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ABSTRACT

Electrocardiogram (ECG) signal is one of the noninvasive physiological measurement techniques commonly used
in cardiac diagnosis. However, in real scenarios, the ECG signal is susceptible to various noise erosion, which affects
the subsequent pathological analysis. Therefore, the effective removal of the noise from ECG signals has become
a top priority in cardiac diagnostic research. Aiming at the problem of incomplete signal shape retention and
low signal-to-noise ratio (SNR) after denoising, a novel ECG denoising network, named attention-based residual
dense shrinkage network (ARDSN), is proposed in this paper. Firstly, the shallow ECG characteristics are extracted
by a shallow feature extraction network (SFEN). Then, the residual dense shrinkage attention block (RDSAB) is
used for adaptive noise suppression. Finally, feature fusion representation (FFR) is performed on the hierarchical
features extracted by a series of RDSABs to reconstruct the de-noised ECG signal. Experiments on the MIT-BIH
arrhythmia database and MIT-BIH noise stress test database indicate that the proposed scheme can effectively resist
the interference of different sources of noise on the ECG signal.
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1 Introduction

ECG signal plays an important role in clinical analysis, which can reflect the heart’s electrical
activity. However, ECG signals received from instruments and equipment may be polluted by various
noises, which will lead to the problem of abnormal detection [1]. It will significantly affect the accuracy
of diagnosis and mislead the subsequent medical pathological analysis. Therefore, denoising has
become the most important task in ECG processing. The typical ECG noise is baseline wander (BW)
[2], muscle artifact (MA) [2], electrode motion (EM) [3], and power line interference (PLI) [3]. BW
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is manifested as a deviation of the ECG signal from the normal baseline position. MA generally
originates from muscle contractions and tremors. EM is caused by skin impedance and skin potential
changes [4]. The PLI is mainly caused by the interference of AC power in the signal acquisition process.
So far, there are many methods to denoise ECG. Traditional methods mostly used filters (e.g., the low-
pass filter [5], adaptive filter [6], and filter banks [7]) to achieve ECG denoising. For the adaptive filter,
it can be divided into the linear filter [8–10] and the nonlinear filter [11,12]. Although they have the
advantages of automatically adjusting their own parameters and fast convergence, they also have some
disadvantages: The traditional linear adaptive filter may have a large mean square error and lead to
performance degradation. The computational complexity of a nonlinear filters increases exponentially
with the increase of filter order. To avoid these problems, time domain-based signal decomposition
techniques become popular, such as wavelet transform [13] and empirical mode decomposition [14].
However, the limitation of wavelet transform method is that signal analysis can not be carried out
outside the frequency domain, and the empirical mode decomposition method has subjectivity in IMF
component. To solve the problems of traditional methods, researchers began to apply deep learning
techniques to ECG signal denoising tasks.

Deep learning is a complex artificial intelligence technology, which can be used to extract deeper
and more abstract feature information such as rules and structures from a large number of sample data.
At present, the application field of deep learning has been extended to medical image segmentation
[15–17], video action recognition [18], object tracking [19] and many other fields, and remarkable
achievements have been made. Scholars are gradually using deep learning methods for ECG denoising.
Reference [20] proposed a DNN scheme based on improved DAE, which combined the traditional
wavelet-based method and the deep learning method. It can effectively remove the residual noise. In
[21], a GAN-based ECG denoising method is proposed, which uses residual networks as the backbone
to solve the problems of insufficient signal details in traditional denoising methods. Reference [22]
proposed a periodicity ECG signal denoising scheme. It utilized the correlation between cardiac cycles
to construct the CNN denoising model. Reference [23] proposed a GAN-based network to filter noisy
ECG signals. Compared with traditional technologies, these schemes based on deep learning have
gained a good performance on ECG denoising, but they still have the problems of incomplete retention
of original waveform features and low signal-to-noise ratio. Therefore, the denoising method of ECG
signal based on deep learning still has some room for improvement.

Recently, soft threshold schemes have been proven to be a powerful tool for denoising tasks [24].
It essentially filters out noise features by a set of thresholds. Soft threshold is not only widely used
in traditional methods [25,26], but also is often used as the most important step in deep learn-based
ECG denoising schemes [27,28]. It can reach the asymptotic approximation optimal in the sense of
minimax mean square error (MSE) and tends to be a super-smooth function with certain smoothness.
Therefore, it can be used to remove high-frequency components efficiently.

