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ABSTRACT

Finite element (FE) coupled thermal-mechanical analysis is widely used to predict the deformation and residual
stress of wire arc additive manufacturing (WAAM) parts. In this study, an innovative single-layer multi-bead profile
geometric modeling method through the isosceles trapezoid function is proposed to build the FE model of the
WAAM process. Firstly, a straight-line model for overlapping beads based on the parabola function was established
to calculate the optimal center distance. Then, the isosceles trapezoid-based profile was employed to replace the
parabola profiles of the parabola-based overlapping model to establish an innovative isosceles trapezoid-based
multi-bead overlapping geometric model. The rationality of the isosceles trapezoid-based overlapping model was
confirmed by comparing the geometric deviation and the heat dissipation performance index of the two overlapping
models. In addition, the FE-coupled thermal-mechanical analysis, as well as a comparative experiment of the
single-layer eight-bead deposition process show that the simulation results of the above two models agree with the
experimental results. At the same time, the proposed isosceles trapezoid-based overlapping models are all straight-
line profiles, which can be divided into high-quality FE elements. It can improve the modeling efficiency and
shorten the simulation calculation time. The innovative modeling method proposed in this study can provide an
efficient and high-precision geometric modeling method for WAAM part FE coupled thermal-mechanical analysis.

KEYWORDS
WAAM; FE coupled thermal-mechanical analysis; the isosceles trapezoid-based model; residual stress

Nomenclature

An Peak point of the Pn(x) profile
af Length of the front ellipsoid of the heat source
ar Length of the rear ellipsoid of the heat source
Bn Intersection point between the tangent line of Pn(x) with Pn−1(x)
b Width of the heat source
Cn Intersection point of Pn(x) and Pn−1(x)
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c Depth of the heat source
Dn Bottom point of the pipeline of the An

d Overlapping center distance
En Leftmost point of the Pn(x)
F n Rightmost point of the Pn(x)
f f Fraction factor of the heat flux in the front parts
f r Fraction factors of the heat flux in the rear parts
Gn Left endpoint of Pn(x) in the overlapping gap of trapezoid-based model
Hn Intersection point of GnIn and An−1Bn

h Height of single bead
ht Overlapping height of the isosceles trapezoid model
Id Geometric deviation of the isosceles trapezoid-based overlapping model
In Intersection points of Pn(x) and Pn−1(x) in the trapezoid-based overlapping model
IR(P) Heat dissipation performance index of the parabola-based overlapping model
IR(T) Heat dissipation performance index of the isosceles trapezoid-based overlapping model
Jn Intersection point of InKn and An−1Bn

Kn Right endpoint of Pn(x) in the overlapping gap of trapezoid-based model
Ln Bottom point of the pipeline of the In

Pn(x) Profile function of bead n
Q Power input of FE model
w Width of single bead
wt Length of the upper side of the isosceles trapezoid model

1 Introduction

Wire arc additive manufacturing (WAAM) is a metal additive manufacturing (AM) technology
that uses the electric arc as the heat source to melt the metal wire and add material layer by layer along
the preset path [1]. Due to its high material deposition efficiency, high material utilization, direct full-
density buildup properties, and potentially unlimited building volume, WAAM is generally considered
the most promising rapid manufacturing technology for medium and large-scale components [2,3].
Therefore, WAAM technology has shown excellent application prospects in many fields, such as
shipbuilding, transportation, aerospace, the nuke industry, and other frontiers [4].

However, the high material deposition efficiency of WAAM technology is caused by the high
heat input that occurred in this process. Moreover, the moving heat source results in repeated
localized heating and uneven cooling, which will lead to complex thermal cycles, distinctive local
thermal gradients, and high residual stress in the WAAMed part. The high residual stress reduces
the mechanical properties and geometric accuracy of the formed parts and even provokes pronounced
distortions and cracks. This is considered one of the significant challenges of the WAAM process [5].
Therefore, the regulation and the control of the residual stress in the produced part are crucial to
promote the extensive application of WAAM technology [6,7].

