C1212 = C3232 = C1313 = C2323 = 2l2

3V

(
Ku

n + 5Ku
t

)
C2211 = C3311 = C1221 = C1331 = C2112 = C1122 = 2l2

3V

(
Ku

n − Ku
t

)
C3322 = C2332 = C3113 = C3223 = C1133 = C2233 = 2l2

3V

(
Ku

n − Ku
t

)
Cijkl = 0, otherwise

(16)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1111 = D2222 = D3333 = 4l2

3V

(
r2Kr

t + 2Gr
n + Gr

t

)
D2121 = D3131 = D1212 = D3232 = D1313 = D2323 = 2l2

3V

(
5r2Kr

t + Gr
n + 5Gr

t

)
D2211 = D3311 = D1221 = D1331 = D2112 = D1122 = − 2l2

3V

(
r2Kr

t − Gr
n + Gr

t

)
D3322 = D2332 = D3113 = D3223 = D1133 = D2233 = − 2l2

3V

(
r2Kr

t − Gr
n + Gr

t

)
Dijkl = 0, otherwise

(17)

4 Yield Function and Plastic Potential Function

According to Forest et al. [27], the equivalent st31rain is defined by

ε =
√

2
3

(
eijeij + l2

c κijκij

)
(18)

where eij is the deviator of the strain εij. And the equivalent stress is defined by

σ =
√

3
2

(
sijsij + l−2

c μijμij

)
(19)

where sij is the deviatoric stress tensor.
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The Cosserat continuum is used to describe plastic behavior of granular materials by using an
extended Drucker-Prager yield criterion:

f = σ + Aφp + Bφ (20)

where p = 1
3

(σ1 + σ2 + σ3) is the first invariant of stress, Aφ and Bφ are material parameters in

expressions of internal fiction angle φ and cohesion c. If the yield surfaces of the Drucker-Prager
and Mohr-Coulomb criteria coincide at the inner edge of the Mohr-Coulomb surface, then material
parameters can be expressed as

Aφ = 6 sin φ

3 + sin φ
, Bφ = −c

6 cos φ

3 + sin φ
(21)

Based on the piecewise linear hardening/softening assumption, the cohesion is written as follow:

c = c0 + hpε
p (22)

where c0 is the initial cohesion, hp is hardening/softening parameter, and ε
p is the equivalent plastic

strain.

The non-associated flow rule is assumed in granular materials, which implies the plastic potential
function g �= f . Thus, a plastic potential function is defined by

g = σ + Aψp + Bψ (23)

in which

Aψ = 6 sin ψ

3 + sin ψ
, Bψ = −c

6 cos ψ

3 + sinψ
(24)

where ψ is the dilatancy angle, and the dilatancy angle is smaller than the internal fiction angle φ.

5 Numerical Simulations

Appendix shows the finite element formulation of the micromechanics-based Cosserat elastoplas-
tic model, and a user element program is coded using the ABAQUS UEL subroutine interface.

The numerical examples focus on the following issues: (1) the capacity of the micromechanics-
based Cosserat model on modeling strain localization and softening of granular materials; (2) effects of
different microstructures on failure behaviors; (3) effects of microscopic parameters including contact
stiffness parameters and characteristic length on failure behaviors; (4) the mesh independence of the
presented model; (5) comparisons of simulations between FEM and DEM.

5.1 Strain Localization and Strain Softening of Granular Materials with Different Microstructures
The numerical simulations concern a rectangular panel with the size of 1 m × 2 m (Fig. 3a), and

an eight-node iso-parametric element with four integration points is used for the plane strain problem
(Fig. 3b). The panel is subjected to compression under a displacement-controlled symmetrical load
with a displacement of 0.012 m each at the top and bottom. Nodes at the top and bottom boundaries
are fixed in the horizontal direction, and those on the left and right boundaries are free. The material
and microstructural parameters are specified in Table 2. The characteristic length lc is considered as
the internal length l. And the panel is meshed by 15 × 30 in this example.
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(a) finite element mesh and
boundary conditions