Attention mechanism has become an important part of deep learning to construct global
dependency models [29–31]. It is often used in sequential tasks, such as machine translation [32],
image generation [33], and speech enhancement [34]. It can make use of information from distant
regions, and each location can combine the information of similar or related regions to ensure the
regional consistency of the generated target. Therefore, self-attention can be utilized for ECG signal
enhancement.

Recently, residual-dense networks [35] have achieved good results in various fields, such as image
denoising [36], image blur [36], and image fog removal [36]. It is mainly the dense network inside
[37] and residual learning [38] that play a key role in fully learning different hierarchical features in
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local and global ways, so that the network can be wider and deeper, showing strong advantages in
extracting local and non-local features. Therefore, it may be helpful for the extraction of pathological
signal features.

Based on the above reasons, this paper proposes an Attention-based Residual Dense Shrinkage
Network (ARDSN) to effectively achieve noise reduction. The contributions of this work are summa-
rized as follows:

1. In this paper, to overcome the problem of incomplete signal morphology retention and low
SNR after noise reduction, an ARDSN for ECG denoising is proposed.

2. We specially designed an adaptive learning threshold shrinkage network (ALTSN) in the
residual dense shrinkage attention block (RDSAB) to learn the optimal threshold of the soft
threshold function, so as to better suppress the noise information. And a simulated self-
attention module (SSAM) is used to further improve the signal quality and obtain a more
complete noise-free signal.

3. Experimental results and analysis illustrate its good performance in ECG denoising.

The rest of the paper is arranged as follows. The proposed ECG denoising scheme is described in
Section 2. Experimental results and analysis are provided in Section 3. Finally, some conclusions are
made in Section 4.

2 The Proposed Scheme

In this part, the proposed ECG denoising scheme is described in detail. Firstly, a noisy-
contaminated ECG signal is input to the network, and then ARDSN is used to learn the local and
non-local fine features of the ECG signal. In this way, not only rich waveform features can be learned,
but also the noise waveform-related features can be eliminated adaptively.

2.1 The Framework of Proposed Scheme
As shown in Fig. 1, the ARDSN is mainly composed of three parts: shallow feature extraction

network (SFEN), residual dense shrinkage attention block (RDSAB), and feature fusion representa-
tion (FFR). INoise and IDenoise represent the input (noisy signal) and output (estimated clean signal) of
the network, separately. Inspired by [23], we set the convolution kernel to be 1 × 31. Firstly, we use
three 1 × 31 Conv layers to extract the shallow ECG characteristics. Its expression is as follows:

F0 = HSFEN(INoise) (1)

where INoise represents the noisy signal of network input, HSFEN (.) represents the convolution operation,
and F0 represents the output of SFEN. It is used as the input of RDSAB and global feature fusion.
Assuming that there are N residual dense shrinkage blocks, the Nth RDSAB can be represented as
follows:

FN = HRDSAB,N(HRDSAB,i(· · · (HRDSAB,1(F0)) · · · )) (2)

where HRDSAB,i(.) represents the ith RDSAB, FN represents the corresponding output of the Nth RDSAB.
It can be regarded as a local fine feature, and a detailed description of RDSAB can be seen in
Section 2.2.

In order to further improve the accumulated useful waveform feature information, we carry out
FFR for the refined hierarchical features extracted by multiple RDSAB. The FFR can be represented
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as follows:

IFF = HFFR(F0, . . . , Fi, . . . , FN) (3)

where IFF represents the output of the FFR, and a detailed description of the FFR can be seen in
Section 2.3. Finally, the residual structure is used in FFR to reconstruct the de-noised ECG signal,
which is defined as:

IDenoise = INoise + IFF (4)

Figure 1: Framework of the proposed ECG denoising scheme, named ARDSN

2.2 Residual Dense Shrinkage Attention Block (RDSAB)
This section describes the details related to the residual dense shrinkage attention block in

Fig. 2. The RDSAB includes dense feature learning network (DFLN), adaptive threshold learning
threshold sub-networks network (ALTSN), soft threshold activation function (STAF) and simulated
self-attention module (SSAM).

