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ABSTRACT

With the development of the integration of aviation safety and artificial intelligence, research on the combination
of risk assessment and artificial intelligence is particularly important in the field of risk management, but searching
for an efficient and accurate risk assessment algorithm has become a challenge for the civil aviation industry.
Therefore, an improved risk assessment algorithm (PS-AE-LSTM) based on long short-term memory network
(LSTM) with autoencoder (AE) is proposed for the various supervised deep learning algorithms in flight safety that
cannot adequately address the problem of the quality on risk level labels. Firstly, based on the normal distribution
characteristics of flight data, a probability severity (PS) model is established to enhance the quality of risk assessment
labels. Secondly, autoencoder is introduced to reconstruct the flight parameter data to improve the data quality.
Finally, utilizing the time-series nature of flight data, a long and short-term memory network is used to classify the
risk level and improve the accuracy of risk assessment. Thus, a risk assessment experiment was conducted to analyze
a fleet landing phase dataset using the PS-AE-LSTM algorithm to assess the risk level associated with aircraft hard
landing events. The results show that the proposed algorithm achieves an accuracy of 86.45% compared with seven
baseline models and has excellent risk assessment capability.
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Nomenclature

LSTM Long short-term memory network
PS-AE-LSTM Improved risk assessment algorithm
AE Autoencoder
PS Probability severity
VANETs Vehicular Ad-hoc networks
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PS Probability and severity
IATA International air transport association
FHE Fully homomorphic encryption
QAR Quick access recorder
FDR Flight data recorder
ANN Artificial neural network
DBN Deep belief network
NTSB National transportation safety board
RF Random forest
CNN Convolutional neural networks
SVM Support vector machines

e.g.

σ sigmoid
μ expect
R risk level
P probability
S severity
φ tanh function
� element-wise multiplication

1 Introduction

Due to the rapid development of wireless sensors, fast storage, and artificial intelligence tech-
nologies, the aviation industry is facing an unprecedented amount and variety of data. International
Air Transport Association (IATA) requires airlines to monitor this data to enhance flight safety.
And the European Civil Aviation Organization (EUROCONTROL) is also proactively embracing the
challenges that artificial intelligence poses to the civil aviation industry. However, as the complexity of
the causes of accidents increases, the concept of risk management is introduced [1], and identification
methods based on normal and abnormal patterns showed some drawbacks in assessing complex
risks. Traditional risk analysis methods based on expert experience are undergoing advances and
breakthroughs in related processes [2,3], gradually emerging a trend to integrate flight data monitoring
with risk assessment [4]. Therefore, exploring a risk assessment algorithm based on flight data is
essential.

