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ABSTRACT

Recent advances in deep neural networks have shed new light on physics, engineering, and scientific computing.

Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots. The physics-

informed neural network (PINN) is currently the most general framework, which is more popular due to the

convenience of constructing NNs and excellent generalization ability. The automatic differentiation (AD)-based

PINN model is suitable for the homogeneous scientific problem; however, it is unclear how AD can enforce flux

continuity across boundaries between cells of different properties where spatial heterogeneity is represented by

grid cells with different physical properties. In this work, we propose a criss-cross physics-informed convolutional

neural network (CC-PINN) learning architecture, aiming to learn the solution of parametric PDEs with spatial

heterogeneity of physical properties. To achieve the seamless enforcement of flux continuity and integration of

physical meaning into CNN, a predefined 2D convolutional layer is proposed to accurately express transmissibility

between adjacent cells. The efficacy of the proposedmethodwas evaluated through predictions of several petroleum

reservoir problems with spatial heterogeneity and compared against state-of-the-art (PINN) through numerical

analysis as a benchmark, which demonstrated the superiority of the proposed method over the PINN.

KEYWORDS

Physical-informed neural networks (PINN); flow in porous media; convolutional neural networks; spatial
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1 Introduction

Flow and transport in porous media play a crucial role in a variety of subsurface energy and

environmental applications, such as reservoir recovery, carbon sequestration, etc. Many of these
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problems can be characterized as partial differential equations derived from the principles of conser-

vation. However, due to the intricate nature of PDEs and the absence of rigorous theoretical analysis

techniques, the approximation of most PDEs is only resorted to based on discretized methods, such

as finite difference, finite volume, and finite element. After decades of development, these methods

have become robust and flexible. However, for considerably large problems, numerical simulations can

become increasingly slow and sometimes prohibitively so [1]. Moreover, multiple simulation runs are

required to inverse problems, conduct sensitivity analyses, and optimize a project’s design. Recently,

surrogate models to traditional numerical models have been widely employed in the field of reservoir

development, including reduced-order methods [2–6], deep learning methods [7–15], and Gaussian

process [16,17], which provide a rapid numerical model approximator to efficiently solve inverse

problems, optimization problems.

In recent years, with the increase in GPU computing power and the generalization of deep

learning frameworks [18], the application of deep learning in petroleum engineering has garnered

significant interest due to its powerful nonlinear approximation and data assimilation capabilities [19–

25]. Despite the relentless development of the data-driven method, there are still some problems in

dealing with scientific and engineering problems. The traditional data-driven method usually requires

a great deal of quality data, more importantly, ignores the physical principles underlying the research

problem, which results in predictions that may be physically inconsistent or implausible [26]. To

enhance the model’s predictive consistency with first principles, a unified model is needed to naturally

leverage theoretical constraints and any useful prior knowledge [27]. Raissi et al. [28] proposed the

physics-informed neural networks (PINNs) which can seamlessly integrate observational data and

physics laws by incorporating the PDEs, boundary conditions, initial conditions, and observational

data into the loss function to construct a hybrid physics-constrained loss function based on an

automatic differentiation algorithm [26,29–31]. Based on the PINN framework, many researchers

have proposed many interesting variants for specific problems [32–36]. Yan et al. [27] developed

a gradient-based deep neural network (GDNN) for modeling multiphase flow in porous media

at geologic CO2 storage sites, which eliminates nonlinearity by decomposing nonlinear PDEs into

elementary differential operators. Li et al. [37] proposed a Theory-Guided Neural Network (TGNN)

to predict the state variables of two-phase by incorporating besides the governing equations but also

the expert knowledge and engineering controls into the loss function. Jagtap et al. [38] proposed a

conservative physics-informed neural network (cPINN) for solving nonlinear PDEs by decomposing

the computational domain into different sub-domains and enforcing the flux continuity in the strong

form along the sub-domain interfaces. Park et al. [39] constructed a hybrid model for optimum

unconventional field development by combining unconventional reservoir uncalibrated priors and

data generated by a numerical simulator. To solve the two-phase immersible flow problem governed

by the Buckley-Leverett equation [40,41], they used physics-informed neural networks and obtained

a physical solution by adding a diffusion term or an observational amount to the PDEs.