Figure 2: The network structure of ith RDSAB

2.2.1 Dense Feature Learning Network (DFLN)

The DFLN is used to extract low-frequency signal features. The network structure is shown in
Fig. 3. We use 1 × 1 Conv to decrease network training parameters and improve computational
efficiency. It is expressed in the ith RDSAB as follows:

Fi,DF = Hi,DFLN(Fi−1) (5)

where Fi−1 represents the output of the (i−1)th RDSAB and the input of the ith RDSAB, Hi,DFLN (.)
represents the DFLN in ith RDSAB. It includes a series of convolution and ReLU [39] operations.



CMES, 2024, vol.138, no.3 2813

Assuming that there are m convolution layers in DFLN, the feature map of the mth Conv layer is
calculated by K0 + K × (m−1), where K0 is the input channels and K represents the growth rate [37].
Fi,DF is the output of DFLN and the input for ALTSN and STAF.

Figure 3: The network structure of DFLN

2.2.2 Adaptive Learning Threshold Sub-Network (ALTSN)

Inspired by [28], we designed an ALTSN in order to learn the optimal threshold adaptively and
retain a more complete waveform shape of the noiseless signal. As a part of RDSAB, ALTSN is used
to learn the threshold of soft threshold activation function. In our ALTSN, two fully connected layers
in [28] are replaced by convolution. Because the nonlinear cross-channel interaction realized by two
fully connected layers, it may lose some useful feature information due to feature dimension reduce
due to feature dimension reduction. To solve this problem, we use one-dimensional convolution. Local
cross-channel information interaction is achieved without dimensionality reduction. The structure of
ALTSN is shown in Fig. 4. First, the input feature Fi,DF is transformed into a one-dimensional vector
μc by taking absolute value and global averaging pooling (GAP), and then μc is transmitted to the
convolution layer to achieve cross-channel interaction. Then the sigmoid function is used to get λc.
Finally, the threshold Fi,ALT is achieved by multiplying λc and μc. In this way, we obtain a positive and
not too large soft threshold. The effectiveness of this improvement is demonstrated in Section 3.

Figure 4: The network structure of ALTSN

2.2.3 Soft Threshold Activation Function(STAF)

Through the soft threshold activation function, we could apply the threshold set obtained by
ALTSN to each channel of the feature map to remove the features associated with noise. The basic
principle of soft threshold activation function processing is to set the coefficient less than a certain
threshold value in the signal to zero, and retain the coefficient greater than the threshold value to
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achieve the purpose of signal denoising. The soft threshold activation function is defined as follows:

t =

⎧⎪⎨
⎪⎩

v − ε

0
v + ε

x > ε

−ε ≤ x ≤ ε

x < −ε

(6)

where v denotes the original characteristics, t denotes the adjusted characteristics, and ε denotes the
threshold.

The combination of STAF and ALTSN can retain a relatively complete waveform shape. In ith

RDSAB, the output features of STAF can be represented as follows:

Fi,ST = Hi,STAF(Fi,DF , Fi,ALT) (7)

where Hi,STAF (.) represents the activation function, Fi,DF represents input features of STAF, and Fi,ALT

represents the threshold.

2.2.4 Simulated Self-Attention Module (SSAM)

In order to prevent some details not relevant to the task from being filtered out after the use of
STAF, the ECG characteristics were further corrected with the simulated self-attention mechanism.
This paper draws on the idea of self-attention mechanism [40,41] and proposes a simulated self-
attention module. Since the input ECG signal is a sequential signal, by using SSAM, we could perform
signal context aggregation to predict the next signal sample from the current signal. SSAM can prevent
the network from mistakenly viewing the original pathological information as noise when learning
noise-free waveform features. The network structure of SSAM is shown in Fig. 5. It is expressed as
follows:

Fi,SSA = HSSAM(Fi,ST) (8)

where HSSAM(.) represents the simulated self-attention module, Fi,ST is the output of the STAF, and Fi,SSA

represents the output features of SSAM. Local residual learning could further enhance the learning
ability of the network, and its formula is as follows:

Fi = Fi,SSA + Fi−1 (9)

where Fi−1 and Fi represent the input features and output features of the ith RDSAB, separately.