Risk assessment techniques for flight data monitoring fall into three categories: physical, sta-
tistical, and artificial intelligence. Based on the changing nature of security and risk in the Big
Data era, the physical modeling approach relies on converting data into knowledge [5]. However,
there are more stringent requirements in the knowledge and data transformation paradigm, and
few studies have performed risk analysis on normal data. In risk management, there is a lack
of transformation paradigm between risk and data and a problem of credibility of risk threshold
classification. Compared with physical models, statistical models have the advantages of being more
straightforward, more convenient, and better performance, reducing the requirements for knowledge
and data transformation. In the statistical model, Wang et al. [6] proposed a risk evaluation method
based on a statistical theory called the risk quantification method of risk probability and severity
(PS). They are using the data characteristics of the normal distribution to calculate the risk value.
Zhao et al. [7] classified the risk interval based on the truncated normality of the vertical acceleration
data. In addition, there are some risk assessment methods based on normal cloud models [8].
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In terms of risk assessment, several civil aviation bodies are actively exploring the integration
of artificial intelligence, using its ability to process large amounts of data to solve complex risk
assessment problems. The European Civil Aviation Organization (EUROCONTROL) is conducting
several studies in the area of AI [9], including the traffic forecasting, the use of AI to automate
flight planning, and the use of machine learning models for the Optimized Approach Interval Tool
(COAST). In addition, according to the latest FLYAI data [10], specific AI techniques include neural
networks [11], linear regression [12], Markov chains [13], random forests and other algorithmic models
[14]. These machine learning, deep learning models focus on solving various prediction, classification
and evaluation problems by learning large amounts of flight data and creating complex non-linear
relationships between inputs and outputs. Typical machine learning algorithms are widely used.
In terms of machine learning, Lv et al. [15] adopted three machine learning algorithms, Random
Forest (RF), support vector machines (SVM), and Logistic Regression (LR), to detect the association
between the overrun risk index and the flight parameter data. Zhou et al. [16] utilized the SVM model
to identify the hazards present in the electrical system according to the status of each component of the
aircraft’s electrical system. With the development of machine learning, in deep learning (DL), models
such as LSTM, AE, and Convolutional Neural Networks (CNN), have obtained excellent results in
risk assessment. In conclusion, all the above artificial intelligence techniques are well represented
in the field of intelligent aviation safety, but the research focus is different for two different types
of data, structured data and unstructured data. On the one hand, structured data refers to raw
flight data such as Quick Access Recorder (QAR), Flight Data Recorder (FDR) and statistically
processed safety data. Research techniques mainly include Bayesian belief network models [17], local
outlier probability models [18], artificial neural network (ANN) [19], and deep belief network (DBN)
models [20] in machine learning and deep learning for solving security risk assessment and prediction
problems. On the other hand, in the study of unstructured data such as National Transportation
Safety Board (NTSB) accident reports responding to aviation safety, some scholars [21] have proposed
the classification of aviation safety accidents by using word embedding methods and LSTM models
through the accident investigation reports to further respond to the accidents, which is mainly used to
solve the problem of accident classification. In particular, structural data is the main subject of current
research, and the processing and analysis of QAR data is a top priority of current research due to the
advantages of completeness and reliability of QAR data. In this regard, related scholars [22–24] have
proposed using an LSTM model to analyze QAR data for predictive evaluation of the associated
risks. After that, affiliated scholars made continuous improvements based on LSTM. For example,
Rong et al. [25] applied a LSTM model for variational autoencoder model with a multi-headed self-
attentive mechanism to detect abnormal patterns. Liu et al. [26] proposed several deep learning models
to perform health monitoring of aircraft systems, among which the LSTM-AE obtained promising
results. Ning et al. [27] proposed an autoencoder model based on long short-term memory networks
to detect and classify faults in aircraft systems using original time series data. Kang et al. [28] proposed
the CNN-LSTM and Temporal and Global (TG)-attention encoder-decoder architectures to evaluate
the landing safety based on the final landing distance. In summary, the advantages of LSTM-based
correlation models for time series prediction and classification have been further developed for use in
the field of civil aviation safety. Using flight parameter data, it is possible to provide better support
for aviation safety risk assessment.

The above research shows that, firstly, the current deep learning models are widely applied in
complex system fault detection and are less employed in flight safety risk assessment. Secondly,
few scholars further analyze the risk level label, and most studies ignore the label quality issue.
More importantly, in assessment results, most scholars only focus on normal and abnormal risk
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levels, while few researchers focus on abnormal data in borderline normal levels. Compared with the
data analysis of abnormal levels afterward, the potential risk data hidden in the normal level often
becomes especially important, which has excellent theoretical and practical significance for flight
safety assessment and pilot operation level evaluation. Currently, the problem of risk level classification
in flight safety risk assessment is still facing significant challenges in deep learning research.

In this paper, the aim of this research is to explore a more accurate model for the assessment of risk.
It provides flight safety managers with a new risk assessment method that facilitates the quantitative
assessment of the risk rank of the occurrence of overrun events such as heavy landings and tail grabs in
flight. For this purpose, we propose a PS-AE-LSTM network. Experiments on real-world data show
that they are superior to other baselines.

The main contributions of this article can be summarized as follows:

(1) PS-AE-LSTM, a novel deep architecture for risk assessment, is proposed, which is the first to
combine statistical methods with deep learning methods. It further improves the classification
accuracy.

(2) The Monte Carlo method is applied to the flight data to obtain a large amount of actual
random flight data. It can solve the problem of missing data.

(3) Broader applicability, the algorithm applies to most of the risk assessment of overrun events
based on flight data and even extends to risk evaluation of normally distributed data in other
fields.

The rest of the paper is organized as follows: Section 2 gives relevant background theories,
including the PS model, AE, and LSTM network; Section 3 illustrates the algorithm proposed in the
article; Section 4 presents the experimental results, compared with the baselines; Section 5 concludes
this paper and provides further work.

