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ABSTRACT

The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise. As
complex system-level equipment, it is difficult for high-speed wire rod finishing mills to realize fault location
and real-time monitoring. To solve the above problems, an expert experience and data-driven-based hybrid fault
diagnosis method for high-speed wire rod finishing mills is proposed in this paper. First, based on its mechanical
structure, time and frequency domain analysis are improved in fault feature extraction. The approach of combining
virtual value, peak value with kurtosis value index, is adopted in time domain analysis. Speed adjustment and
side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic
frequency and its corresponding sideband. Then, according to time and frequency domain characteristics, fault
location based on expert experience is proposed to get an accurate fault result. Finally, the proposed method is
implemented in the equipment intelligent diagnosis system. By taking an equipment fault on site, for example, the
effectiveness of the proposed method is illustrated in the system.
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1 Introduction

With the increasing demand for steel in social development, the iron and steel industry has
achieved rapid growth in recent years. In particular, the large-scale application of modern information
technology in the iron and steel industry has made the functions of steel processing equipment more
and more powerful, and the types of equipment are also increasing. However, the probability of
equipment failure has increased significantly, especially the failure of steel rolling equipment [1]. Once
the rolling equipment fails, even if the fault is tiny, it may also bring significant economic losses to the
steel processing enterprises [2]. Therefore, to ensure the regular operation of steel rolling equipment,
it is necessary to monitor the running state of steel rolling equipment in real time. Significantly, some
abnormal conditions can affect the safety of equipment and product quality [3].
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In practical engineering, the gearbox is widely applied in rotating machinery transmission
equipment, such as steel rolling mills. Its four main parts include shaft, gear, bearing, and box [4].
The empirical judgment method is the most commonly used in the steel rolling field. However, it
belongs to post diagnosis and relies too much on subjective judgment. Yang et al. [5] proposed a fuzzy
logic fault diagnosis method. Based on the fuzzy signs of the high-speed wire mill gearbox, fuzzy
state recognition makes decisions and traces to the source of the failure. Zhang et al. [6] proposed a
fault diagnosis method based on signal processing. The combination of empirical mode decomposition
(EMD) and energy operator demodulation can effectively diagnose the fault of the rolling mill gearbox.
The early fault characteristic signal of the gearbox bearing is weak and seriously affected by the
environmental noise. Aiming at this problem, Wang et al. [7] proposed a diagnosis method based
on dual-tree complex wavelet transform (DT-CWT) and minimum entropy deconvolution (MED).
At present, there are many effective diagnosis methods for rolling mill components, such as multi-
scale deep residual learning and stacked LSTM [8], deep sparse representation network (DSRNet) [9],
multi-scale convolutional neural networks and thermal imaging [10], feature-fusion covariance matrix
and multi-Riemannian kernel ridge regression [11]. However, the fault diagnosis of the whole system,
especially the rolling mill, is still a great challenge due to its complicated structure.

More significantly, it is difficult for the rolling mill to realize online roll fault diagnosis.
Chen et al. [12] proposed a method based on ensemble empirical mode decomposition (EEMD)
and adaptive filtering for extracting characteristic signals of low-frequency rolling vibration. Besides
this characteristic, the rolling mill unit also has continuous changes in rotating speed and large load
fluctuation. Li et al. [13] proposed a stress wave technology to eliminate external interference factors
and reflect actual fault conditions inside the equipment. Aiming at unknown disturbances on site,
Luo et al. [14] gave a robust data-driven fault approach for rolling mills. In the recent literature,
multi-source sensing data fusion and improved deep learning [15,16], time-frequency image, and dual
attention-guided feature enhancement networks [17] are widely applied in rolling mill health state
diagnosis and fault diagnosis under imbalanced and limited datasets. System-level fault diagnosis is a
complex and challenging issue. The difficulties mainly include system complexity, data acquisition and
processing, learning and generalization, hypothesis and reasoning, and system security. Jiang et al. [18]
proposed an optimal fault detection and diagnosis (FDD) strategy for dynamic traction systems.
Kouadri et al. [19] and Yan et al. [20], respectively proposed an intelligent fault diagnosis using hidden
Markov model (HMM) based principal component analysis (PCA), a multichannel fault diagnosis
using multivariate singular spectrum decomposition and improved Kolmogorov complexity, to realize
fault diagnosis of wind energy system. For the rotor-bearing system, small labeled infrared thermal
images and enhanced convolutional neural network transferred from convolutional auto-encoder [21],
the multi-branch convolutional neural network with generalized shaft orbit [22], dimensional analysis
and central composite rotatable design [23] are proposed. Besides, the digital twin is also a novel
approach for system-level fault diagnosis [24]. However, existing fault diagnosis methods have some
shortcomings. On the one hand, some of them cannot provide deterministic diagnosis results, due to
the complexity of equipment and system. On the other hand, their cost is high. It is difficult to be
widely used in small and medium-sized enterprises [25].