Figure 5: The network structure of SSAM
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2.3 Feature Fusion Representation
FFR enhances feature representation ability in a global manner and reconstructs the de-noised

ECG signal. First, concatenation and 1 × 1 convolution operation are used to fully fuse the previously
accumulated functional features, then 1 × 31 convolution is used to further learn features, and then
residual learning is used to accelerate the learning of clean signal features in a global manner to obtain
the dense shrinkage feature fusion. Finally, 1 × 31 convolution is introduced to enhance the feature
representation ability. The dense shrinkage feature fusion is expressed as follows:

IDSFF = Conv1×31(Conv1×1(Concat(F1, . . . , FN))) + F0 (10)

where Concat(.) and Conv1 × 1(.) denotes concatenation operation and 1 × 1 convolution operation,
respectively. Conv1 × 31(.) denotes 1 × 31 convolution operation. IDSFF represents the output of dense
shrinkage feature fusion and the input of the next convolution. Therefore, we can go further with the
following operations:

IFF = Conv1×31(IDSFF) (11)

where Conv1 × 31 represents 1 × 31 convolution operation, the purpose of introducing convolution is
to learn features again after global residual learning, so as to enhance feature representation ability,
and IFF is the output of convolution operation.

3 Experiments and Analysis
3.1 Database Setup

To demonstrate the effectiveness of the proposed ECG denoising method, all experiments were
performed on public reference databases: MIT-BIH Arrhythmia Database [42] and MIT-BIH Noise
Stress Test Database (NSTDB) [43]. The MIT-BIH Arrhythmia database contains 48 ECG records.
Each record containing two leads is approximately half an hour in length with a sampling rate of
360 Hz. Following previous works [20,22], lead II was selected. In this paper, the MIT-BIH arrhythmia
database is used as a clean training distribution to train a network model. It is split into two sets: the
training set and the test set. And divide the training set and test set by a ratio of three to one. NSTDB is
applied to simulate real noise (BW, MA, and EM). Since the noise is a sample sequence, we can generate
a noisy ECG signal by intercepting a sample from the entire noise source (the same length as the clean
signal sample) and then artificially adding noise. To increase randomness, the starting point of each
intercept is a random indication. Three types of noise were incorporated into the electrocardiogram
(ECG) signal, resulting in the formation of three distinct datasets for the purpose of model training.
In light of the learning characteristics of neural networks, the normalization method described in [22]
has been employed to normalize the noisy ECG signal.

3.2 Evaluation Criteria
In the following experiments, several metrics, signal-to-noise ratio (SNR) and root mean square

error (RMSE), are selected to assess the ECG denoising performance [20,44]. The higher the SNR
value and the lower the RMSE value, the denoising ability of the network model is better. The SNR
and RMSE are represented as follows:

SNR = 10 log10

∑N

n=1(x(n))2

∑N

n=1

(
x̂ (n) − x (n)

)2 (12)

RMSE =
√

1
N

∑N

n=1

(
x̂ (n) − x (n)

)2
(13)
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where N represents the total number of samples under evaluation, x(n) represents the original ECG
signal, and x̂ (n) represents the desired ECG signal.

3.3 Implementation Detail
In order to ensure the generalizability of the model and find the proper hyper-parameters, the

training data of the network consists of noise-free ECG signals and noisy ECG signals. During
training, a sliding window technique with 50% overlap (512 samples) was used to cut the data into
1024 samples as a segment (about 3 s of ECG data). No overlap was used during the test, namely, it is
continuously truncated every 1024 samples.

The proposed network uses the L1 loss function, Adam optimizer, and max-min normalization.
The learning rate is empirically set as 0.00005 followed by Bengio’s work [45]. The training epoch,
batch size, the number of convolutional layers in DFLN, the number of RDSAB, and the growth rate
are set to 60, 1, 6, 10, and 64, respectively. The convolutional kernel size is 1 × 31 for all networks
except for ALTSN, which has a convolutional kernel size of 1 × 1.

3.4 Experimental Results
3.4.1 The Structure Selection of ALTSN

We conducted Two groups of experiments on these two structures, that is, the two FC structures
and Conv structures were embedded into ALTSN respectively to compare their performance. The
first set of experiments used two FC structures as the construction structure of the ALTSN, and the
second set of experiments used a Conv structure as the construction structure of the ALTSN. All other
parameters being equal, the SNR of the first group was 26.30 dB, and the SNR of the second group
was 27.66 dB, based on the results of our device environment run. According to the results obtained,
it is proved that the improvement proposed in this work is beneficial.