(b) plane strain element

Figure 3: Finite element mesh for the panel model

Table 2: Values of parameters

Parameter Value Parameter Value

l 1 × 10−3 m Ku
n 100 kN/m

r 0.5 × 10−3 m Ku
t 50 kN/m

φ 20◦ Kr
n 100 kN/m

ψ 18◦ Kr
t 50 kN/m

c0 11.4 kPa Gr
n 50 × 10−3 N · m

hp −30 kPa Gr
t 25 × 10−3 N · m

First, Fig. 4 shows the load-displacement curves of granular materials with microstruc-
tures, i.e., GMmedium, GMdense_onesized, GMdense_twosized, and GMiso, simulated by the
micromechanics-based Cosserat model. Meanwhile, Fig. 5 shows their corresponding equivalent
plastic strain distributions. From Fig. 4, the curves are close to each other, except for that of GMiso,
which shows a lower stiffness in the elastic stage and a lower degree of softening in the strain-
softening stage. It can be speculated that the assumption of isotropic directional density distribution
is too strong, and some microstructural information may be washed out to cause the difference in
the curve of GMiso. More specifically, the curves of GMdense_onesized and GMdense_twosized
are almost the same, while the curve of GMmedium has a greater stiffness at the elastic stage than
those of GMdense_onesized and GMdense_twosized. However, the difference between GMmedium
and GMdense_onesized or GMdense_twosized seems to be small. This is because the macroscopic
equivalent elastic constants of GMmedium, GMdense_onesized and GMdense_twosized are of small
difference, whose ratio is given by 1.18:1:1. Moreover, the differences between GMmedium and
GMdense_onesized or GMdense_twosized at plastic stages are even smaller. It is speculated that
plastic mechanical responses are controlled not only by elastic and plastic parameters, but also by
the microstructural information such as coordination number and void volume ratio, which may
affect the arrangement of particles at the plastic stage. Therefore, descriptions and simulations of
plasticity for granular materials with different microstructures are quite complex. And our next study
contributes to the development of micromechanics-based yield criterion and plastic potential function,
which may contribute to the explanation of the plastic response of granular materials with different
microstructures.
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Figure 4: Load-displacement curves of GMmedium, GMdense_onesized GMdense_twosized, and
GMiso simulated by micromechanics-based Cosserat model

Figure 5: Equivalent plastic strain distributions of GMmedium, GMdense_onesized GMdense_
twosized, and GMiso simulated by micromechanics-based Cosserat model
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Furthermore, Fig. 5 shows that the strain localizations, i.e., the shear bands, have almost the same
width and shape for all granular materials. And similar to the above analysis for Fig. 4, GMiso has
a minimal equivalent plastic strain, and GMdense_onesized and GMdense_twosized have almost
the same equivalent plastic strain. Back to Table 1, GMdense_onesized and GMdense_twosized
have similar void volume ratio, and they have almost the same load-displacement relationship and
equivalent plastic strain, which are different from those of GMmedium, which has a larger void volume
ratio. This may reflect the influence of void volume ratio on failure behaviors of granular materials.

The Cosserat model can describe the rotational DOF for granular materials. Fig. 6 gives the
rotation ω3 distributions of GMmedium, GMdense_onesized GMdense_twosized, and GMiso sim-
ulated by the micromechanics-based Cosserat model. It can be seen that the rotations show X-
shaped distributions with respect to the shear bands. Similarly to the equivalent plastic strain rule,
GMdense_onesized and GMdense_twosized have almost the same rotation, followed by GMmedium
and finally GMiso. Therefore, we can see that in terms of simulations on strain localizations and
rotations, GMiso shows a slight underestimation compared to GMmedium, GMdense_onesized and
GMdense_twosized.

Figure 6: Rotation ω3 distributions of GMmedium, GMdense_onesized GMdense_twosized, and
GMiso simulated by micromechanics-based Cosserat model

5.2 Effects of Contact Stiffness Parameters
This part investigates the effects of contact stiffness parameters on failure behaviors of granular

materials with microstructures for the micromechanics-based Cosserat model. For the sake of simplic-
ity, GM medium is used as a representative.
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First, to consider the effects of microscopic parameters, we should compare failure behaviors
simulated by the micromechanics-based Cosserat model to those by the classical Cosserat one without
microscopic parameters. The elastic constants of the classical Cosserat model can be identified by E =
37.97 MPa, Gc = 11.25 MPa and ν = 0.125 to match those of the micromechanics-based Cosserat
one. Fig. 7 shows the load-displacement curves of GMmedium simulated by the micromechanics-
based Cosserat model compared with the classical Cosserat one. In the linear elastic stage, the load-
displacement curves for two Cosserat models are in good agreement. As for the plastic stage, the
ultimate strength simulated by the classical Cosserat model is about 7.9% higher than that simulated by
the micromechanics-based Cosserat model, and the load-displacement curve of the classical Cosserat
model reaches the ultimate strength at about 5.2 mm displacement before that of the micromechanics-
based Cosserat model at 5.8 mm displacement. The degree of strain softening simulated by the
classical Cosserat model is slightly larger as the load increases. Therefore, the equivalent plastic
strain simulated by the classical Cosserat model is correspondingly larger, as shown in Fig. 8. It is
noteworthy that, unlike the classical Cosserat model, the proposed micromechanics-based Cosserat
model has the ability to investigate the effects of the microstructural information on failure behaviors
for granular materials with microstructures. In particular, the elastic constitutive modulus tensors
of the micromechanics-based Cosserat model have eight microstructural parameters as shown in
Eqs. (12)–(13), while the classical Cosserat model has three macroscopic elastic constants and one
characteristic length to describe the elastic constitutive relationship. Therefore, the two models do
not have mutually compatible elastic constitutive modulus tensors, much less plastic ones. Then, the
mechanical response of the elastic stage may coincide between two models, as shown in Figs. 7 and 8,
but the microstructural feature of the micromechanics-based Cosserat model leads to differences of
simulations on plasticity and failure from the classical Cosserat one, because the micromechanics-
based Cosserat model provides more influencing factors, i.e., microstructural parameters. Further
discussion focuses on the analysis of how the microscopic parameters affect the failure behavior as
follows.