Model-based fault diagnosis needs an accurate model, and it is difficult to deal with unknown
situations. In contrast, the data-driven fault diagnosis method has high model complexity and requires
many labeled data. Aiming at high-speed wire rod finishing mills, this paper proposed a fault diagnosis
approach based on expert experience and data-driven. At present, system-level fault diagnosis is rarely
applied in the steel production field. Most of them only use monitoring systems. This paper introduces
an equipment intelligent diagnosis system. The main contributions can be summarized as below:
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(1) To revise the error of collected speed value error by the field sensor, a speed adjustment method
is proposed in this algorithm procedure.

(2) Frequency doubling analysis and side frequency analysis is combined in this paper to obtain
fault frequency characteristic.

(3) An expert experience and data-driven based fault location method is proposed to analyze the
essential reason for finishing mill failure.

The remainder of this paper is organized as follows. Section 2 introduces the instruction and
structure of the high-speed wire rod finishing mill group. A fault diagnosis method based on expert
experience and data-driven for high-speed wire rod finishing mills is proposed in Section 3. Section 4
introduces an equipment intelligent diagnosis system in the steel production field. Section 5 makes
case verification for an on-site fault. Section 6 proposes conclusions for this paper.

2 High-Speed Wire Rod Finishing Mill Group
2.1 Instruction of High-Speed Wire Rod Finishing Mill Group

A High-speed wire rod production line is a unique production equipment for producing carbon
structural steel, low alloy structural steel, high strength steel, stainless steel and special steel. The
production line uses continuous casting billets as raw materials. The main process flow includes
raw material preparation, heating, rolling, controlled cooling, and finished product finishing. On the
rolling line, the rolling mill is divided into rough rolling, medium rolling, and pre-finishing mills. And
the rolling process of continuous automatic control is adopted. Fig. 1 describes the detailed procedure.
And Fig. 2 shows part of the process in field production.

The no-twist finishing mill group is a significant piece of equipment in the high-speed wire rod
workshop. The finishing mill group uses high precision, high-speed helical gear, bevel gear, oil film
bearing, and rolling bearings. The machining accuracy, dynamic balance accuracy, and installation
accuracy requirements of each part are very high. The research object is the super heavy top cross
45° high-speed wire rod finishing mill group. It is arranged in the high-speed wire rod production
workshop. Through faint tension in a continuous rolling mill of ten frames, the �17–23 mm rolled
pieces transported by upstream rolling mills are rolled to the �5.5–13 mm finished wire rod.

Figure 1: The process flow chart of high-speed wire rod production line



1830 CMES, 2024, vol.138, no.2

a. Charging b. Heating process c. Packing

Figure 2: The process of field production

2.2 Structure of High-Speed Wire Rod Finishing Mill Group
The speed wire rod finishing mill group has 10 frames, mainly composed of 5 �230 rolling

mills and 5 �170 rolling mills. The last two frames are the hypervelocity ones. They can increase
the speed of the finishing mill group. And the exit speed can be maintained at 90 m/s. The roller
ring diameter of the first five is �228.3/�205 × 72 mm. The roller ring diameter of the last five is
�170.66/�153 × 57.35/70 mm. Besides, the finishing mill group also includes speed increaser, base
plate, drum gear coupling, dam board, safety guard, guiding, etc. The rolling mill frame mainly consists
of the roll box and the bevel gearbox. Fig. 3 introduces the main components of high-speed wire rod
finishing mills.