The auto-differentiation-based PINN model is suitable for a homogeneous scientific problem,

however, it is unclear how AD can enforce flux continuity across boundaries between cells of different

properties where spatial heterogeneity is represented by grid cells with different physical properties

[42]. In this work, we try to combine the physics laws with data to simulate the single and two-phase

flow in porous media using convolutional neural networks. The finite difference method (FDM) is

used to approximate the governing equation residual, which allows flux continuity between cells to

be rigorously defined. A predefined 2D convolution layer with a criss-cross convolution kernel is

introduced to enable and enforce flux continuity and express the discretized governing equations,

harmonicmean of permeability, and upstream-weighted differencing schemes.Moreover, the proposed
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method has also been compared against the state-of-the-art PINN. The numerical reference results

evince the effectiveness of the proposed method over the PINN.

The remainder of this paper is structured as follows. Section 2 introduces the conservation

equation of multiphase darcy flows in porous media in petroleum reservoirs and criss-cross physics-

informed convolutional neural networks. Section 3 validates the model on single and two-phase flow

in the heterogeneous reservoir. Finally, discussions and conclusions are given in Section 4.

2 Methodology

2.1 Single and Multiphase Darcy Flows in Petroleum Reservoirs

In this study, we introduce the general oil-water two-phase Darcy flowmodel (Single phase model

can be obtained by simplifying the two-phase model) in the porous media. We consider the fluids are

slightly compressible and immiscible, and there is no mass transfer between the phases. The governing

equation can be written as follows:

∇

(

ρw

kkrw

µw

∇pw

)

+ qw =
∂ (φρwSw)

∂t

∇

(

ρo

kkro

µo
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)

+ qo =
∂ (φρoSo)

∂t
(1)

where the ρw and ρo are the density of water and oil; k, krw Eq. (2) and kro Eq. (3) are the absolute

permeability, the relative permeability of oil and water, respectively; µw and µo are the water and oil

viscosity; po and pw are the pressure of oil phase and water phase; Sw and So are the saturation of water

and oil; qw and qo are the source/sink term of water and oil phase; φ is the porosity of porous media.

And in this work, there is no capillary pressure so pw = po.
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(
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)2
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)2

(3)

where the Swi and Sor irreducible water saturation and residual oil saturation, respectively. Since no

mass transfer occurs between the phases, we can use volume factor and compressibility to rewrite the

governing equations as follows:
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where the Bw and Bo are the volume factor of water and oil, respectively; Cφ, Cw and Co are the

compressibility of the rock, water, and oil, where the Bref is the volume factor at the reference pressure.

When simplified to one phase, the equation can be written as follows:

∇
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2.2 Convolutional Neural Network (CNN)

The convolutional neural network (CNN or ConvNet) is a deep learning structure that can

learn directly from image data without manually extracting features [43]. CNNs are particularly well

suited for finding patterns in images to recognize objects, faces, and scenes. Such networks also

work well for classifying some non-image data, such as audio, time series, and signal data. Despite

there are many kinds of new and complex variants, CNNs still rely on convolution layers, which are

composed of convolutional kernels or filters with learnable biases and weights. It reduces the number

of parameters required by the convolutional layer by sharing the same convolutional kernel across all

spatial locations. For illustration, suppose that the input tensor is:

X ∈ RM×N (6)

where M and N denote the dimensions of the input, and xi,j is the value of input tensor X at the

position (i, j). Consider a specific convolutional kernel:

ω ∈ R
kh×kw (7)

where kh and kw are the dimensions of the convolutional kernel, ωc,d denotes the weight value at the

position (c, d). The feature map can be expressed as follows:

ui,j =

kh
∑

c=1

kw
∑

d=1

xi·s1−1+c,j·s2−1+d · ωc,d + b (8)

where s is stride which is a parameter of the neural network’s filter that modifies the amount of

movement over the image, b is the bias of the convolutional kernel.