Figure 7: Load-displacement curves of GMmedium simulated by micromechanics-based Cosserat
model vs. classical Cosserat model
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Figure 8: Equivalent plastic strain distributions of GMmedium simulated by micromechanics-based
Cosserat model vs. classical Cosserat model

Then, the effect of the contact stiffness parameter related to displacement Ku
n (Ku

t ) is investi-
gated, and Ku

n is respectively set to 500, 200, 100, 50, 20 kN/m. And the ratio between Ku
t and Ku

n

remains 0.5 for convenience. Fig. 9 shows the load-displacement curves of GMmedium simulated by
micromechanics-based Cosserat model for situations with Ku

n = 500, 200, 100, 50, 20 kN/m. It can
be seen that the situation with larger Ku

n shows the larger stiffness at the elastic stage and the larger
softening degree. And with the decrease of Ku

n , it gradually tends to show the strain hardening instead
of the strain softening, and the strength also gradually decreases slightly. Besides, it is noted that the
displacements for situations with Ku

n = 500, 200 kN/m can be loaded to 10.4 and 10.8 mm, so their
equivalent plastic strains are smaller than those for the situation with Ku

n = 100 kN/m as shown in
Fig. 10. And the smaller strain softening leads to the smaller strain localization as shown in Fig. 10d,
especially, the situation with Ku

n = 20 kN/m cannot show the strain localization due to its strain
hardening. Furthermore, we investigated the rotation ω3 distributions for situations with different Ku

n

as shown in Fig. 11. It shows that the contact stiffness parameter related to displacement Ku
n affects

the rotation ω3 distribution, that is to say, the deformation caused by the displacement can lead to the
rotation of the particle in granular materials. And this rotation has a positive relationship with Ku

n and
Ku

t .

The effects of contact stiffness parameters related to rotation Kr
n (Kr

t ) and Gr
n (Gr

t ) are also
investigated. Kr

n is respectively set to 40000, 5000, 1000, 100, 10 kN/m, and Gr
n is respectively set to

1000, 200, 50, 10 × 10−3N · m. The ratios Kr
t /Kr

n and Gr
t/Gr

n remain 0.5. If Kr
n (Kr

t ) or Gr
n (Gr

t ) is
changed, the other parameters remain as those in Table 2. Figs. 12 and 13 respectively shows the load-
displacement curves of GMmedium simulated by micromechanics-based Cosserat model for situations
with Kr

n = 400000, 40000, 5000, 1000, 100, 10 kN/m and Gr
n = 200000, 20000, 1000, 200, 50, 10 ×

10−3N · m. As we can see in Figs. 12 and 13, the load-displacement curves for all situations are
coincident before reaching the ultimate strength, and the ultimate strength is slightly larger for the
one with larger contact stiffness parameters related to rotation. This illustrates that the contact
stiffness parameters related to rotation have little effect on the elastic and hardening stages of granular
materials. As for the softening stage, the curves can converge to those with smaller values of Kr

n or Gr
n

as shown by the red solid lines. And with the increase of Kr
n or Gr

n, the degree of softening gradually
decreases, especially when Kr

n = 400000 kN/m and Gr
n = 200000 × 10−3N · m, the curves cannot show

the softening stages. This result is opposite to that shown in Fig. 9 where the situation with larger
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Ku
n shows higher degree of softening. Correspondingly, the rules of distributions of equivalent plastic

strains and rotations for situations with different Kr
n or Gr

n are opposite to those shown in Figs. 10 and
11, i.e., the situations with larger Kr

n or Gr
n show lower degrees of strain localizations. For reasons of

space, these figures are not shown here. Thus, it can be seen that the rotation of the particle has no effect
on the elastic and hardening stages, but an obvious effect on the softening stage of granular materials.
And to better show the strain localization and softening phenomena, we recommend that contact
stiffness parameters related to rotation Kr

n and Gr
n are within about 1000 kN/m and 1000 × 10−3N · m,

respectively.