3.4.2 Ablation Experiment

Table 1 shows the ablation studies of ALTSN and SSAM. The baseline was obtained without
ALTSN and SSAM with poor performance (SNR = 26.44 dB). This may be caused by the difficulty
of training as well as too many redundant features, and also proves that only stacking many residual
dense blocks in a deep network does not lead to better performance.

Table 1: The SNR with ablation

Different combinations of ALTSN and SSAM structures

ALTSN × × √ √
SSAM × √ × √
SNR 26.44 27.42 27.66 27.71

ALTSN and SSAM were added to the baseline in different combinations, and a total of four
sets of experiments were performed. As shown in Table 1, each structure can effectively improve the
baseline performance, and the optimal performance is achieved by both ALTSN and SSAM added to
the baseline. While the incorporation of ALTSN and SSAM provides a notable advantage, it should
be noted that the activation function within ALTSN may result in signal smoothing and the loss of
certain details.
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3.4.3 Selection of the Soft Threshold Function

In order to show the effectiveness of the soft threshold function, a set of comparison experiments
are designed to replace the soft threshold function in the network with the hyper shrinkage function
[46], and the anti-noise performance of the two models is compared. As shown in Table 2, in the
soft threshold activation function experiment, the experimental result is 27.66 dB, while the other
set of experiments is 27.05 dB. The above experiments show that the soft threshold function is more
advantageous than the hyper shrinkage function in the ECG denoising task. Because the deep learning
model itself is a nonlinear system, and excessive introduction of nonlinear is easy to lead to excessive
signal smoothing, so the nonlinear hyper shrinkage function is adopted, which decreases the model’s
anti-noise performance.

Table 2: Selection of the soft threshold function

Function SNR/dB

hyper shrinkage function 27.05
soft threshold function 27.66

3.4.4 Performance Comparison

To evaluate the effectiveness of the proposed scheme, the experimental results of the proposed
scheme are compared with the existing three ECG denoising methods in [20,22,23] on different types
of noise (BW, MA, and EM). The same as [20], the contaminated ECG is made from the corresponding
noise-free ECG signal by adding EM, BW, and MA noise with input SNR (namely SNRin) of 0, 1.25,
and 5 dB, separately. The performance comparison between the proposed method and some state-
of-the-art ECG denoising methods in various sources of noise (BW, MA, and EM) and input SNR
(namely SNRin = {0, 1.25, 5 dB}) are listed in Tables 3–5.

Table 3: Performance comparison with existing ECG denoising methods under BW noise

Record 103 105 111 116 122 205 213 219 223 230 Average

AE
[20]

SNRin
0 dB SNR 23.78 25.40 23.31 23.51 20.07 20.07 21.30 23.02 24.25 22.72 22.72

RMSE 0.026 0.028 0.034 0.027 0.050 0.050 0.032 0.024 0.027 0.037 0.034
1.25 dB SNR 23.82 25.42 23.32 23.59 20.08 20.08 21.36 23.31 24.41 22.74 22.81

RMSE 0.026 0.028 0.034 0.034 0.027 0.050 0.032 0.023 0.027 0.037 0.033
5 dB SNR 23.89 25.45 23.35 23.76 20.08 20.08 21.46 24.08 23.64 22.79 22.96

RMSE 0.025 0.027 0.034 0.026 0.050 0.050 0.031 0.021 0.026 0.037 0.033

ECG-
GAN
[23]

SNRin
5 dB SNR 30.70 27.01 28.03 32.49 28.06 25.85 31.66 32.42 31.59 29.17 29.69

RMSE 0.019 0.022 0.014 0.022 0.039 0.021 0.025 0.020 0.021 0.022 0.022

ECG-
SCCT
[22]

SNRin
0 dB SNR 29.42 28.13 26.82 28.61 28.43 27.54 27.49 27.68 28.02 25.71 27.87

RMSE 0.018 0.021 0.025 0.023 0.037 0.021 0.022 0.021 0.022 0.028 0.023
1.25 dB SNR 30.16 28.92 27.77 29.45 29.34 28.43 28.62 28.50 28.78 26.63 28.66

RMSE 0.018 0.021 0.023 0.022 0.035 0.019 0.023 0.021 0.022 0.026 0.023
5 dB SNR 31.34 30.04 29.08 30.89 31.11 29.85 30.17 29.26 29.89 28.06 29.96

RMSE 0.017 0.020 0.014 0.023 0.035 0.017 0.036 0.020 0.021 0.023 0.022

(Continued)
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Table 3 (continued)