2.3 Criss-Cross Physics-InFormed Convolutional Neural Networks

Despite the tremendous advancements the traditional data-driven method has made, it is

inevitably considered to be a ‘black box’, which means that the system does not embody any physical

meaning of the dataset and the predictions may be physically inconsistent or implausible [26]. In

this work, a criss-cross physics-informed convolutional neural network is proposed for modeling

flow in porous media, which can be trained with limited training data, and scientific theories can

be incorporated seamlessly. Consider a specific petroleum reservoir problem, the governing equation

Eq. (1) can be discretized with the finite difference method:
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where α is o for oil and w for water; T n+1
i±1/2

and T n+1
j±1/2

denote the transmissibility between adjacent cells;

the subscript i, j and n denote the indexes of discretized grids in the horizontal, vertical, and temporal

dimension, respectively; the permeability is taken as harmony mean (Eq. (10)); the volume factor and

mobility are taken as upstream weight (Eq. (11)); the well can be modeling by Peacemen equation

(Eq. (12)) [44].
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(12)

where k is permeability, h is the thickness of the reservoir, µ is the fluid viscosity, pij is the well-

containing grid pressure, pw is the bottom hole flow pressure, the equivalent radius equals re =

0.207881x, rw is the radius of the wellbore, and S is skin effects.

To achieve the seamless enforcement of flux continuity and integration of physical meaning into

CNN, a predefined 2D convolutional layer with a criss-cross kernel layer is proposed, specifically as

shown in Fig. 1.

Pressure/Saturation 

distribution 

Pressure/Saturation 

distribution segment 

Transmissibility 

convolution kernel

Residual of 

PDEs

Figure 1: Predefined 2D convolutional layer

Therefore the discretized residual of the control equation (Eq. (9)) can be expressed as follows:
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1
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(13)

where MSEpde is the loss associated with the residual of governing equations; Nu is the total number

of collocation points of the governing equation; p̂
n+1

α
is the pressure matrix of output at time n + 1 for

phase α; Ŝ
n+1

α
is the saturation matrix of output at time n+1 for phase α.

For boundary condition constraints, the Cov2D operation of CNN is used to implement the

constant pressure and closed boundary conditions, as shown in Fig. 2.

The initial conditions are added to the loss function as a penalty item (Eq. (14)).

MSEic =
1

Nic

Nic
∑

i=1

(

Ŝwic − Swic

)2

+
1

Nic

Nic
∑

i=1

(

p̂wic − pwic
)2

(14)

where MSEic is the loss associated with the residual of initial conditions; Nic is the total number of

collocation points of initial condition; Ŝwic and Swic are the saturation matrix of output and reference

value, respectively; p̂wic and pwic are the pressure matrix of output and reference value.
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Figure 2: The implementation of boundary conditions

Similar to conventional neural networks, the MSE between prediction and truth data can also be

added to the loss function of neural networks.

MSEdata =
1

Ndata

Ndata
∑

i=1

(

Ŝ
n
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− S

n

w

)2

+
1

Ndata
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w
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(15)

whereMSEdata is the loss associated with the residual of data match; Ndata is the total number of label

data; Ŝ
n

w
and S

n

w
are the water saturation matrix of output and label data, respectively; p̂

n

w
and Pn

w
are

the water pressure matrix of output and label data.

As a result, the total loss function can be as follows:

MSE = MSEpde +MSEic +MSEdata (16)

Typically, weights are assigned to each subterm of the loss function. However, there is no

systematic analysis of weight determination or optimization in the literature, and these weights are

commonly tuned by hand based on experience or trial and error. They remain constant during the

training process [45]. In this work, we use a trick to alleviate the troublesome process of tuning the

weights to a certain extent. We adjust the timing of putting different loss items into network training.

Specifically, instead of training all objects at the same time, we first train the initial conditions and

data matching in the first stage, and subsequently add the rest of the items. This can be done because

the learning of the laws of physics and other parts is based on initial conditions. Subsequently, the

criss-cross physics-informed convolutional neural networks can be instantiated viaminimization of the

total loss function. Such an approach inherently capitalizes on the discretized control equation, initial

conditions, and boundary conditions to guarantee its accuracy and physical consistency of output.

The structure and parameters of the criss-cross physics-informed neural network model are illustrated

in Fig. 3 and Table 1. In the context of two-phase flow, the interdependence of pressure and saturation

necessitates a coupled solution. Accordingly, to alleviate the burden of training, two distinct networks

are employed to address pressure and saturation, respectively. Through imposing physical constraints,

the aforementioned networks are subsequently linked. In contrast, when tackling the single-phase

scenario, solely the pressure network is trained, with the saturation network being discarded.