a. Roll box b. Bevel gearbox c. Roll axis d. Oil film bearing

e. Cylindrical roller bearing f. Angular contact ball bearing

Figure 3: The components of high-speed wire rod finishing mills
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In routine production of the rolling plant, the roll box and bevel gearbox are often shifted or
regarded as repairing objects. They are major parts, also easily damaged parts in the finishing mill
group. The roll box adopts an inserted structure with a cantilever roller ring. It is equipped with
an eccentric sleeve mechanism to adjust the roll gap. There are oil film bearings and roll axis in the
eccentric sleeve. And the roller ring is fixed with a tapered sleeve at the end of the cantilever roller axis.
The bevel gearbox comprises box body, transmission shaft, spiral bevel gear pair, and synchromesh
gear pair. All of them are hard tooth surface grinding gears with precision grade five, tooth surface
modification, to ensure high speed and smooth operation. Fig. 4 describes the structure of the roller
box and its sealing structure.

Figure 4: The structure of the roll box and its sealing structure

Fig. 5 shows the drive system diagram of 26# frame. It reflects the transmission relationship
between the shaft, gear, and bearing. Therefore, it is the basis for obtaining component characteristic
frequency calculation formulas. There are five transmission shafts, six oil film bearings, six high-
precision gears, five angular contact ball bearings, and three cylindrical roller bearings. Among them,
II axis, III axis, IV axis, V axis, VI axis represent transmission shaft. Z3, Z4, Z5, Z5, Z6, Z7, Z8
represent high precision gear. J, LB, Y represent angular contact ball bearings. HA, GA, G represent
cylindrical roller bearings.
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Figure 5: The drive system structure of the rolling mill frame

3 Expert Experience and Data-Driven Based Fault Diagnosis Method

Existing fault diagnosis methods can rarely be applied in actual production. In this section, a
fault diagnosis method based on expert experience and data-driven is proposed for high-speed wire
rod finishing mills. Based on the equipment transmission mechanism, the proposed method in this
paper analyzes and calculates vibration data, and relies on expert experience to set the parameters and
judgment criteria in the algorithm.

Fig. 6 consists of six parts, namely data acquisition, time domain analysis, frequency domain
analysis, speed adjustment, frequency doubling and side frequency analysis, and fault location. Firstly,
data is acquired from the wireless vibration sensor cloud server. Then, the virtual value, peak value, and
kurtosis index are calculated and analyzed in the time domain. In the frequency domain, component
characteristic frequency is calculated. And speed adjustment, frequency doubling analysis, and side
frequency analysis are implemented. Finally, combining time and frequency domain characteristics
with expert experience, the actual fault is located.

3.1 Data Acquisition
Maintainers of steel rolling plants usually monitor equipment operation according to vibration

signals. Fig. 7 shows the installation position of the wireless vibration sensor in the production
field. This study uses a kind of wireless vibration sensor (iVS102) in Fig. 8. It is a Narrow Band
Internet of Things (NB-IoT) vibration acquisition and analysis instrument specifically designed for
industrial application. It supports the measurement acquisition of vibration acceleration, velocity,
and displacement signals. Users can choose the sample interval, sample length, sample frequency, and
signal type to complete the configurations of the sensor conveniently. Here are some configurations.
The sample interval is 30 min. The sample length is 4096 data points. The sample frequency is divided
into 1000, 8000, and 12000 Hz.



CMES, 2024, vol.138, no.2 1833

Figure 6: The flow chart of expert experience and data-driven based fault diagnosis method

Figure 7: The installation position of wireless vibration sensor

3.2 Time Domain Analysis
As a method for preliminary judgment of equipment status, the purpose of time domain analysis

is to extract vibration features from the time domain. According to expert experience, virtual value,
peak value, and kurtosis value are chosen as time domain indexes and applied in the daily maintenance
and repair.
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Figure 8: Wireless vibration sensor

Virtual value is the root mean square of the signal in a period. It characterizes the size of energy
in the signal. And it is suitable for fault diagnosis of wear vibration amplitude slowly changing with
time [26].

XRMS =

√√√√√ N∑
i=0

x2
i

N
(1)

where, xi is vibration data. N is number of sampling data points.

Peak value is the maximum deviation of vibration to the equilibrium position. It reflects the
maximum amplitude at a certain moment. And it is suitable for fault diagnosis of pitting damage
with instantaneous impact [26].