The finite element (FE) coupled thermo-mechanical analysis can reflect the transient thermody-
namic information during the WAAM process in real time [8], which can provide internal details on
distortion and residual stresses in the WAAMed part without considering the actual manufacturing
process [9–11]. In particular, the dynamic thermal behavior, the evolution of stress, and distortion
are analyzed to adjust the process parameters or select an optimal deposition strategy to formulate
residual stress and deformation control strategies [12–15].
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The geometric modeling of the deposition layer is essential for FE analysis. In most current
studies, the cross-section profile of a single weld bead is usually simplified to a rectangle function.
Sun et al. [16] and Köhler et al. [17] developed a rectangle cross-section-based FE model of a wire arc
additive manufactured cuboid structure and studied the residual stress as well as the distortion of six
different deposition strategies. Somashekara et al. [18] used the rectangle cross-section-based modeling
method to establish the FE-coupled thermo-mechanical model for metallic additive manufacturing
and investigated the effect of the weld-deposition pattern on residual stress evolution. Sun et al. [19]
presented a unique pattern assessment criterion and constructed the FE-coupled thermo-mechanical
model based on the rectangle cross-section model to evaluate and optimize the deposition mode. In
addition, the curve fitting method is a standard method for modeling the cross-section profile of the
weld bead. Zhao et al. [20] used the arc curve function to fit the outer profile of the deposited layer.
They established the thermal-mechanical coupled finite element simulation model of the WAAM
deposition process. The curve fitting method was also widely used to fit the section profile of the
WAAM weld bead and calculate the optimal overlapping parameters [21]. However, the curve fitting
function method has low efficiency for finite element modeling. Meanwhile, the rectangular section-
based bead model is a wholly simplified model that produces a large sizable error in comparison to
the actual weld bead. Zhan et al. [22] utilized an isosceles trapezoidal cross-sectional profile to replace
the arc cross-sectional profile and established a single-bead finite element model for the laser melting
deposition. The simulation results and the model deviation analysis show that the isosceles trapezoid-
based model and the arc-based model have a minor deviation. In the meanwhile, the calculation
efficiency of the trapezoid-based model is significantly improved.

In this study, to take into account both geometric accuracy and computational efficiency, an
innovative single-layer multi-bead geometric modeling method based on the isosceles trapezoid
function was proposed to establish the FE model of the WAAM process. Firstly, a straight-line
overlapping model was selected based on a parabola function to calculate the optimal overlapping
center distance. Then, a multi-bead isosceles trapezoid-based overlapping model was established based
on the optimal center distance and the isosceles trapezoid model of a single bead. The comparisons of
geometrical deviation and the heat dissipation performance index between two overlapping models
were performed to verify the validity of the trapezoid-based overlapping model. In addition, the
computational efficiency and error of the isosceles trapezoid-bead overlapping model were investigated
through single-layer eight-bead deposition numerical simulation and corresponding experiment. The
main innovations of this study are as follows: 1) A single-layer multi-bead overlapping model based
on the isosceles trapezoid function was used to establish the finite element thermodynamic coupling
simulation model of WAAM. 2) The proposed modeling method can provide a reference and technical
idea for high efficiency and high precision modeling of WAAM finite element thermodynamic
coupling simulation and other metal additive manufacturing technologies.

2 Straight-Line Overlapping Model Based on Parabola Function
2.1 Geometry of the Straight-Line Overlapping Model

During the FE analysis of the WAAM process, the accuracy of a geometric model is directly related
to simulation accuracy and validity of the calculation results. Ding et al. [21] depicted that the parabola
function, cosine function, and arc function can fit the weld bead profile with high accuracy. However,
the parabola function is easier to compute than the cosine and arc functions. Herein, a straight-line
overlapping model was built based on the parabola function to calculate the optimal overlapping center
distance.
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The principle of the straight-line overlapping model can be illustrated in Fig. 1. A parabola-based
single-bead profile geometry model is established with the parameters of width (w) and height (h). The
positive direction of the x-axis is the overlapping direction of multi-beads. According to the deposition
order of weld beads, the profile function of the first bead is identified as P1(x). Analogously, the profile
function of bead n is defined as Pn(x). The center distance of adjacent beads and the total width of
beads are defined as d and W , respectively. Point E2 is the leftmost point of the P2(x) profile, and point
B1 is a point on P1(x) profile, which shares the same abscissa with point E2. Point A2 is the peak point
of the P2(x) profile and point C1 is the intersection of the P1(x) and P2(x) profiles. In this model, the
curve of the transition area is assumed to be a straight line passing through points B1 and A2.