Record 103 105 111 116 122 205 213 219 223 230 Average

Proposed
framework

SNRin
0 dB SNR 28.98 25.70 24.25 23.78 32.98 30.68 27.19 26.47 30.82 28.24 27.91

RMSE 0.012 0.023 0.030 0.034 0.009 0.010 0.018 0.021 0.012 0.018 0.019
1.25 dB SNR 28.75 25.28 23.00 22.61 32.36 29.80 26.51 26.05 30.68 28.25 27.33

RMSE 0.012 0.023 0.034 0.040 0.010 0.011 0.019 0.021 0.011 0.018 0.020
5 dB SNR 28.44 24.36 23.27 21.89 30.73 29.13 27.21 25.84 30.33 29.19 27.04

RMSE 0.011 0.024 0.034 0.041 0.011 0.011 0.017 0.020 0.011 0.016 0.020

Table 4: Performance comparison with existing ECG denoising methods under MA noise

Record 103 105 111 116 122 205 213 219 223 230 Average

AE
[20]

SNRin
0 dB SNR 21.38 24.72 23.15 19.22 19.57 24.23 19.59 18.80 22.91 22.58 21.62

RMSE 0.034 0.030 0.035 0.045 0.040 0.031 0.038 0.039 0.032 0.038 0.036
1.25 dB SNR 22.41 24.86 23.27 20.22 20.02 24.49 19.78 19.63 23.41 22.60 22.07

RMSE 0.031 0.029 0.034 0.040 0.038 0.030 0.037 0.034 0.030 0.038 0.034
5 dB SNR 23.33 25.13 23.33 22.41 20.63 24.67 20.63 21.97 24.21 22.63 22.89

RMSE 0.027 0.028 0.034 0.031 0.036 0.030 0.034 0.027 0.028 0.038 0.031

ECG-
GAN
[23]

SNRin
5 dB SNR 25.34 29.01 25.22 30.90 30.51 26.77 27.16 28.27 30.41 29.68 28.32

RMSE 0.018 0.021 0.015 0.019 0.026 0.021 0.026 0.021 0.016 0.015 0.019

ECG-
SCCT
[22]

SNRin
0 dB SNR 25.77 25.33 21.20 26.04 24.79 24.99 25.43 26.74 25.98 24.02 25.23

RMSE 0.023 0.027 0.022 0.023 0.031 0.024 0.028 0.023 0.025 0.023 0.024
1.25 dB SNR 26.67 26.33 22.05 27.15 25.67 25.90 26.96 27.22 26.56 25.05 25.95

RMSE 0.023 0.025 0.020 0.022 0.030 0.022 0.027 0.022 0.023 0.022 0.023
5 dB SNR 27.65 27.51 23.50 28.37 27.06 27.35 28.34 28.74 27.71 26.26 27.24

RMSE 0.017 0.023 0.018 0.021 0.028 0.019 0.025 0.020 0.019 0.020 0.021

Proposed
framework

SNRin
0 dB SNR 29.86 26.92 25.93 26.01 34.45 30.72 27.88 28.71 31.17 28.17 28.98

RMSE 0.011 0.020 0.024 0.025 0.080 0.012 0.017 0.016 0.012 0.018 0.024
1.25 dB SNR 29.48 26.22 25.59 26.32 33.30 30.00 27.05 28.08 30.78 28.21 28.50

RMSE 0.011 0.021 0.025 0.024 0.009 0.012 0.018 0.016 0.012 0.018 0.017
5 dB SNR 29.34 26.74 26.45 25.17 30.91 28.84 28.47 28.32 29.77 30.06 28.41

RMSE 0.010 0.018 0.022 0.028 0.011 0.012 0.015 0.014 0.012 0.014 0.016

Table 5: Performance comparison with existing ECG denoising methods under EM noise

Record 103 105 111 116 122 205 213 219 223 230 Average

AE
[20]

SNRin
0 dB SNR 22.75 23.70 23.39 21.34 17.70 23.47 19.33 18.38 23.17 22.40 21.56

RMSE 0.029 0.033 0.034 0.035 0.050 0.033 0.040 0.041 0.031 0.039 0.037
1.25 dB SNR 22.97 23.94 23.57 21.82 18.76 23.57 19.79 19.07 23.55 22.54 21.96