Xpeak = 1
n

n∑
i=1

Xpi (2)

where, Xpi is the peak value found in each section after dividing N sampling points in the sample set
into n sections.

Kurtosis index represents the kurtosis of the distribution curve at the peak. In the analysis of
mechanical vibration signals, kurtosis index can be used to describe the kurtosis or flatness of the
signal waveform and analyze the energy distribution and frequency characteristics of the signal [26].

K4 = 1
N

N∑
i=1

x4
i

X 4
RMS

(3)

where, xi is vibration data. N is number of sampling data points. XRMS is the virtual value of vibration
data in the time domain.
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3.3 Frequency Domain Analysis
3.3.1 Discrete Fourier Transform

The time domain signal collected on site must be discrete, and the data acquisition instrument with
higher precision cannot sample without an interval in time. Discrete non-periodic time domain signals
can be converted to continuous periodic frequency domain signals by Discrete Fourier Transform.

X (k) =
N−1∑
n=0

X (n) × e−j 2πk
N n (4)

where, X(k) represents frequency domain data. X(n) represents time domain data. N is number of
sampling data points.

3.3.2 Characteristic Frequency Calculation

The component characteristic frequency of high-speed wire rod finishing mills includes shaft rota-
tion frequency, gear mesh frequency, and bearing characteristic frequency. And bearing characteristic
frequency contains ball pass frequency inner race (BPFI), ball pass frequency outer race (BPFO),
ball spin frequency (BSF), and fundamental train frequency (FTF). According to the equipment
information table and system mechanism, the component characteristic frequency of each vibration
data sample can be calculated in real time. Table 1 is the shaft characteristic information table.
It includes the transmission shaft name, nickname, and frequency description. Table 2 is the gear
characteristic information table. It includes gear name, symbol, tooth numbers, installation axis, and
frequency description. Table 3 is bearing characteristic information table. It contains the bearing name,
Parameter name (inner diameter, outer diameter, pitch diameter, number of rolling elements, diameter
of rolling elements, and contact angle), value, installation axis, and frequency description.

Table 1: Shaft characteristic information table

Number Transmission shaft name Nickname Frequency description

1 Speed increaser input shaft I axis Rotation frequency
2 Longitudinal axis II axis Rotation frequency
3 Cone shaft III axis Rotation frequency
4 Pony axis IV axis Rotation frequency
5 Roll axis 1 V axis Rotation frequency
6 Roll axis 2 VI axis Rotation frequency

Table 2: Gear characteristic information table

Number Gear name Symbol Value Axis Frequency description

1 Speed increaser input gear Z1 150 / Mesh frequency
2 Speed increaser output gear Z2 46 / Mesh frequency
3 Longitudinal screw umbrella Z3 77 II Mesh frequency
4 Cone screw umbrella Z4 53 III Mesh frequency
5 Cone shaft gear Z5 31 III Mesh frequency
6 Pony axis gear Z6 31 IV Mesh frequency

(Continued)
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Table 2 (continued)

Number Gear name Symbol Value Axis Frequency description

7 Roll axis gear 1 Z7 27 V Mesh frequency
8 Roll axis gear 2 Z8 27 VI Mesh frequency

Table 3: Bearing characteristic information table

No. Bearing name Parameter name Value Axis Frequency description

Inner diameter 130 BPFI
Outer diameter 200 BPFO

1 Angular contact ball Pitch diameter 165 II BSF
bearing (162250Y) Rolling element number 22 FTF

Rolling element diameter 20 /
Contact angle 0 /
Inner diameter 130 BPFI
Outer diameter 200 BPFO

2 Cylindrical roller Pitch diameter 165 II BSF
bearing (162250G) Rolling element number 22 FTF

Rolling element diameter 20 /
Contact angle 0 /
Inner diameter 130 BPFI
Outer diameter 200 BPFO

3 Cylindrical roller Pitch diameter 165 III BSF
bearing (162250GA) Rolling element number 12 FTF

Rolling element diameter 20 /
Contact angle 0 /
Inner diameter 60 BPFI
Outer diameter 130 BPFO

4 Cylindrical roller Pitch diameter 95 III BSF
bearing (162250HA) Rolling element number 12 FTF

Rolling element diameter 20 /
Contact angle 0 /
Inner diameter 50 BPFI
Outer diameter 110 BPFO