2 Related Models and Methods
2.1 The PS Model Based on Normally Distributed Data

QAR data is high-dimensional time series data. According to the QAR data characteristics, most
aircraft performance parameters satisfy the normal distribution characteristics [29–31], such as the
vertical grounding load, grounding pitch angle, etc. In this regard, this section mainly focuses on the
risk modeling of QAR normal distribution data. To better utilize deep learning models and avoid false
positive and false negative results due to threshold errors [18], this paper proposes to use statistical
theory to construct a risk-level model and improve the labeling quality of deep learning, thus improving
the performance of risk assessment algorithms.

The safety risk is the projected likelihood and severity of the consequence or outcome of an
existing hazard or situation. The safety risk probability (P) and severity (S) assessment process can
be used to derive a safety risk index. Therefore, this paper’s quantitative risk evaluation model is the
product of the likelihood of an accident and its severity, as shown below:

R = P × S (1)

R represents the event risk value; P represents the probability of the event occurring, and S
represents the event’s severity. Combined with statistical theory, the normal distribution function of
the flight parameters of a known model, assuming that the value of a flight parameter α is closer to
the expected value, then the lower the probability of risk occurrence, as shown in Fig. 1, where P is
calculated as shown below:
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⎧⎨
⎩P =
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2√

2πσ

∫ α

−∞ exp
(− (x − u)

2

2σ 2

)
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)
− 1, α ≥ u

P = 0, α < u
(2)

S is the severity of the event, and the deviation of the sample data α from the expected value μ is
used to assess the severity of the event; the further away from the means, the more severe, calculated
as follows:{

S = α − u
σ

, α ≥ u

S = 0, α < u
(3)

Based on the above Eqs. (1)–(3), the risk level R is obtained and calculated as follows:

R = PS =
[(

2√
2πσ

∫ μ+σ
√−2 ln r sin 2π t

−∞
e

−(x−u)2

2σ2 dx − 1

)]
μ + σ

√−2 ln r sin 2πt − u
σ

(4)

where P ∈ [0, 1], with 99% of the data distributed within the 3 σ , according to the 3 σ , using Eqs. (2)–
(4), and considering the range of P and S values, the risk level R is partitioned as shown in Table 1.

Figure 1: Normal distribution of risks

Table 1: Risk level

Risk level I II III IV V

P 0∼0.68 0.68∼0.95 0.95∼0.99 0.99∼0.999 0.999∼1
S 0∼1 1∼2 2∼3 >3 >3
R 0∼0.68 0.68∼1.98 1.98∼2.97 2.97∼3 >3

2.2 Autoencoder
Autoencoder (AE) belongs to the self-supervised learning algorithm category, a feed-forward

neural network with two parts: encoding and decoding [32]. The encoder transforms the input vector
into an intermediate hidden vector. The decoder takes the intermediate hidden vector as input and
makes the output approximately restore the initial input vector. For the input vector x, the AE encoder
approximates

hx (x) ≈ x (5)
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Simple three-layer autoencoder structure, including input, hidden, and output layers. For the
encoder, given an input vector x, the encoder implements a non-linear mapping through the sigmoid
function as follows:

zi = σ
(

Wei + b
)

(6)

where W and b represents weights and biases of the decoder. Given a set of training data
{
x(i)

}m

i=1
, the

reconstruction error is minimized by adjusting the structural parameters of the self-encoder, where the
loss function can be expressed as an MSE function or cross-entropy loss function.

JMSE (W , b) = 1
m

m∑
i=1

(
1
2

‖xi − zi‖2

)
(7)

JBC (W , b) = − 1
m

1
n

m∑
i=1

n∑
j=1

xij log zij (8)

To better represent the statistical characteristics of the flight data, the information on hidden
characteristics is presented for subsequent evaluation. In this paper, we propose to use a three-layer
autoencoder to reconstruct QAR data. The whole AE structure channel, firstly, converts the input
flight parameter matrix into input vectors. Secondly, by the encoding structure, the input vectors
are gradually converted into intermediate hidden vectors, and then by the encoding structure, the
intermediate hidden vectors are reconstructed into the final output vectors as well as matrix. The
whole autoencoder structure is shown in Fig. 2.

Figure 2: The structure of an autoencoder block

2.3 Long Short-Term Memory Network—LSTM
The LSTM was proposed by Hochreiter and Schmidhuber (1997) with only input-output gates.

Schmidhuber and Cummins (2000) modified the original LSTM structure by adding forgetting gates
[33], and thus the LSTM structure with forgetting gates has received much attention since then.