CMES, 2024, vol.138, no.2 1329

Encoder Decoder

Data

Matching

Residual of

PDEs

Initial 

conditions

Encoder Decoder

Pressure NNs

Saturation NNs

Predefined 

convolutional layer

Physics-informed training

Physics-informed training

Predicted 

pressure

Predicted 

saturation

Figure 3: The structure of the criss-cross physics-informed convolutional neural networks

Table 1: The parameters of CC-PICNN

Dimension Convolutional kernel

Input (1, 1, 51, 51) /

Conv 1 (1, 16, 49, 49) k3s2p0

Conv 2 (1, 32, 24, 24) k5s2p1

Conv 3 (1, 64, 11, 11) k5s2p1

Conv 4 (1, 128, 9, 9) k3s1p0

Linear 1 (100) /

Linear 2 (100) /

Linear 3 (10368) /

Dconv1 (1, 64, 11, 11) k3s2p0

Dconv2 (1, 32, 23, 23) k5s2p1

Dconv3 (1, 16, 47, 47) k5s2p1

Dconv4 (1, 16, 51, 51) k5s1p0

3 Test Cases

In this section, we evaluate the performance of the criss-cross physics-informed convolutional

neural network by assessing it on two heterogeneous reservoir problems: a single-phase problem and

an oil-water two-phase problem.
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3.1 Single-Phase Heterogeneous Reservoir Problem

Initially, we examine a 2D heterogeneous reservoir problem, which is derived from an actual

block, and labeled data is generated through numerical simulations. The geological model features

closed boundaries on all sides. The initial pressure is 300 bar. The dimension of the reservoir model is

510m × 510m × 10m and the domain is discretized into 51 × 51 grid blocks with 1x = 1y = 10m.

The permeability field is depicted in Fig. 4. The porosity is 0.2 everywhere. The water and rock

are incompressible, and the oil compressibility and the volume factor at the reference pressure are

0.0045 bar−1 and 1.12. The water and oil viscosity are 0.3 and 3. The reservoir is simulated for 50

months with 1T = 1month. The three production wells producing at a constant rate of 50, 30 and

20 m3/d respectively located in (510, 510), (210, 210), (770, 310).
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Figure 4: Permeability field

The CC-PINN takes a single-channel input, represented by the timematrix, and produces a single-

channel output in the form of the pressure field image. The network architecture is illustrated in Fig. 3

and comprises an encoder and a decoder, each containing four convolutional layers. The Sigmoid

Linear Unit (SiLU) activation function and the Adam optimizer, with a learning rate decay strategy,

are employed for model training, using an initial learning rate of 0.001 a decay rate of 0.1, and an

epoch of 5000. The predictive performance of the CC-PINNmodel is evaluated using two metrics: the

coefficient of determination and the relative L2 error, as described by Eqs. (17) and (18), respectively.

R2 = 1 −

N
∑

i=1

(

ûi − ui
)2

N
∑

i=1

(ui − ui)
2

(17)

L2 =
‖uθ − u‖2

‖u‖2

(18)

where the ûi and ui are the prediction and truth value; ui is the average value of the truth value; N is

the number of evaluation points; ‖·‖2 denotes the standard Euclidean norm.

In this study, the data of the initial 65-time steps were extracted as the training dataset to

develop a predictive model for the pressure response over the subsequent 35-time steps response.

Subsequently, we established the geological andmathematicalmodels, alongwith the requisite network
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configurations, to train and evaluate the CC-PINNmodel. The predicted pressure of CC-PINNat time

step 75 and 100 are illustrated inFigs. 5b and 6b, it can be seen that predicted pressure byCC-PICNN is

very close to the reference solutions withmean absolute differences below 0.1, and negligible difference

visually. Moreover, the predictions of pressure from the PINN at time step 75 and 100 are shown in

Figs. 5c and 6c. It demonstrates that the single-phase flow in porous media with spatial heterogeneity

problems can be handled well by CC-PINN.
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Figure 5: Pressure fields obtained by numerical simulation (left), CC-PICNN (middle), and PINN

(right) at T = 75
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Figure 6: Pressure fields obtained by numerical simulation (left), CC-PICNN (middle), and PINN

(right) at T = 100

The histogram of relative L2 error (a) obtained by CC-PICNN and PINN on the test dataset

is shown in Fig. 7, although the relative L2 error and R2 score metric reach the same level, the CC-

PICNN is more precise and smoother, since the spatial heterogeneity of permeability is better satisfied

and expressed by a predefined convolutional layer. However, for PINN, the error tends to increase as

time evolves, probably due to the cumulative effect of the error.