5 Angular contact ball Pitch diameter 80 III BSF
bearing (162250J) Rolling element number 11 FTF

Rolling element diameter 18 /
Contact angle 0 /
Inner diameter 35 BPFI
Outer diameter 80 BPFO

6 Angular contact ball Pitch diameter 57.5 IV BSF
bearing (162250LB) Rolling element number 11 FTF

(Continued)
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Table 3 (continued)

No. Bearing name Parameter name Value Axis Frequency description

Rolling element diameter 20 /
Contact angle 0 /
Inner diameter 35 BPFI
Outer diameter 80 BPFO

7 Angular contact ball Pitch diameter 57.5 V, VI BSF
bearing (162250LB) Rolling element number 11 FTF

Rolling element diameter 20 /
Contact angle 0 /

According to the equipment drive system and component characteristic information, shaft
rotation frequency, gear mesh frequency, and bearing characteristic can be obtained.

The calculation formulas of shaft rotation frequency are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fI = n1

60
, I axis

fII = n2

60
, n2 = n1 × z1

z2

, II axis

fIII = n3

60
, n3 = n2 × z3

z4

, III axis

fIV = n4

60
, n4 = n3 × z5

z6

, IV axis

fV = n5

60
, n5 = n4 × z6

z7

, Vaxis

fVI = n6

60
, n6 = n5 × z7

z8

, VI axis

(5)

where, n1, n2, n3, n4, n5 and n6 represent shaft speed. z1, z2, z3, z4, z5, z6, z7 and z8 represent gear tooth
numbers. The calculation formulas of gear mesh frequency are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fZ1 = z1 × n1

60

fZ2 = z2 × n2

60

fZ3 = z3 × n2

60

fZ4 = z4 × n3

60

fZ5 = z5 × n3

60

fZ6 = z6 × n4

60

fZ7 = z7 × n5

60

fZ8 = z8 × n6

60

(6)
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Take an angular contact ball bearing (162250Y) on II axis for example. The calculation formulas
for bearing characteristic frequency are as follows:

fBPFI = 1
2

× N ×
(

1 + d4

d3

× cos α

)
× fII (7)

fBPFO = 1
2

× N ×
(

1 − d4

d3

× cos α

)
× fII (8)

fBSP = 1
2

× d3

d4

×
(

1 −
(

d4

d3

× cos α

)2
)

× fII (9)

fFTF = 1
2

×
(

1 − d4

d3

× cos α

)
× fII (10)

where, d1, d2, d3 and d4 represent the inner diameter, outer diameter, pitch diameter, and diameter of
rolling elements. N represents the number of rolling elements. α represents contact angle. fII represents
installation axis speed.

3.4 Speed Adjustment
The speed value collected by the field sensor may have an error. Therefore, it needs to be

automatically adjusted based on the field situation during fault detection. According to real-time
operating parameters and environmental parameters of on-site equipment, corresponding speed
adjustment is carried out. This technology can significantly improve the degree of automation and
production efficiency of equipment, reduce dependence on manual intervention, and reduce labor
costs and error rates. Fig. 9 shows the speed adjustment algorithm process. When there is gear mesh
frequency, implement Algorithm 1.

Figure 9: Speed adjustment algorithm process
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Algorithm 1: Speed adjustment when there is gear mesh frequency
Input: Rotating speed n1 and component characteristic information
Output: Actual speed value and new component characteristic frequency
Process:
1: According to the rotating speed n1 in the sample data, calculate each gear mesh frequency by

formula (6);
2: Query frequency values of frequency domain TOP5 and sequence them by amplitude size. Calculate

the difference between them and each gear mesh frequency;
3: If the difference between a frequency value A in TOP5 and a gear mesh frequency value is within

50 Hz, record it;
4: View frequency doubling of A (2A). Calculate the average amplitude after frequency value 2A in

the spectrum;
5: If the amplitude of 2A is greater than or equal to it, the speed adjustment strategy is implemented;
6: Replace the gear mesh frequency with frequency A. The actual speed is deduced by using the system

structure mechanism formula;
7: According to the actual speed value and mechanism model formulas, recalculate other shaft speed

and equipment component characteristic frequency by formulas (5)∼(10).