In the time series, we define {x1, x2, x3, . . . , xt} as the input series. xt ∈ RK represents a K-
dimensional vector of real values at the t-th time step. The LSTM structure in this paper includes input
gates, forgetting gates, and output gates, where forgetting gates are the key structure for establishing
temporal connections and maintaining the state of the internal memory cell, which is the most
important element in the LSTM structure.

ft = σ
(
Wfxxt + Wfhxt−1 + bf

)
(9)

it = σ (Wixxt + Wihxt−1 + bi) (10)
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gt = φ
(
Wgxxt + Wghxt−1 + bg

)
(11)

ot = σ (Woxxt + Wohxt−1 + bo) (12)

st = gt � it + st−1 � ft (13)

ht = φ (st) � ot (14)

where Wgx, Wgh, Wix, Wih, Wfx, Wfh, Wox, Wgh are weight matrices for the corresponding inputs of the
network activation functions; σ represents the sigmoid activation function; φ represents the tanh
function; � stands for an element-wise multiplication. The LSTM block structure at a single time
step is illustrated in Fig. 3.
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Figure 3: The structure of an LSTM block

3 The Proposed Model PS-AE-LSTM

This section focuses on the proposed risk assessment algorithm PS-AE-LSTM. The algorithm’s
overall framework is shown in Fig. 4, and it is easy to see that the core architecture is generally divided
into two phases. (1) Pre-processing stage of risk labeling based on PS statistics. (2) Classification stage
of risk level based on deep learning, where the core framework of AE-LSTM is shown in Fig. 5,
which consists of two main parts. The first part is AE, which realizes data reconstruction so that
the algorithm’s output can express the input as closely as possible. It minimizes the training error and
improves the AE training data expression effect. The second part is the LSTM network. To better learn
the QAR time series data features, this paper chooses the LSTM model with three “gates,” selective
feature learning, the encoded feature vector as the LSTM feature vector matrix, and the input of the
LSTM module. Then, the output of the last LSTM unit is passed through the fully connected layer
(FC) and the softmax layer, and the classification result is output in the form of probability. Finally,
it is converted to the one-hot encoding form.
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Figure 4: The architecture of the proposed PS-AE-LSTM classification autoencoder

Figure 5: AE—LSTM framework
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3.1 Data Processing—Monte Carlo Method
The Monte Carlo method is a statistical method of simulating a test by generating random

numbers and sampling them in a known probability distribution. Applicable to the simulation of all
stochastic events, the expansion of a small number of samples to solve known problems.

The problem of restricted flight data limits risk assessment and, to some degree, does not meet the
requirements for massive data in deep learning. In this paper, according to the airline flight quality
monitoring standards, corresponding QAR data is selected as the sample data combined with the
Monte Carlo method to solve the problem of insufficient samples.

Among them, there are many ways for Monte Carlo to generate random numbers satisfying the
normal distribution, the Box–Muller transform algorithm is relatively convenient and effective, and
the formula is shown below:

α = μ + σ
√

−2 ln r sin 2πt (15)

where α represents the random value of a flight parameter; μ, σ represent the mean and variance of
the sample data with known normal distribution, respectively; r, t represent an independent random
number that obeys uniform distribution in the range of (0, 1).

With the sample’s available data, calculate the sample’s mean and variance, and generate random
numbers by Box–Muller transformation with the following Eqs. (16)–(19):

μ = 1
n1

n1∑
i=1

Xi, i ∈ [1, n1] (16)

α = 1
n2

n2∑
j=1

αj, j ∈ [1, n2] (17)

S2
1 = 1

n1

n1∑
i=1

(Xi − μ)
2, i ∈ [1, n1] (18)

S2
2 = 1

n2

n2∑
j=1

(
αj − α

)2
, j ∈ [1, n2] (19)

G (x) = 1√
2πσ

e
−(ai−μi)

2

2σ2 (20)

where n1, n2, Xi, ai, μ, α, S2
1, S2

2 represent the number, value, mean, and variance of each sample data and
random data, respectively. From this, we can obtain the distribution density function G (x) of the flight
parameters for this aircraft at a particular stage. For example, take the vertical acceleration data as an
example, it is known that the fleet sample 136 groups of vertical acceleration data, where the mean
value is 1.45 and the variance is 0.13. By Eqs. (15)–(20), 2000 groups of simulated data are obtained,
and the mean value and variance after simulation are 126 and 123, respectively, and the pre-processed
data reflect the overall characteristics of this fleet under the vertical acceleration parameters.
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3.2 Data Normalization Process
The original time series of the flight parameters under the target interval will be obtained to

eliminate the dimensional differences between the flight parameters. In this paper, the normalization
operation is performed on the flight data, and the normalization formula is as follows:

X̃ (t) = X (t) − Xmin (t)
Xmax (t) − Xmin (t)

(21)

where Xmax (t), Xmin (t) represent the maximum and minimum values of flight parameters, respectively;
X (t), X̃ (t) represent the pre-normalized and post-normalized values, respectively.