Figure 1: The multi-bead linear overlapping model

The first two bead functions are defined by Eqs. (1) and (2) as:

P1 (x) = −4h
w2
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)
(2)

2.2 Optimal Center Distance of the Straight-Line Overlapping Model
The optimal overlapping center distance of the parabola-based single-bead profile geometry

model is determined by the equal area criterion. As shown in Fig. 1, the coordinates of B1, C1,
A2, E2, F 1, and D2 are defined by B1(xB1
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and E2 can be expressed as Eq. (3).
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According to the ideal overlapping, the overlapping area of the two parabolas equals the area of
the critical valley. According to this, the area

(
SB1C1A2

)
equals the area

(
SE2C1F1

)
, which means that the

area
(
SB1A2D2F1

)
equals half of the area of the entire parabola. The calculation process can be expressed

as Eq. (4).
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The curved-side triangle area
(
SB1F1E2

)
can be expressed as Eq. (5).
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∫ w/2
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P1 (x) dx = h (w − d) −
4h
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2

)3
)

3w2
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The function f (d) is expressed as Eq. (6).

f (d) = SB1A2D2E2
− SB1A2D2F1

− SB1F1E2
= −3

4
wh + hd2

w
+ hd − 4hd3

3w2
(6)

When f (d) equals 0, the ideal overlapping condition is achieved. The two positive roots of equation
f (d) = 0 is d1 = 3 w/4 = 0.75 w and d2 = √

3w/2 = 0.866 w. One of the two roots is the optimal
overlapping center distance value. To confirm the value of optimal overlapping center distance, six sets
of single-layer two-bead overlapping experiments are carried out. The schematic of the experimental
setup is depicted in Fig. 2. During the deposition process, the base metal is clamped by fixtures to
prevent the specimen distortion. The base metal and welding wire materials are 304 stainless steel, the
diameter of the welding wire is 1.2 mm, and the welding current is 190 A. The travel speed and wire
feeding speed are 4 mm/s and 2400 mm/min, respectively. The shielding gas is pure argon, and the gas
flow rate in the experiment is 18 L/min. Under the current experimental parameters, the overlapping
center distances obtained in the six sets of experiments are shown in Table 1.

Figure 2: The schematic of the experimental setup

Table 1: Overlapping center distance of experiments

Number 1 2 3 4 5 6

d 0.65 w 0.7 w 0.75 w 0.8 w 0.86 w 0.9 w

The cross-section profiles of the specimens are shown in Fig. 3. When the overlapping center
distance is less than 0.75 w, the height of the second bead is greater than the first bead. When the
overlapping center distance is greater than 0.75 w, the two weld beads have a similar size. The depth
of the valley area between the two weld beads increases gradually with the increase of the overlapping
center distance. If the center distance reaches 0.866 w, the depth of the valley area becomes deeper
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and results in poor flatness. Therefore, it can be seen that d = 0.75 w can be considered the optimal
overlapping center distance.

Figure 3: The cross-section profiles of the specimens

3 The Isosceles Trapezoid-Based Overlapping Model Profile
3.1 Geometry of the Isosceles Trapezoid-Based Overlapping Model

In finite element geometric modeling of WAAM deposition layer, the cross-section profile of a
single weld bead is usually simplified to a rectangle function or fitted by curvilinear equation (such
as parabola function, cosine function, and arc function). However, the rectangle function method is
an oversimplified method which is difficult to guarantee the accuracy of modeling and calculation.
In the meantime, the curvilinear function method has high precision. However it has low efficiency
for finite element geometric modeling, and it is difficult to partition into high-quality finite element
mesh. Then, the isosceles trapezoid-based profile model is proposed to replace the parabola-based
profile model in this study (as shown in Fig. 4). The red and black lines represent the profile of the
isosceles trapezoid and parabola, respectively. To guarantee the equivalence, the parabola profile and
the isosceles trapezoid profile are set to have the same length of the bottom side and height. Moreover,
the two adjacent regions have the same area by controlling the length of the upper side, wt.
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Figure 4: Schematics of the single bead cross-section

Eq. (7) represents two adjacent regions with the same area. Then, in the isosceles trapezoid-based
model, the length of the upper side can be solved by Eq. (8).