3.5 Frequency Doubling and Side Frequency Analysis
In this fault diagnosis method based on expert experience and data-driven, the fundamental

frequency is shaft rotation frequency, gear mesh frequency, or bearing characteristic frequency. And
frequency doubling is the multiple of the fundamental frequency. Based on frequency doubling
analysis, judge whether side frequency exists on both sides of characteristic frequency. The mechanism
of the sideband is that vibration of the gear mesh frequency is modulated by the gear rotation
frequency. Fig. 10 shows the frequency doubling and side frequency analysis algorithm process.

Figure 10: Frequency doubling and side frequency analysis algorithm process



1840 CMES, 2024, vol.138, no.2

Algorithm 2: Frequency doubling and side frequency analysis
Input: Speed and component characteristic information
Output: Component characteristic frequency and side frequency
Process:
1: According to the speed value collected by the sensor, calculate each component’s fundamental

frequency and their corresponding frequency doubling by formulas (5)∼(10);
2: Find frequency values closest to each characteristic frequency or their frequency doubling in the

frequency domain data. The numerical difference of the interval is allowed within the range of 5%;
3: Record the corresponding amplitude as the subsequent diagnostic basis;
4: Check whether there is a gear mesh frequency in the frequency TOP5. If there exists, calculate II

axis, III axis, IV axis, V axis, VI axis rotation frequency at this gear mesh frequency by formula (5);
5: According to amplitude TOP20, sequence the points in the range before and after this gear mesh

frequency. Calculate frequency intervals between their 20 points and this gear mesh frequency. These
frequency intervals are divided by 1, 2, 3, . . . , respectively, to obtain several frequency intervals;

6: Calculate a 5% interval before and after shaft rotation frequency. If there is a frequency interval
calculated by Step 5 in this interval, the side frequency is considered to exist. And the side frequency
is the shaft rotation frequency.

3.6 Fault Location
Fault location is a crucial issue under diagnosis framework. It is also an effective mean to

guarantee safety production and obtain reliable product quality for industrial processes [27]. In the
steel production field, a fault characteristic can lead to damage of different components. Fault location
can provide an important maintenance basis for maintainers to avoid severe accidents.

Algorithm 3: Fault location
Input: Time and frequency domain characteristic
Output: Fault shaft, gear, or bearing information
Process:
1: In the time domain, the collected data is transformed into virtual value, peak value and kurtosis

index by formulas (1)∼(3);
2: Analyze the smoothness of these three indicators. If the threshold exceeds the limit, this data is taken

as the focus of fault analysis;
3: Calculate shaft rotation frequency, gear mesh frequency, and bearing characteristic frequency by

formulas (5)∼(10);
4: Compare frequency values with larger amplitude in frequency domain data with them. If the

difference is within the range of 5%, implement frequency doubling analysis and side frequency
analysis at this frequency;

5: Combined with the driven system structure of the rolling mill frame, infer fault shaft, gear or bearing.

4 Equipment Intelligent Diagnosis System

At present, most steel plants have only monitoring systems, relying on frequent maintenance and
maintainers’ experience to reduce or avoid accidents. Some enterprises will hand over the monitoring
data to professional analysts after the accident, and then their maintainers can get some guidance
judgments for possible future faults. However, this simple manual judgment method has a large



CMES, 2024, vol.138, no.2 1841

workload and low accuracy, and some complex situations are challenging to diagnose. As China’s
industry begins to enter the 4.0 stage, the future manufacturing industry will inevitably develop toward
intelligence and dehumanization. So it is necessary to develop equipment intelligent diagnosis systems.
Fig. 11 shows the frame diagram of the equipment intelligent diagnosis system. It mainly consists of
data source, database table design, and function design.

Figure 11: The frame diagram of the equipment intelligent diagnosis system

(1) Data source: The sensor directly has an NB-IoT module through China Mobile and China
Unicom’s existing base stations to transmit data. Their base stations have supported the Internet
of Things (IoT) spectrum and have wide network coverage. The data is received by the Aliyun IoT
platform and stored in the Aliyun Internet platform. The data is transmitted and stored in the
genealogy database by the NB-IoT network and OPC UA protocol in standard JSON format.