3.3 Parameter Adjustment Details
The adjustment of hyperparameters is a problematic issue of research. Specifically, we divide the

datasets into three parts in the ratio of 6:1:3: training set, validation set, and test set.

The training set is used for model training. The test set is used for testing the model performance.
The validation set is used to determine the optimal parameters and prevent overfitting of the model.
For the selection of parameters in this paper, we determine the depth and width of the network by the
grid search method.

Table 2 shows the adjustment of the autoencoder network structure. For the non-linear problem,
the activation function used for the autoencoder is Relu, and the loss function is mean square
error (MSE). In this paper, the autoencoder-trained data is used for the classification of subsequent
structures, and the loss function used is the Cross-Entropy loss function. It is fine-tuned using the
adaptive moment estimation algorithm (ADAM), and the learning rate is set to 0.001. All the indexes,
variables and parameters used in this paper are listed in Table 3.

Table 2: Parameter optimization table for AE (Acc denotes accuracy-%)

Depth Width Acc Depth Width Acc

1 5 39.12 4 5–20–50–100 79.32
1 20 41.71 4 20–50–100–200 75.54
2 5–20 42.38 4 50–100–200–400 65.55
2 20–50 47.59 5 5–20–50–100–200 70.32
2 50–100 49.21 5 20–50–100–200–400 60.21
3 5–20–50 70.65 5 50–100–200–400–800 63.56
3 5–50–100 67.98 6 5–20–50–100–200–400 59.84
3 20–50–100 87.34 6 20–50–100–200–400–800 55.17

Table 3 Indexes, variables and parameters used in this paper

Indexes Description
i Real flight parameter data for the ith flight in a given historical period,

where i ∈ [1, n1].
j Flight parameter data for the jth flight simulated by the Monte Carlo

method, where j ∈ [1, n2].

(Continued)
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Table 3 (continued)

PS model variables Description
P P represents the probability of a risk event occurring, where p ∈ [0, 1]
S S represents the severity of the risk event, where s ∈ [0, 3]
R R represents the value-at-risk of the event at risk, where R ∈ [0, 3]
α Sample value
μ The expected value
r Random numbers
Autoencoder variables Description
x Input vector
W Weights
b Biases of the decoder
Lstm variables Description
ft Forget gate output, its value ranges from 0 to 1 and indicates the

proportion of old information that is retained in the cell state
it Input gate output, its value ranges from 0 to 1 and indicates the

proportion of new information stored in the cell state
gt gt is a vector calculated from the candidate cell states
ot Its value ranges from 0 to 1 and indicates the proportion of information

that is output from the cell state
st st is the cell state in the LSTM for storing and transferring information
ht ht is the hidden state of the LSTM and the output of the LSTM
Functions Description
σ Sigmoid
φ tanh function
� Stands for an element-wise multiplication
JMSE (W , b) MSE loss function
JBC (W , b) Cross-entropy loss function

4 Experimental Validation: Hard Landing Risk Classification
4.1 Data Description

QAR is a system to obtain aircraft operation data quickly and is an important data source for
flight quality monitoring, referring to the Flight Operations Quality Assurance (FOQA) aircraft
quality monitoring project specification advisory circular (AC-121/135-FS-2012-45R1). This paper
uses the risk assessment of hard landing events as an example for model validation, and the feature
parameters of the relevant overrun events of a hard landing are selected. That is vertical acceleration
(Vrtg), descent rate (Lvv), lateral acceleration (Ltacc), roll angle (Roll), angle of attack (AO), rate
of change of pitch angle (P-rate), etc. Among the key indicator parameters, examples of original
parameter data for Vrtg are shown in Table 4 below.
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Table 4: Example of QAR original data

B-55xx 4/18/2020 frame layout: CXXX format: ALL parameters “v1.00”