(wt + w) h
2

=
∫ w/2

−w/2

P1 (x) dx (7)

wt = 2
∫ w/2

−w/2
P1 (x) dx

h
− w = w

3
(8)

Fig. 5 depicts the isosceles trapezoid-based overlapping model based on the isosceles trapezoid
function and the optimal center distance. The red line represents the new weld bead profiles, and ht is
the overlapping height of this innovative model.

Figure 5: Schematics of multi-bead isosceles trapezoid-based overlapping model

The area of the pentagon
(
SA1G1I1L1D1

)
can be calculated by Eq. (9) as:

SA1G1I1L1D1
= 1

2
(h + ht) ×

(
d
2
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2

)
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2
× h (9)

To guarantee the equivalence, the cross-sectional area of the parabola model must be equal to the
cross-sectional area of the isosceles trapezoid-based model. This means that the area of the pentagon(
SA1G1I1L1D1

)
must be equal to half of the area of the single parabola model, which can be presented



2390 CMES, 2024, vol.138, no.3

by Eq. (10). The left side of Eq. (10) is the area of the pentagon
(
SA1G1I1L1D1

)
, while the right side of

Eq. (10) is half of the area of the parabola function.

1
2

(h + ht) ×
(

d
2
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2

)
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2
× h = wh

3
(10)

Consequently, ht value can be calculated by Eq. (11) as:

ht = 2wh
3d − w

− h (11)

Then, ht = 0.6 h.

3.2 Rationality Analysis of the Isosceles Trapezoid-Based Overlapping Model
3.2.1 Geometrical Deviation Analysis

The parabola-based overlapping model is a fitting model with high accuracy. In contrast, the
isosceles trapezoid-based overlapping model is a simplified model. Therefore, compared with the
parabola-based model, the isosceles trapezoid-based model has a particular geometrical deviation.
As shown in Eq. (12), the geometric deviation Id can be defined by the area of the non-overlapping
area between the two models as:

Id =
∫ W−w/2

−w/2

|P (x) − T (x)| dx (12)

where P(x) is the profile function of the parabolic-based overlapping model, and T(x) is the profile
function isosceles trapezoid-based overlapping model. According to Eq. (12) and the geometric
relationship in Fig. 5, the Id can be further expressed by Eq. (13).

Id = 2
∫ 0

w/2

|P (x) − T (x)| dx + (n − 1)

∫ 3w/4

0

|P (x) − T (x)| dx = (0.05n − 0.009) wh (13)

The average geometric deviation id(n) of the single-bead model can be calculated by Eq. (14).

id(n) = Id

n
=

(
0.05 − 0.009

n

)
wh (14)

Eq. (14) illustrates that the average geometric deviation increases with the increase of the deposi-
tion beads. The maximum geometric deviation can be expressed by Eq. (15).

lim
n→∞

id(n) = 0.05wh (15)

Previous researches [21,23–26] expressed that the ideal weld bead width satisfies w ∈ [4,12], and
the bead height satisfies h ∈ [0, w/2]. Fig. 6 states the three-dimensional diagram and contour map of
the average geometric deviation. According to Eq. (15) and Fig. 6, the average geometric deviation is
positively correlated with the size of the bead. While the width (or height) of the bead remains constant,
the greater the height (or width), the larger the average geometric deviation. Meanwhile, the maximum
deviation is 3.6 mm2.