Figure 9: Load-displacement curves of GMmedium simulated by micromechanics-based Cosserat
model for situations with Ku

n = 500, 200, 100, 50, 20 kN/m and Ku
t = 0.5 × Ku

n

Figure 10: (Continued)
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Figure 10: Equivalent plastic strain distributions of GMmedium simulated by micromechanics-based
Cosserat model for situations with Ku

n = 500, 200, 100, 50, 20 kN/m and Ku
t = 0.5 × Ku

n

Figure 11: Rotation ω3 distributions of GMmedium simulated by micromechanics-based Cosserat
model for situations with Ku

n = 500, 200, 100, 50, 20 kN/m and Ku
t = 0.5 × Ku

n



CMES, 2024, vol.138, no.3 2321

Figure 12: Load-displacement curves of GMmedium simulated by micromechanics-based Cosserat
model for situations with Kr

n = 400000, 40000, 5000, 1000, 100, 10 kN/m and Kr
t = 0.5 × Kr

n

Figure 13: Load-displacement curves of GMmedium simulated by micromechanics-based Cosserat
model for situations with Gr

n = 200000, 20000, 1000, 200, 50, 10 × 10−3N · m and Gr
t = 0.5 × Gr

n
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5.3 Effect of Characteristic Length
Similarly, only GMmedium is discussed in this part. The characteristic length can reflect the size of

the microstructure in granular materials, which is an important parameter in the Cosserat model and
other microstructural models. Effects of the characteristic length lc are analyzed on strain localization
and softening behaviors in this part.

Fig. 14 shows the load-displacement curves of GMmedium simulated by the micromechanics-
based Cosserat model for situations with lc = 100, 10, 1, 0.1, 0.01 × 10−3 m. And Fig. 15 shows their
equivalent plastic strain distributions. As we can see, the degree of strain softening gradually increases
with the decrease of lc, and it can also reach a convergence when lc decreases under 10−3m, as the blue,
orange and gray lines in Fig. 14 show. A same rule is also presented that the equivalent plastic strain
distribution tends to be the same and obviously X-shaped with the decrease of lc. And there cannot
be an obvious X-shaped shear band for the situation when lc = 100 × 10−3 m. The situation with
larger lc can represent that the microstructural scale tends to the macroscopic one, which smears out
the microscopic information and causes the smaller strain softening and localization. Conversely, the
situation with smaller lc emphasizes the microstructural effect on the strain softening and localization.
And the microstructural effect remains at the same level when lc is smaller than 10−3 m.

Figure 14: Load-displacement curves of GMmedium simulated by micromechanics-based Cosserat
model for situations with lc = 100, 10, 1, 0.1, 0.01 × 10−3m

It is noted that the micromechanics-based Cosserat model with infinitesimal lc cannot be reduced
to the classical Cauchy one, because it still has the microstructures although lc tends to be zero. The
elastic constants of the classical model are identified by E = 37.97 MPa and ν = 0.125 to match those
of the micromechanics-based Cosserat one with infinitesimal lc. And we can compare the curves of the
micromechanics-based Cosserat with small lc with the classical one, as shown in Fig. 16. The elastic
stages can coincide with each other, but the hardening and softening stages have some differences. The
result of the differences between two models is similar to that shown in Fig. 7, which indicates that
the microstructural feature of the micromechanics-based Cosserat model cannot be eliminated just by
making lc tend to zero.
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Figure 15: Equivalent plastic strain distributions of GMmedium simulated by micromechanics-based
Cosserat model for situations with lc = 100, 10, 1, 0.1, 0.01 × 10−3 m

Figure 16: Load-displacement curves of GMmedium simulated by micromechanics-based Cosserat
model with lc = 0.01 × 10−3 m vs. classical Cauchy model



2324 CMES, 2024, vol.138, no.3

5.4 Mesh Dependence Analysis
The Cosseat model can provide a regularization mechanism by introducing a characteristic

length to reduce the pathological mesh dependence for the localization problem in the classical
continuum model, and our previous study [10] has proved this Cosseat effect by comparing the
computational results of the Cosseat model with the classical continuum using the Drucker-Prager
yield criterion. In this part, the mesh dependence is further analyzed using the micromechanics-based
Cosseat elastoplastic model for granular materials with microstructures, taking GMmedium as an
example. And the parameters are also used in Table 2. Fig. 17 shows the load-displacement curves of
GMmedium for situations with meshes 8×16, 10×20, 15×30 and 20×40. The situations with different
meshes show the similar strength but the different degrees of strain softening, and that with the finest
mesh has the largest degree of strain softening. And their equivalent plastic strain distributions are
shown in Fig. 18, which shows that the shear band width depends on the mesh size, i.e., the situation
with the finer mesh leads to the smaller width of shear band. However, there should be no mesh
dependence according the Cosserat theory. We speculate that the reason for this mesh dependence may
be the small value of the characteristic length lc = 10−3 m, which causes some behaviors simulated by
the Cosserat model to be close to those simulated by the classical model.