Status AIR/GROUND VERT ACCEL

Time AIR
GND

AIR
GND

AIR
GND

AIR
GND

VRT
G/g

VRT
G/g

VRT
G/g

VRT
G/g

VRT
G/g

VRT
G/g

VRT
G/g

VRT
G/g

1 AIR AIR AIR AIR 1.02 0.99 1.01 1.02 1.01 1.00 0.98 0.99
2 AIR AIR AIR AIR 0.99 1.00 1.06 1.01 1.05 1.02 0.98 1.00
3 AIR AIR GND GND 0.87 1.04 1.06 1.01 1.00 1.00 1.02 1.01
4 GND GND GND GND 1.34 1.26 1.25 1.34 1.24 1.14 1.15 1.11
5 GND GND GND GND 1.13 1.23 1.13 1.09 1.05 0.98 0.97 0.89
6 GND GND GND GND 0.93 1.02 1.02 1.00 1.02 0.98 1.01 1.00
7 GND GND GND GND 0.98 0.99 0.98 1.05 1.04 1.15 1.06 1.31
8 GND GND GND GND 1.12 1.14 1.14 1.23 1.16 1.18 1.18 1.03

Where time represents the time status before and after landing, 8 s in total, status represents the
status data of AIR/GROUND and VERT ACCEL parameters recorded under the sensor. AIR: The
recorded value of the air-ground electric gate, meaning the main wheel of the aircraft in the air; GND:
The recorded value of the air-ground gate, called Ground, represents the main wheel of the aircraft
touches the Ground; VERT ACCEL: Vertical acceleration, meaning the vertical acceleration value of
the aircraft, abbreviated as VRTG in the QAR raw data table, the corresponding value represents the
multiple of gravitational acceleration g.

In this paper, we selected 1000 landing sample data of a fleet, took the time series data of 2 s before
and 5 s after the landing grounding for a total of 8 s, selected 5 data features, constructed sample data
shape (1000 × 8 × 5), after evaluation by PS module, where the distribution of risk level of the original
sample data is shown in Fig. 6.

Figure 6: Distribution of risk levels for the original sample
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4.2 Data Analysis
This section analyzes some of the flight parameter data during the landing phase, as shown in

Fig. 7 below. As can be seen, the flight parameters changed during the landing phase, and they changed
dramatically in the interval before and after the landing time, which fully confirms the learning
potential of deep learning in terms of flight parameters. Among them, the change of VRTG is the
critical parameter to respond to the hard landing, and pitch angle and angle of attack are the specific
expressions of the hard landing operation. Based on the research assumptions of the PS model, the K-S
one-sample test was used to assess the normality of the data, as shown in Fig. 8a below and reflected
in the form of histograms in Fig. 8b, which shows the data distributions of the overrun events with
excessive vertical landing loads and excessive pitch angles.

Figure 7: Variation of flight parameters
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Figure 8a: Original data normality test

Figure 8b: Distribution of overrun events

4.3 Evaluation Criteria
In this paper, we choose traditional classifier performance evaluation metrics such as precision,

recall, F1 score, and accuracy.

Precision = TP
TP + FP

(22)

Recall = TP
TP + FN

(23)

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(24)

Accuracy = TP + TN
TP + FP + TN + FN

(25)
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where TP (True Positive) is the number of instances correctly detected as anomalous; TN (True
Negative) is the number of instances correctly detected as normal; FP (False Positive) refers to the
number of normal patterns miss-classified as anomalous; FN (False negatives) refers to the number
of abnormal patterns erroneously identified as normal.

4.4 Environment and Settings
The TensorFlow deep learning framework based on the Python platform builds our model and

the baselines. This experiment uses the Keras2.4.2 framework TensorFlow2.4 backend. CPU E5-2689
16-core 32 G, GPU NVIDIA GeForce RTX 3070, 200 Gb SSD constitute the experimental server
environment. We use python language to write the PS module, including the data generated in Monte
Carlo, and use the Keras framework to build the deep learning module. To address the data imbalance
in the training set, 1875 high-risk, medium-risk, low-risk, and no-risk data were generated in the
training set, respectively. The dataset is divided into three parts in the evaluation classification task:
the first 60% training set, 10% validation set, and the remaining 30% test set. As mentioned earlier,
this paper’s training set, validation set, and test set contain 7500, 1250, and 3750 samples, respectively.
We use the Adam optimization algorithm for training and set the batch to 64. The specific network
structure of the proposed model and its complexity is shown in Fig. 9 below.