Eq. (16) displays the quotient of the geometric deviation, which means the geometric consistency
of the geometric model and actual weld bead. The parabola fitting model has high accuracy. Therefore,
the parabola model is used to represent the natural weld bead in this study. Eq. (16) represents that
the max average geometric deviation quotient of the isosceles trapezoid-based model is 7.5%. There is
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a high degree of geometric consistency between the isosceles trapezoid-based overlapping model and
the parabolic-based overlapping model.(

0.05wh
2wh/3

)
× 100% = 7.5% (16)

Figure 6: (a) Three-dimensional diagram and (b) contour map of average geometric deviation of one
bead

3.2.2 The Analysis of Heat Dissipation Performance Index

During the deposition process, the heat dissipation mechanism of the weld beads to the atmo-
sphere includes convection and radiation. The heat dissipation performance index is directly related
to the contact area between the beads and air [25]. Namely, the heat dissipation performance index
of the beads can be represented by the surface area of the bead. The bead is assumed to have
the same morphology along the welding direction. The calculation of relative surface area can be
reasonably simplified from three-dimension to two-dimension. In other words, the heat dissipation
area of the entire beads can be equivalent to the perimeter of the cross-section. Therefore, the heat
dissipation performance index of the parabola-based overlapping model and isosceles trapezoid-based
overlapping model can be expressed in Eqs. (17) and (18), respectively.

IR(P)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ d+w/2
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d (P (x))

dx

)2
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∫ 2d+3w/2
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√(
d (P (x))

dx

)2

+ 1 dx, (n ≥ 3)

(17)

IR(T)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ d+w/2

−w/2

√(
d (T (x))

dx

)2

+ 1 dx, (n = 2)

∫ 2d+3w/2

d+w/2

√(
d (T (x))

dx

)2

+ 1 dx, (n ≥ 3)

(18)
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According to the geometric relationship in Figs. 1 and 5, IR(P) and IR(T) values can be expressed by
Eqs. (19) and (20).

IR(P)=
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The error ID of the heat dissipation performance index can be defined by Eq. (21). This verifies
the consistency of the heat dissipation performance index of the two models.

ID =
∣∣IR(P) − IR(T)

∣∣
IR(P )

× 100% (21)

The three-dimensional diagram and contour map of the error of the heat dissipation performance
index at n = 2 are shown in Fig. 7. The larger the height (or width), the greater the error of the heat
dissipation performance index when the width (or height) of the bead remains constant. The maximum
error is 7.2%.

Figure 7: (a) Three-dimensional diagram and (b) contour map of error percentage of heat dissipation
performance index (n = 2)

The three-dimensional diagram and contour map of the error of the heat dissipation performance
index at n ≥ 3 are shown in Fig. 8. When the bead height is less than 1.5 mm, the larger the height (or
width), the greater the error of the heat dissipation performance index. Simultaneously, if the bead
height exceeds 1.5 mm, the error decreases first and then increases with the increase of the bead width.
When the bead width remains constant, the error decreases first and then increases with the rise in the
bead height. The error of the heat dissipation performance index is 7.5%.
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Figure 8: (a) Three-dimensional diagram and (b) contour map of error percentage of heat dissipation
performance index (n ≥ 3)

To sum up, the geometric deviation and the error of heat dissipation performance index of the
overlapping model between the isosceles trapezoid-based model and the parabolic-based model are
less than 7.5%, which means that the overlapping modeling method based on the isosceles trapezoid
function has acceptable accuracy error and is suitable for establishing the FE coupled thermal analysis
model.

4 Verification of Single-Layer Multi-Bead FE Geometric Modeling Method Based on the Isosceles
Trapezoid Function
4.1 Experiment Scheme and FE Analysis Model

To verify the validity of the proposed innovative FE geometric modeling method, a single-
layer eight-bead deposition experiment and simulation are performed. Fig. 9 depicts the deposition
direction and the size of the base metal.

Figure 9: FEA model and deposition sequence

The single-layer eight-bead coupled thermo-mechanical models based on the isosceles trapezoidal
and parabola functions are constructed in ABAQUS. The FE model is displayed in Fig. 10. In order
to ensure the mesh quantity of the two models is consistent and avoid the calculation deviation due to
the mesh quantity in the calculation results of the two models, the mesh of the beads and the substrate
is divided by the controlling of the number of elements on the line and surface of the model. It can be
seen that the mesh of the beads and the substrate is more uniform, which is conducive to improving
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the efficiency and accuracy of the FE calculation because all the lines of the isosceles trapezoid-based
model are straight lines.