Figure 17: Load-displacement curves of GMmedium for situations with meshes 8 × 16, 10 × 20, 15 ×
30 and 20 × 40

Therefore, we further investigate the mesh dependence for situations with larger characteristic
length lc = 20, 10 × 10−3 m, and the load-displacement curves and their equivalent plastic strain
distributions are respectively shown in Figs. 19 and 20. The load-displacement curve gradually
converges to that of the 50 × 100 mesh with the increase of lc, as shown in Fig. 19b compared with
Figs. 17 and 19a. Comparing the equivalent plastic strain distributions, the width of the shear band for
the 50×100 mesh when lc = 20×10−3 m shown in Fig. 20e is about 1.5 times that when lc = 10×10−3 m.
It is noted that the equivalent plastic strain distributions when lc = 10 × 10−3 m are not given due to
space limitations. And comparing Fig. 20e with Fig. 20a, the width of the shear band for the 50 × 100
mesh is almost equal to that for the 8×16 mesh. It can indicate that the degree of the mesh dependence
gradually decreases with the increase of lc. Therefore, the mesh dependence is closely related to the
characteristic length lc, i.e., the larger value of lc can eliminate the mesh dependence in the Cosserat
model. As for the situation where lc is larger than 20 × 10−3 m, the strain localization is not obvious as
shown in Fig. 15a. Therefore, lc = 20 × 10−3 m is an appropriate value to balance between the mesh
independence and the strain localization for the simulation by the Cosserat model. And this result is
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the same as that in our previous study [10], which has proved the mesh independence by the classical
Cosserat when lc = 20 × 10−3 m.

Figure 18: Equivalent plastic strain distributions of GMmedium for situations with meshes 8×16, 10×
20, 15 × 30 and 20 × 40

Figure 19: Load-displacement curves of GMmedium for situations with meshes 8 × 16, 10 × 20, 15 ×
30 and 20 × 40 and 50 × 100 when lc = 10, 20 × 10−3 m
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Figure 20: Equivalent plastic strain distributions of GMmedium for situations with meshes 8×16, 10×
20, 15 × 30 and 20 × 40 and 50 × 100 when lc = 20 × 10−3 m

It is noted that the non-orthogonal flow behavior [28,29] is also one of the reasons resulting in the
mesh dependency problem. And the non-orthogonal flow can usually be obtained by constructing the
dilatancy relation or the plastic potential function as presented in this study. Therefore, it is meaningful
to reveal the law between the non-orthogonal flow and the mesh dependency. Some studies [28,29] have
made significant contributions to the non-orthogonal flow behavior, which provides an important
reference value. And our next study will focus on this issue.

5.5 Simulations by the Micromechanics-Based Cosserat Model vs. Discrete Element Model
The micromechanics-based Cosserat model can provide the effects of microscopic information

on failures of granular materials, therefore, it is meaningful to compare simulations of failures by
this model with those by the discrete element model. In this part, GMmedium is investigated. Then,
there is an issue that how to compare results of simulations between FEM and DEM. Usually, in the
computational homogenization method for granular materials, the integration point is considered as
a representative volume element (RVE) of the particle assembly. In this study, an RVE is considered
by a hexagonal close-packed particle assembly as shown in Fig. 21 to represent the average response
of four integration points of No. 84 element in the FEM model, and this element is in the shear band.
It is found that the 2D hexagonal close-packed particle assembly corresponds to the microstructure
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of the GMmedium when considering the plane strain problem. Besides, the linear rolling resistance
model in DEM is used to consider the effect of particle rotation. And the microscopic parameters in
DEM are the same as those in Table 2. However, there are two problems in DEM, which are the size
of RVE and its confining pressure, which are not involved in FEM. Therefore, the choice of the size
of RVE and its confining pressure is open for DEM. In this study, the size of RVE is 0.03 m × 0.03 m,
containing 1050 particles with the radius of 0.5 mm, and the confining pressure is 900 Pa.