Figure 9: Network structure and parameter information

4.5 Baselines Comparison
To validate the superiority of the proposed PC-AE-LSTM algorithm, we selected four classical

machine learning algorithms from the current state of research for comparison and analysis based
on data from the EUROCONTROL [9] and FLYAI reports [10], combined with research on civil
aviation safety and machine learning methods. The proposed model was compared with four baseline
assessment models as well as the current state-of-the-art civil aviation overrun event safety assessment
models, respectively, support vector machines (SVM), logistic regression (LR), Back Propagation (BP),
Long Short-Term Memory Network (LSTM), and bayesian deep learning. Radial Basis Function
Network (RBF). Meanwhile, we compare and verify the effectiveness of each component of the
algorithm, respectively LSTM, AE-LSTM, and PS-AE-LSTM.
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SVM, LR, and BP algorithms are traditional machine learning algorithms mainly applied to gen-
eral event classification. Bayesian neural networks are used to support risk decisions by probabilistic
prediction of vertical landing velocity [34]. Radial Basis Function (RBF) network is a specific kind
of artificial neural network that can express the relationship between input and output extremely
well [35]. Still, they cannot capture time-dependent features, while LSTM is an artificial intelligence
algorithm that can capture time-dependent features. Still, it is not as efficient as the AE autoencoder
for anomaly detection. The AE structure can reshape the typical characteristics of flight data and
make the reconstruction errors of various risk categories more polarizing [36]. Overall, the PS-AE-
LSTM is a risk-level assessment algorithm that combines the advantages of the above models, and the
model architecture consists of two parts: PS and AE-LSTM. The PS module is employed to extract
the labels of the data and improve the label quality. The AE-LSTM module extracts the reconstructed
data and captures the temporal features to obtain the risk level assessment finally.

Fig. 10 shows the accuracy of six risk assessment models for hard landing events, which use a grid
search approach to select the optimal parameters. From Fig. 10, it is evident that the LR algorithm
exhibits the worst results, with precision and recall less than 0.5. Second, the SVM model’s accuracy
has improved but is still less than 0.6, probably related to the dimensionality of the input parameters.
SVM has better accuracy in lower dimensions. The BP model is 11% higher than the LR and 5%
higher than the SVM in terms of accuracy but still lower than the accuracy of the LSTM model. In
conclusion, LR, SVM, and BP algorithms are far less accurate than deep learning algorithms because
simple machine learning models do not capture deeper connections between data and lose temporal
features. The accuracy can reach about 62% using only the LSTM model, which is higher than SVM,
LR, BP, etc. After adding the AE structure, the performance is improved by about 7%, resulting from
data reconstruction. When adding the PS module to AE-LSTM, the accuracy is dramatically improved
by about 25%, making the PS-AE-LSTM algorithm the most accurate. To further evaluate the change
in accuracy of the algorithm after embedding the PS module. Fig. 11 shows the accuracy change after
different epochs for LSTM, AE-LSTM, and PS-AE-LSTM, which verified the effectiveness of each
component of the algorithm. Compared the proposed method with the latest Bayesian deep learning
model and the RBF network model, the accuracy of the two models is 76.2% and 78.3% in low risk
and 64.3% and 52.2% in high risk, respectively, which is far inferior to the proposed method, proving
the superiority of the PS-AE-LSTM model.

Figure 10: Accuracy of 6 risk assessment models
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Figure 11: Each epoch of categorization models

Table 5 shows six abovementioned algorithms specific to the risk level assessment on a landing
dataset. Table 6 shows the impact of each component of the algorithm on the experimental accuracy
after each Epoch. The average accuracy, recall, and F1 score of all algorithms are shown in Table 7,
which verifies the superiority of the proposed algorithm compared to the traditional deep learning
methods, which have the best performance.

Table 5: Risk level classification performance (Precision, Recall, F1 score) of LR, SVM, BP, Bayesian,
RBF, LSTM, AE-LSTM, PS-AE-LSTM (proposed)

Precision

Risk-class LR SVM BP Bayesian RBF LSTM AE-LSTM Proposed

Hight-risk 0.3662 0.3859 0.4217 0.6430 0.5220 0.5562 0.6031 0.8041
Medium-risk 0.4336 0.4118 0.4681 0.690 0.5920 0.5872 0.6490 0.8758
Low-risk 0.5032 0.6332 0.6774 0.7620 0.7530 0.7032 0.7832 0.9432
Risk-free 0.3914 0.5218 0.5743 0.7540 0.5121 0.6245 0.7051 0.8348
Avg 0.4236 0.4882 0.5354 0.7123 0.5948 0.6178 0.6851 0.8645