The results show the satisfactory accuracy of the CC-PINN and superior performance compared

with the PINN model. The accuracy of CC-PINN is further validated by comparing the bottom-hole

pressure (BHP) curves to reference numerical solutions and PINN. As shown in Fig. 8, the curve of

bottom-hole pressure obtained from the CC-PINN model almost overlaps with the reference numer-

ical solutions compared to the PINN. The non-convergence of the predicted curve, as determined by

the PINN, can be attributed to the inadequacy of convergence in the well-containing grid pressure.

This results in a discrepancy between the predicted curve and the reference curve. Notably, all three
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models employ the samewell index. And the comparison of the predictive accuracy of CC-PICNNand

PINN is shown in Table 2. The comparison work demonstrated that CC-PICNN can better handle the

strong nonlinear conditions of a source-sink term with well control conditions of the constant liquid

rate at the same number of iterations.
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Figure 7: The relative L2 error (a) and R2 score (b) obtained by CC-PICNN and PINN on the test

dataset
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Figure 8: The BHP obtained by numerical simulation, CC-PICNN, and PINN

Table 2: R2 score of BHP obtained by CC-PICNN and PINN

Oil well-1 Oil well-2 Oil well-3

CC-PICNN 0.9938 0.9999 0.9996

PINN 0.9275 <0 0.5324

3.2 Oil-Water Two-Phase Heterogeneous Reservoir Problem

In this sub-section, the CC-PINN model is demonstrated in the context of a two-phase hetero-

geneous reservoir scenario. Unlike the single-phase problem, the governing equations (Eq. (5)) for
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two-phase flow represent a coupled system of pressure and saturation, thereby inducing interferences

during backpropagation if a singular neural network is employed for training. Therefore, two distinct

networks are adopted to tackle pressure and saturation separately, as depicted in Fig. 3. By enforcing

physical constraints, the two networks are interdependent. Both networks adhere to a standard

configuration comprising four convolutional layers, with an encoder and decoder component.

The geological model to be solved is a domain covering 510 × 510 × 10 m3 with four no-flow

boundary conditions. The coordinates of the injection and production wells are (5, 5) and (505, 505),

respectively. In this work, we assume that the rock and fluid are incompressible. The porosity is 0.2 and

the permeability is shown in Fig. 9. The reservoir’s initial conditions comprise a pressure of 250 bar,

with initial water saturation and irreducible water saturation of 0.2. The reservoir is simulated for 100

months with 1T = 1month. The injection and production wells exhibit a constant liquid volume of

50 m3/day and a constant well bottom pressure of 150 bar, respectively. The parameter configuration

utilized in CC-PINN remains consistent with the single-phase problem in Section 3.1.
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Figure 9: Permeability field

The predicted pressure and water saturation of CC-PINN at time step 75 and 100 are illustrated

in Figs. 10b, 10e, and 11b, 11e, it can be seen that the pressure and saturation distribution obtained by

the CC-PINN is in good agreement with the reference numerical solution, however, the error increases

near the well and saturation font where the pressure gradient or water saturation changes dramatically.

Moreover, the predictions of pressure and water saturation from the PINN model at time step 75

and 100 are shown in Figs. 10c, 10f, and 11c, 11f. Based on experimental results, it is evident that the

pressure distribution exhibited by the CC-PICNNmodel conforms more closely to the laws of physics.

Based on the predicted data, it is observed that the PINN model exhibits an evolution over time,

as evidenced by the histograms of R2 scores and relative L2 errors for the 35 predicted test time steps by

CC-PINN and PINN in Fig. 12. Specifically, a higher accuracy curve indicates that the CC-PICNN

is better at correctly regressing instances, both PINN and CC-PICNN model display an exponential

increase in L2 errors and a corresponding decrease in R2 scores, which could potentially be attributed

to error accumulation. The aforementioned findings are consistent with the established literature on

error propagation in machine learning models.
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Figure 10: Pressure (the first row) and water saturation (the second row) fields of numerical simulation

benchmark (left column), CC-PICNN (middle column), and PINN (right column) at T = 75
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Figure 11: Pressure (the first row) and water saturation (the second row) fields of numerical simulation

benchmark (left column), CC-PICNN (middle column), and PINN (right column) at T = 100
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(a) Relative L2 error of pressure (b) R2 score of pressure 