Figure 21: The hexagonal close-packed particle assembly in DEM for RVE

Fig. 22 shows the comparison of stress-strain relationships between No. 84 element in FEM and
the RVE in DEM for GMmedium. It shows that the linear elastic stages are in good agreement with
each other. However, the plastic stages have quite a difference. The reason for this difference is that
a macroscopic Drucker-Prager yield criterion is used in the proposed Cosserat model, and c0 and hp

are not associated with microscopic parameters those are used in DEM. Therefore, we can see that
the after-peak stage, i.e., the softening stage, decreases continuously in FEM, but a sudden drop is
presented in DEM due to the rearrangement of particles in the RVE under load. Then, we further
discuss how c0 and hp affect the plastic behavior by FEM and their comparisons with those under
different conditions by DEM. Fig. 23 shows the curves for FEM with different c0 and different hp and
curves for DEM with different confining pressures. It shows that c0 has a positive correlation with the
strength of the FEM simulation, and the confining pressure has a positive correlation with the strength
of the DEM simulation, so c0 is related to the confining pressure to some extent. Besides, hp affects the
softening behavior of the FEM simulation, which corresponds to the rearrangement of particles in the
DEM simulation. Furthermore, we compare the stress-strain relationships of FEM with different c0

to those of DEM with different confining pressures, as shown in Fig. 24. The curve of the stress-strain
relationship by FEM with c0 = 6.4 kPa coincides with that by DEM with 300 Pa confining pressure
at the elastic and hardening stages, and the softening stage still has a large difference for these two
curves. With the increases of c0 and confining pressure, the difference between FEM and DEM starts
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to appear at the hardening stage, where the strength by FEM simulation is lower than that by DEM
simulation, and the DEM simulation shows a longer-term elastic stage, but the FEM simulation shows
a more obvious hardening stage. Therefore, the FEM simulation can more accurately match the DEM
one if a smaller c0 corresponds to a smaller confining pressure. In Fig. 23b, hp can increase the degree
of softening in FEM simulation. Then, we further increase the value of hp on the basis of that in Fig. 24
to investigate simulations between FEM and DEM, as shown in Fig. 25. hp can help curves by FEM
close to those by DEM at the softening stage, but only to a limited extent. It needs more and deeper
studies on the relationship between hp and microscopic parameters.

Figure 22: Curves of stress-strain relationships simulated by FEM and DEM for GMmedium

Figure 23: (Continued)
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Figure 23: Curves of stress-strain relationships simulated by FEM and DEM with different conditions
for GMmedium

Figure 24: Curves of stress-strain relationships simulated by FEM with different c0 verse DEM with
different confining pressures for GMmedium

As mentioned above, the choice of RVE’s size in DEM is open. Then, we compare the stress-strain
relationships simulated by FEM with those simulated by DEM with different sizes of RVEs based on
Fig. 22, as shown in Fig. 26. It can overestimate the strength and underestimate the stiffness of DEM
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simulation with smaller RVE’s size, because it cannot provide sufficient number of particles leading to
the loss of representativeness. And it has been proved that the size of RVE must be large enough [2,30].
Meanwhile, the strength by the DEM simulation with 0.05 m × 0.05 m RVE is about 20% lower than
that by the DEM simulation with 0.03 m × 0.03 m RVE. It is speculated that a larger RVE may smear
out some microstructural information [31]. Therefore, an appropriate size of RVE is important for the
DEM simulation to match the FEM one, but the size of RVE and its relationship with macroscopic
information are still controversial. This study partially gives the relationships between macroscopic
parameters c0 and hp and microscopic ones such as confining pressure and RVE’s size, and we hope to
develop a micromechanics-based plastic model to reveal the relationships between macroscopic and
microscopic information in the next study.

Figure 25: Curves of stress-strain relationships simulated by FEM with different c0 and different hp

verse DEM with different confining pressures for GMmedium

To ensure the generality of the macroscopic mechanical responses, the comparative study between
DEM and FEM is needed under the same microstructure of granular materials when different
microscopic parameters such as the contact stiffness are arranged. Fig. 27 shows the curves of
stress-strain relationships simulated by FEM and DEM for GMmedium for situations with Ku

n =
200, 100, 50 kN/m and Ku

t = 0.5 × Ku
n . It is shown that the linear elastic stages can be well consistent

between FEM and DEM simulations under the same Ku
n and Ku

t , and it proves the rationality of
the micromechanics-based Cosserat model at least for the elastic stage. And the difference between
FEM and DEM simulations begins at the hardening stage, where the micromechanics-based yield
criterion and plastic potential function need to be further developed to provide more micromechanical
information on the plastic response simulated by FEM.
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Figure 26: Curves of stress-strain relationships simulated by FEM verse DEM with different sizes of
RVEs for GMmedium