Recall

Risk-class LR SVM BP Bayesian RBF LSTM AE-LSTM Proposed

Hight-risk 0.4672 0.5231 0.5826 0.7222 0.7821 0.7561 0.8137 0.8311
Medium-risk 0.6847 0.6229 0.7426 0.7521 0.6932 0.7938 0.8459 0.8782
Low-risk 0.7527 0.8048 0.8594 0.6340 0.7837 0.9247 0.9362 0.9471
Risk-free 0.5072 0.5429 0.6357 0.620 0.8023 0.8381 0.8457 0.8783
Avg 0.6030 0.6234 0.7051 0.6821 0.7653 0.8282 0.8604 0.8837

(Continued)



2566 CMES, 2024, vol.138, no.3

Table 5 (continued)

F1 score

Risk-class LR SVM BP Bayesian RBF LSTM AE-LSTM Proposed

Hight-risk 0.4342 0.4858 0.5126 0.7514 0.7323 0.7615 0.8137 0.8333
Medium-risk 0.5847 0.6160 0.6736 0.6982 0.6392 0.7538 0.7859 0.8831
Low-risk 0.7527 0.8371 0.8729 0.8136 0.7827 0.9152 0.8667 0.9547
Risk-free 0.6272 0.5418 0.6553 0.7920 0.7297 0.8228 0.8457 0.9125
Avg 0.5997 0.6202 0.6786 0.7638 0.7210 0.8133 0.8280 0.8959

Table 6: Each epoch of categorization models

Epoch LSTM AE-LSTM Proposed

- Acc (%) Avg loss Acc (%) Avg loss Acc (%) Avg loss

10 41.34 7.84 52.38 2.35 64.72 2.19
20 41.34 7.32 54.36 2.04 65.62 1.53
30 43.17 6.67 56.18 1.54 69.37 1.23
40 45.34 5.83 57.12 1.38 70.14 1.36
50 46.27 4.39 59.32 1.24 82.36 0.62
100 50.03 3.67 60.38 1.13 83.48 0.59
150 52.18 3.55 61.36 0.76 84.69 0.52
200 57.12 2.58 62.57 0.62 86.36 0.47
250 59.32 2.81 66.79 0.59 85.48 0.41
300 60.38 1.32 67.32 0.41 87.69 0.32

Table 7: Evaluation results

Model Precision (%) Recall (%) F1 score (%)

LR 42.36 59.97 59.97
SVM 48.82 62.02 62.02
BP 53.54 67.86 67.86
Bayesian [34] 71.23 68.21 76.38
RBF [35] 59.48 76.53 72.10
LSTM 61.78 81.33 81.33
AE-LSTM 68.51 82.80 82.80
Proposed 86.45 88.37 89.59

5 Conclusion

We propose a deep PS-AE-LSTM architecture for risk-level assessment, which takes flight data
as the object and statistics as the theoretical basis, and integrates PS models into AE-LSTM deep
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learning models to form a unified framework. The first layer adopts the PS module to extract the
flight data and calculate the risk value. In the second layer, we employ an autoencoder combined
with LSTM for time sensitivity to assess the risk level. Experiments on real-world flight data illustrate
the superior performance against seven baseline models. Compared with the artificial neural network
model, the proposed model can both well handle the time series data and improve the label quality,
solving the problem of difficulty in quantitatively determining the assessment labels in flight safety-
related artificial neural networks and improving the accuracy of risk assessment. The model provides
flight safety technical support to frontline personnel in the flight safety control department, providing
reliable risk assessment results for overrun events such as heavy landings and tail wipes, facilitating the
improvement of flight quality for the entire flight team and further safeguarding flight safety. It can
also be used by flight training organisations to assess the quality of flight training and the level of
mastery of a specific operational skill. More importantly, the proposed PS-AE-LSTM algorithm is
a general algorithm applicable to the risk level assessment for almost all overrun events, which can
be widely applied to the assessment of flight safety. For example, risk assessment of aircraft tail wipe
based on the effect of pitch angle and other data on overrun events, risk assessment of aircraft hard
landing based on the impact of vertical load and other data on overrun events, assessment of overrun
events based on the distance of the contact point, etc.

It is worth pointing out that the proposed PS-AE-LSTM algorithm is a general algorithm
that can solve most risk assessment problems on normally distributed data, not limited to flight
safety. Furthermore, we will investigate the challenge of choosing multiple inputs for the model and
constructing a model framework based on the overall risk assessment at a particular flight phase.
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