Figure 10: The meshing of the deposition beads and the substrate

As indicated in Eq. (22), the double ellipsoid heat source model is employed to describe the heat
source distribution in the molten pool,

Qf /r = 6
√

3Q ff /r

π
√

πaf /rbc
exp

(
− 3x2

af /r
2
− 3y2

b2
− 3z2

c2

)
(22)

where b is the width of the heat source, c is the depth of the heat source, and af and ar are the length of
the front and rear ellipsoid of the heat source, respectively. ff and fr are the fraction factors of the heat
flux in the front and rear parts, respectively. Q is the power input. The source efficiency coefficient
is 0.7 [13,24,25]. The temperature-dependent properties of the 304 stainless steel [27] are used in the
simulation. The birth-death element method was employed to simulate the layer-by-layer deposition
of the WAAM process. The deposition process, the heat source, and the boundary-condition-related
parameters are listed in Tables 2–4, respectively. The heat source parameters are determined based
on reference to previous similar studies and a comparison of numerical simulation and experimental
results.

Table 2: The deposition process parameters

Parameter Value

Welding speed 4 mm/s
Welding time of each layer 25 s
Interval time 120 s
Cooling time 10000 s
Initial temperature 20°C

Table 3: The heat source parameters

Parameter Value

b 5 mm
c 4 mm
af 4 mm
ar 11 mm

(Continued)
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Table 3 (continued)

Parameter Value

ff 0.6
fr 1.4
Q 2300 W
Efficiency coefficient 0.7

Table 4: The boundary condition-related parameters

Parameter Value

Convective heat transfer coefficient 20 W/(m2·°C4)
Radiated emissivity 0.7
Ambient temperature 20°C

4.2 Results and Discussion
4.2.1 Thermal Results

Fig. 11 shows the temperature contours of the finite element simulation of the two models at
the end of the first, fourth, and eighth beads. It can be seen that the temperature distributions of
the two models are close to each other at the end of each bead, and the peak temperature increases
gradually with the increase in the number of deposition beads. The peak temperature of the parabolic-
based model is 23°C higher than the isosceles trapezoid-based model. The peak temperature at the
end of the fourth and eighth beads of the isosceles trapezoid-based model is slightly higher than the
parabolic-based model (81°C and 19°C higher, respectively) except for the end of the first bead. It is
because the depth of the ‘valley’ region between the two beads of the isosceles trapezoid-based model
is deeper than the parabolic-based model (as shown in Fig. 5) that makes the heat more concentrated.
Meanwhile, the heat dissipation performance index of the parabolic-based model is higher than the
isosceles trapezoid-based model (as shown in Fig. 7), which means the heat diffusivity of the isosceles
trapezoid-based model is slightly worse than the parabolic-based model. The temperature simulated
result of the two models indicates that the two models have good consistency in temperature field
simulation.

Figure 11: (Continued)
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Figure 11: The temperature contours of FEM simulation of the two models at the end of the first,
fourth, and eighth beads (a)∼(c) parabolic-based model, (d)∼(f) the isosceles trapezoid-based model

During the deposition experiment, a thermocouple sensor is set at point A (as shown in Figs. 2
and 12) on the substrate to measure the temperature cycle curve. During the simulation, the tem-
perature value at point A is monitored in the simulation model. The thermal cycling curves of the
simulation and experimental measurement at point A on the substrate are shown in Fig. 12. It depicts
that all three thermal cycling curves have eight cycles. However, due to the short cooling time between
the first two beads being close to each other at point A, there are two peak points at positions 1
and 2, as shown in Fig. 12, at the rising stage of the curves. The other six peak points at position
3 are close to each other. Among these the peaks in the simulation results are close to each other.
The simulation and experimental results show that the simulated thermal cycles at the temperature
of point A agree well with the measured results. This means that the two FE models are suitable for
predicting thermal performance. The difference between the measured and simulated values is due to
the model simplifying and measurement error. And there is a slight difference between the parabola
and the trapezoidal models, which means that the isosceles trapezoid-based overlapping model and
parabolic-based overlapping model have a high consistency.