Figure 27: Curves of stress-strain relationships simulated by FEM verse DEM for GMmedium for
situations with Ku

n = 200, 100, 50 kN/m and Ku
t = 0.5 × Ku

n

6 Conclusions

The effects of microstructures on failure behaviors in granular materials can be analyzed by
the micromechanics-based Cosserat model. First, we consider granular materials with different
microstructures consisting of different particle arrangements and sizes, void ratios, and coordination
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numbers. Using the extended Drucker-Prager yield criterion, a Cosserat elastoplastic model is pro-
posed for granular materials with microstructures, and a user element program coded by the ABAQUS
UEL subroutine interface is implemented. Then, the presented model is used to investigate failure
behaviors of different granular materials and the main conclusions are given as follows:

(1) Strain localization and softening behaviors are obtained for granular materials respec-
tively with medium dense microstructure (GMmedium), dense microstructure in one-sized particles
(GMdense_onesized) and dense microstructure in two-sized particles (GMdense_twosized), which are
compared with those for granular materials based on isotropic contact density distribution (GMiso).
Similar and greater degrees of strain localization and strain softening for GMdense_onesized and
GMdense_twosized, followed by GMmedium, and finally, GMiso.

(2) The contact stiffness parameters related to displacement have obvious positive correlations
with degrees of rotation, strain localization, and softening of the GMmedium. The contact stiffness
parameters related to rotation have no effect on the elastic and hardening stages, but have an obvious
effect on the softening stage of granular materials.

(3) The characteristic length has no effect on the elastic stage. After the elastic stage, the degrees
of strain localization and softening are negatively related to the characteristic length when the
characteristic length is greater than 10−3 m. The simulated mechanical responses can be consistent
for situations where the characteristic length is less than 10−3 m.

(4) The mesh independence is related to the characteristic length. The mesh dependence is promi-
nent when the characteristic length is below 10−3 m. The presented model can gradually overcome
the mesh dependence with the increase of the characteristic length. However, the larger characteristic
length also weakens the ability to simulate strain localization and softening for the presented model.
Therefore, this study proposes a characteristic length of about 20 × 10−3 m for the mesh independence
of the micromechanics-based Cosserat model.

(5) The FEM simulations for GMmedium by the micromechanics-based Cosserat model can
agree well with the DEM ones in the elastic stage, but the hardening and softening stages show some
differences because of the arrangements of particles in DEM due to discreteness, which is absent
in FEM. Macroscopic parameters c0 and hp describing plasticity are proved to be partly related to
microscopic factors such as confining pressure and RVE’s size.
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Appendix

A.1 Implementation of finite element method for the micromechanics-based Cosserat model in a
plane strain problem

For a plane strain problem, the displacement vector in the Cosserat continuum is given by

u = (
u1 u2 ω3

)T
(A1)

According to the displacement fields, the strain vector is written by

ε = (
ε1 ε2 ε3 ε12 ε21 κ31lc κ32lc

)T
(A2)
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The relation between displacement components and strain components are rewritten in a matrix
form by

ε = Lu (A3)

in which L is a differential operator matrix written by

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x1

0 0

0
∂

∂x2

0

0 0 0

0
∂

∂x1

−1

∂

∂x2

0 1

0 0 lc

∂

∂x1

0 0 lc

∂

∂x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A4)

The stress vector is given by

σ = (
σ1 σ2 σ3 σ12 σ21 m31/lc m32/lc

)T
(A5)

Then, the constitutive equation is obtained by

σ = C e

(
ε − εp

)
(A6)

where the subscript p represents plasticity, and C e is the elastic constitutive modulus matrix written by

C e =

⎡
⎢⎢⎢⎢⎣

C1111 C1122 C1133 0 0
C2211 C2222 C2233 0 0
C3311 C3322 C3333 0 0

0 0 0 D3131/l2
c 0

0 0 0 0 D3232/l2
c

⎤
⎥⎥⎥⎥⎦ (A7)

The matrix form of the equilibrium equation is as follows:

LTσ + f = 0 (A8)

For a plane strain problem, we consider an eight-node iso-parametric element with four integra-
tion points (CPER8), and the node displacement of the element is written by

ae
i = (

ue
1 ue

2 ωe
3

)T
(A9)

in which the superscript e represents the element. The displacement after interpolation is written by

u = Nae (A10)

where N is a 3 × 24 matrix expressed as the following partitioned matrix:

N 3×24 = [
N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8

]
(A11)

N i = INi, i = 1∼8 (A12)



2336 CMES, 2024, vol.138, no.3

where N i is a 3 × 3 matrix, I is a 3 × 3 identity matrix, and Ni is the shape function.