RMSE 0.029 0.033 0.033 0.033 0.042 0.033 0.037 0.038 0.030 0.038 0.035
5 dB SNR 23.45 24.66 23.65 23.08 20.81 23.66 20.69 21.01 24.00 22.81 22.78

RMSE 0.027 0.030 0.033 0.030 0.035 0.030 0.034 0.030 0.028 0.037 0.031

(Continued)
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Table 5 (continued)

Record 103 105 111 116 122 205 213 219 223 230 Average

ECG-
GAN
[23]

SNRin
5 dB SNR 25.40 26.20 25.38 24.68 30.90 24.80 30.58 26.53 31.05 24.27 26.97

RMSE 0.022 0.024 0.014 0.021 0.028 0.026 0.028 0.025 0.021 0.018 0.022

ECG-
SCCT
[22]

SNRin
0 dB SNR 27.29 24.85 23.86 26.87 26.31 27.12 25.48 27.05 27.89 23.65 26.04

RMSE 0.019 0.025 0.021 0.020 0.033 0.028 0.036 0.025 0.024 0.019 0.025
1.25 dB SNR 28.40 26.06 25.16 28.14 27.39 28.22 26.99 27.65 28.74 24.81 27.15

RMSE 0.020 0.025 0.018 0.019 0.032 0.025 0.033 0.025 0.023 0.017 0.022
5 dB SNR 29.68 27.48 26.73 29.67 28.82 29.34 29.03 28.12 29.45 26.16 28.44

RMSE 0.018 0.024 0.015 0.017 0.029 0.023 0.028 0.024 0.022 0.015 0.021

Proposed
framework

SNRin
0 dB SNR 32.02 26.66 27.65 29.49 33.98 32.07 29.01 30.76 31.69 30.54 30.39

RMSE 0.007 0.018 0.017 0.013 0.007 0.009 0.013 0.011 0.009 0.013 0.012
1.25 dB SNR 32.48 26.86 27.63 30.24 33.14 32.03 30.22 31.21 31.57 31.49 30.69

RMSE 0.007 0.017 0.018 0.013 0.008 0.008 0.012 0.010 0.009 0.012 0.011
5 dB SNR 31.27 25.31 27.18 28.69 30.58 29.98 29.36 29.72 30.50 31.38 29.40

RMSE 0.007 0.021 0.019 0.015 0.010 0.010 0.013 0.011 0.010 0.013 0.013

As seen from Tables 3–5, it can be found that the proposed denoising scheme significantly out-
performance AE [20] in three types of noise. In addition, the proposed framework shows comparable
results with ECG-GAN [23] and ECG-SCCT [22] in BW noise conditions, but it outperforms those
methods in EM and MA noise conditions.

Furthermore, to illustrate the effectiveness of ECG denoising, the visualized denoising records in
three types of noise (BW, MA, and EM) are shown in Fig. 6. Here, for simplicity, only the denoising
effect of the proposed method at SNR 5 dB noise is shown. The result demonstrates that our proposed
method could obtain a denoised ECG signal basically consistent with the noise-free ECG signal
(original ECG signal). The results demonstrate that the proposed ARDSN can remarkably suppress
the impact of BW, MA, and EM noise on ECG signals.

Figure 6: (Continued)
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Figure 6: The denoising performance of ECG signal record 223: The blue wave line represents the
original ECG signal, the red wave line represents the ECG signal, and the green wave line represents
the estimated signal output by the proposed framework

4 Conclusion

In this paper, an ARDSN is proposed for ECG denoising. The designed RDSAB, as the basic
block of ARDSN, learns fine features in a local form. In each RDSAB, the dense connections between
each convolutional layer are used to extract rich waveform features, then ATDB is used to adaptive
suppress the noise, and SSAM is used to correct the learned noise-free signal. In addition, our FFR
enhances network representation in a global manner to further learn noise-free signal features. The
experimental results demonstrate that the proposed ARDSN can realize fairly good ECG denoising
performance. However, it is worth noting that the proposed method does have a couple of limitations
that should be taken into consideration. Firstly, the utilization of a soft threshold denoising technique
may result in the loss of finer details due to signal smoothing. Additionally, the convolution kernel used
in the method is relatively large, resulting in a higher number of trainable parameters and increased
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computational complexity. Therefore, there remains a margin for refinement and amplification of this
method’s efficacy.
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