(c) Relative L2 error of water saturation (d) R2 score of water saturation 
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Figure 12: The histograms of R2 scores and relative L2 errors for the 35 predicted test time steps by

CC-PINN and PINN

The accuracy of CC-PINN is further validated by comparing the bottom-hole pressure (BHP)

of the injection well and liquid production rate of oil well curves to the PINN model and reference

numerical solutions benchmark, as shown in Fig. 13. And the comparison of the predictive accuracy

of CC-PICNN and PINN is shown in Table 3. A lower loss of the curve obtained by CC-PICNN

indicates that the model is better at minimizing the rate error.

The oil production rate and water production rate curves obtained by CC-PICNN exhibit a

remarkable degree of congruence with the reference numerical solutions, as opposed to those obtained

by PINN. Specifically, the non-convergence of the predicted curve obtained by PINN can be attributed

to the inadequacy of convergence in the well-containing grid pressure and water saturation. The non-

convergence can be ascribed to the inadequate prediction of well grid pressure and non-adherence of

two-phase saturation to the conservation condition of summing up to unity. This leads to inaccuracies
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in production pressure difference and relative permeability, ultimately culminating in substantial errors

in the resultant production curve.
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Figure 13: Production rate of oil well (left) and BHP of injection well (right) obtained by numerical

simulation, CC-PICNN, and PINN

Table 3: R2 score of BHP obtained by CC-PICNN and PINN

Model Oil well Injection well

BHP
CC-PINN \ 0.857070452

PINN \ <0

Oil production rate
CC-PINN 0.982053324 \

PINN <0 \

Water production rate
CC-PINN 0.85433558 \

PINN <0 \

Although showing good ability in addressing spatially heterogeneous problems, the current

framework has several limitations, andmany technical challenges are still present. Firstly, the data used

in this paper are derived from numerical simulations, which may not always be applicable to scientific

problems. Furthermore, the acquisition of numerical simulation data is resource-intensive, which may

limit the practical application of the model. Therefore, it is crucial to explore methods that use little

or no labeled data in future research. Secondly, the CNN-based physics-informed model in this paper

can only handle regular boundaries at present and cannot solve complex boundary conditions. This is

a technical challenge that necessitates further research and development.
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4 Conclusion

In this work, a criss-cross physics-informed convolutional neural network (CC-PINN) is proposed

for predicting porous media fluid flow with spatial heterogeneity. A 2D convolutional layer with a

criss-cross convolutional kernel is introduced to achieve the seamless enforcement of flux continuity

and integration of physical meaning into CNN. The layer is designed to enable the direct use of

powerful classic CNN backbones for expressing transmissibility between adjacent cells, discretized

residuals of PDEs, harmonic means of permeability, upstream-weighted differencing schemes, and

boundary conditions. The introduction of this layer is motivated by the need to ensure accurate

representation and conservation of information in the discretized domain. The criss-cross convolu-

tional kernel utilized in this layer facilitates the computation of the relevant physical quantities and

guarantees the preservation of their inherent properties in the CNN model. The initial conditions,

and discretized PDEs residual expressed by the criss-cross convolutional kernel are imposed in the

loss function as physical penalty terms for data match loss, additionally, the boundary conditions are

seamlessly integrated into the training process by padding operation in CNN. In essence, the solving

process of PDEs in numerical simulators is replaced by the training procedure of deep learning, and

the solving scheme can be learned by the network. Once trained, the CC-PINN can be used to predict

future pressure and saturation distributions. The effectiveness and merit of the proposed CC-PINN

have been demonstrated by solving several dynamic subsurface flow instances in reservoir porous

media, encompassing a spectrum of heterogeneous problems, ranging from single-phase to two-phase

complexities. Through numerical analysis as a benchmark, we compared the proposed CC-PICNN

model with the state-of-the-art PINN model. The findings demonstrate that the CC-PINN exhibits a

faster convergence rate than the PINNmodel, and the accuracy of the CC-PINNmodel surpasses that

of the PINN model, provided that the total training dataset and iteration number remain constant.

These results highlight the superiority of the proposed CC-PINNmodel over the existing state-of-the-

art PINN model for the prediction of porous media fluid flow with spatial heterogeneity.
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