When the element displacement is obtained after interpolation of node displacement, the strain
vector can be obtained as follows:

ε = Lu = LNae = Bae (A13)

where B is a 7 × 24 strain matrix expressed as the following partitioned matrix:

B7×24 = [
B1 B2 B3 B4 B5 B6 B7 B8

]
(A14)

And the partitioned matrix Bi (i = 1∼8) is a 7 × 3 matrix expressed as

Bi = LN i (A15)

Then, the element stress can be obtained by the constitutive equation:

σ = C e

(
ε − εp

) = C epε = C epBae = Sae (A16)

where C ep is the elastoplastic modulus matrix, and S is the stress matrix expressed as the following
partitioned matrix:

S7×24 = [
S1 S2 S3 S4 S5 S6 S7 S8

]
(A17)

And the partitioned matrix S i (i = 1∼8) is written by

S i = C epBi (A18)

Based on the principle of virtual work, the matrix form of the incremental total potential energy
for an element is obained by

δ�� =
∫

V

δεTσdV −
∫

V

δuTf dV −
∫

S

δuTtdS = 0 (A19)

where f and t are respectively matrices of body force and surface traction. Thus, the FEM equation is
built for an element as

K eae = Pe (A20)

where the element stiffness matrix K e and equivalent load matrix Pe can be written by

K e =
∫

V

BTC epBdV , Pe =
∫

V

NTf dV +
∫

S

NTtdS (A21)

Finally, the FEM equation for a whole structure can be derived by Ka = P, and the process is
omitted.

A.2 Stress update and consistent elastoplastic tangent modulus matrix

For a rate-independent elastoplastic constitutive model, the mathematical equations describing
the stress-strain relationship are generally defined by a set of ordinary differential equations with
constraints as follows:

σ̇ = C e : ε̇e = C e :
(
ε̇ − ε̇p

)
ε̇p = λ̇gσ

q̇ = λ̇h
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ḟ = f σ : σ̇ + f q : q̇ = 0

λ̇ ≥ 0, f ≤ 0, λ̇f ≤ 0 (A22)

where λ is the plastic multiplier, gσ is the plastic flow direction, q is the internal variable, is h the plastic
modulus, f σ and f q are respectively derivatives of yield function with respect to stress and internal
variable.

An important step in the secondary development of UEL in ABAQUS is to update the stress,
also known as constitutive iteration, and then perform equilibrium iteration to achieve the purpose
of numerical calculation. Scholars are engaged in the development of stress integration algorithms.
For instance, Lu et al. [32] presented a robust and concise implicit stress integration algorithm of
elastoplastic models without loading/unloading estimation and analytical derivation operation for
the stress update, which improves the computational efficiency. Studies [10,33–35] have introduced the
extended Drucker-Prager yield into the Cosserat model, and developed a consistent return mapping
algorithm, where the stress update and the corresponding consistent elastoplastic tangent modulus
matrix are obtained. The detailed operational process is omitted here. The final formulas of the stress
update and the consistent elastoplastic tangent modulus matrix are presented as follows:

The updated stress is

σ = CαsE + (
pE − KA � λ

)
m (A23)

where

sE = σ E − pEm

pE = 1
3

(
σ E

1 + σ E
2 + σ E

3

)
m = (

1 1 1 0 0 0 0
)T

Cα =
(

I + G�λ

σ
M

)−1

M =
[

M1 0
0 M2

]

M1 =

⎡
⎢⎢⎢⎢⎣

3 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 3/2 3/2
0 0 0 3/2 3/2

⎤
⎥⎥⎥⎥⎦ , M2 =

[
3 0
0 3

]

�λ =
⎧⎨
⎩

0 if f E ≤ 0
f E

ξ
if f E > 0

f E = σ
E + AφpE + Bφ

ξ = (
G + KAψAφ

) + 6hp cos φ

3 + sin φ
(A24)

Here, the superscript E represents the elastic trial variables. K and G are bulk modulus and shear
modulus, which can be identified by microscopic parameters.
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The consistent elastoplastic tangent modulus matrix is presented here.

C ep =
[

Cα + G
(

α�λ

σ
− 1

ξ

)
Pσ (Pσ )

T

18σ
2

]
CdP∗ +

(
K − KAψAφK

ξ

)
mmT

− K
3σξ

[
GAφPσmT + Aψ

2
(Pσ )

T CdP∗
]

(A25)

where

P =
[

P1 0
0 P2

]

P1 =

⎡
⎢⎢⎢⎢⎣

2 −1 −1 0 0
−1 2 −1 0 0
−1 −1 2 0 0
0 0 0 3 0
0 0 0 0 3

⎤
⎥⎥⎥⎥⎦ , P2 =

[
3 0
0 3

]

P∗ = 1
3

P

C d = Ce − C m · (Ce shown in A7)

Cm
ij = K − 2

3
G, i, j = 1, 3; Cm

ij = 0, i, j = 4, 7

α = σ
E − G�λ

σ
E (A26)
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