4.2.2 Residual Stress Results

Fig. 13 shows the residual stress contours of the finite element simulation of the two models. It
can be seen from Fig. 13 that the residual stress distribution laws obtained by the simulation of the
two models are very similar, with only slight differences in local areas. This indicates that the two
simulation models have good consistency in residual stress simulation.
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Figure 12: Simulated and experimental thermal cycles of point A

Figure 13: The residual stress contours of the FEM simulation (a) the parabolic-based model, (b) the
isosceles trapezoid-based model

In order to verify the quantitative comparison results of the residual stress on the substrate
obtained by the experiment and simulation, the residual stress values of four points on the substrate (as
shown in Fig. 14) were measured by the XRD method. The residual stress values of four monitoring
points at the same position were monitored in the simulation process to obtain the simulation results of
the residual stress. Fig. 14 represents the measured and simulated residual stress of four points (Points
1, 2, 3, and 4) on the substrate. It can be seen from Fig. 14 that the measured residual stress values are
matched with the simulation model at each point. The difference between the measured and simulated
values is due to the model simplifying and measurement error. And there is a slight difference between
the parabola and the trapezoidal models, which verify the consistency of the isosceles trapezoid-based
and parabolic-based overlapping models.

The residual stress is extracted from paths on the surface of the substrate and bead to compare
the residual stress simulation results of the two simulation models. Figs. 15a and 15b show the residual
stress distribution on the CD and EF paths obtained from simulated results of the parabolic-based
overlapping model and the isosceles trapezoid-based overlapping model, respectively. It can be seen
from Fig. 15 that the distribution of residual stress is similar in both paths, and there is a slight
difference in parts of the curves, which further verifies the consistency of the two models in the
simulation results and the effectiveness of the isosceles trapezoid model.
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Figure 14: Comparison of the residual stress of two FE models with the experimental measurement
result

Figure 15: Comparison of residual stress between the two models (a) residual stress on the CD, (b)
residual stress on the EF model

In addition, the calculation of the parabola-based FE model takes 580 min, while the trapezoid-
based FE model takes 403 min. This means that the computation efficiency is improved by 30.5%,
and the isosceles trapezoid-based model is computationally more effective than the parabolic-based
model. Namely, the FE geometric modeling method based on the isosceles trapezoid proposed in this
study has significant advantages in enhancing computational efficiency.

5 Conclusion

A geometric modeling method based on the isosceles trapezoidal curve for the multi-bead
overlapping wire arc additive manufacturing deposition is proposed to replace the fitting curve based
on the parabola modeling method. The effectiveness of the proposed modeling method based on the
isosceles trapezoidal curve is verified by a variety of comparison methods.

1. The max average geometric deviation quotient of the isosceles trapezoid-based model is 7.5%.
The geometric deviation and the error of the heat dissipation performance index of the overlapping
model between the isosceles trapezoid-based model and the parabolic-based model are less than 7.5%,
which means that the overlapping modeling method based on the isosceles trapezoid function has a
high degree of geometric consistency and acceptable accuracy error than the parabolic-based model.
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2. The thermal cycling curves, residual stress of different points of FE simulation and experiments,
and residual stress distribution of FE simulation along the various paths indicate that the two models
are highly consistent together and have high calculation precision. The isosceles trapezoid-based
overlapping model can effectively replace the traditional parabolic-based model in the FE-coupled
thermal analysis.

3. Compared with the fitting curve model, the computational efficiency of the finite element
simulation of the isosceles trapezoid-based model is increased by 30.5% under the same calculation
conditions. This means that the isosceles trapezoid-based model has significant advantages in compu-
tational modeling.

4. The proposed isosceles trapezoid-based modeling method can provide a reference and technical
idea for high efficiency and high precision modeling of the finite element thermodynamics of the
WAAM coupling simulation and other metal additive manufacturing technologies.
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