(2) Database table design: It is divided into source and calculated data. The source data includes
a time domain table, part table, part parameter table, equipment classification table, and equipment
table. The calculated data includes a spectrum table, sample analysis table, and characteristic frequency
table.

(3) Function design: It comprises user management, monitor management, monitor index, and
analysis method.

The parts of function design are as follows:

(1) User management: Enterprise user management, enterprise back-stage management;

(2) Monitor management: Monitor equipment management, data acquisition management, early
warning rule management, monitor index management, equipment database, alarm management, etc.;

(3) Monitor index: Virtual value, peak value, kurtosis value, pulse index, margin index, skewness
index, etc.;

(4) Analysis method: Spectrum analysis, power spectrum analysis, inverse spectrum analysis, side-
band frequencies analysis, and other algorithms.
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5 Case Analysis
5.1 Data Source

The 19–28# rolling mill is equipped with a wireless vibration sensor. One is on the input side of
the increasing box. And three are on the output side of the increasing box. In Figs. 12, 14, vibration
measuring points are monitored in real time on the steel site.

Figure 12: Measuring point distribution

Fig. 13 shows equipment intelligent diagnosis system network data flow. On-site monitoring
equipment data is collected by NB sensor. NB base stations transmit with 4.5G signal. Then data
is transmitted to the Aliyun IoT platform and finally stored to the Aliyun Internet platform. The fault
diagnosis platform obtains data from the Aliyun IoT platform utilizing a subscription. After analysis
and diagnosis, the platform sends alarm notifications to maintainers and realizes data interaction with
the App and Web. Users can also download data from the Aliyun Internet platform on the App or Web.

Figure 13: System network data flow

5.2 Case Description
On February 11th, 2022, the high-speed wire rod finishing mill group was shut down for

maintenance. Maintainer open bevel gearbox of 26# finishing mill. They find the broken bearing
(cylindrical roller bearing, 162250HA) on the cone shaft. The situation of bearing damage includes
cage fracture, inner ring wear, outer ring wear, and rolling element wear in Fig. 14.
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a. Inner and outer ring wear b. Cage fracture and rolling element wear

Figure 14: Broken bearing

5.3 Time Domain Characteristic
Vibration data of field equipment usually do not see abnormalities. Fig. 15 is a section of the on-

site equipment vibration signal. Time domain transform and frequency domain transform can help
to find equipment fault characteristics.

Figure 15: Raw vibration signal

This equipment’s intelligent diagnosis system transforms each section of vibration data in the time
domain. Virtual value, peak value, and kurtosis index are calculated by formulas (1)∼(3). Figs. 16–18,
respectively describe the distribution of virtual value, peak value, and kurtosis index of 26# finishing
mill from January 11th to February 11th, 2022. From their pictures, there is no large fluctuation in
virtual value, but peak value. Meanwhile, the kurtosis index has multiple shocks. Therefore, there may
be fault characteristics in the frequency domain during the month.

Figure 16: Virtual value distribution
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Figure 17: Peak value distribution

Figure 18: Kurtosis index distribution

5.4 Frequency Domain Characteristic
Aiming at this month’s data, the system performs frequency domain transform. In frequency

doubling analysis, frequency values are closest to each characteristic frequency or their frequency
doubling in the frequency domain data. The numerical difference of the interval is allowed within
the range of 5%. In Fig. 19, there are fundamental frequencies and double frequency of gear mesh
frequency of the cone shaft (III axis). The fundamental frequency is 2789.06 Hz, and the dual
frequency is 5575.2 Hz. But the values of them are low.

Figure 19: Spectrogram of 26# finishing mill at 12000 sampling frequency

In Fig. 20, there is the gear mesh frequency of the cone shaft (III axis) again. Then, speed
adjustment is implemented. There is A frequency value meeting the conditions in Algorithm 1. The
gear mesh frequency is replaced with the frequency A. The actual speed is deduced by using the
formula (6). The speed value collected by the sensor is 1125 rpm. After speed adjustment, the actual
speed value is 1149.04 rpm. Besides, side frequency analysis is carried out. There is an equally spaced
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side band on both sides of the gear mesh frequency of III axis. The interval is about 90 Hz. According
to the calculation by formulas (5)∼(10), it belongs to the rotation frequency of the cone shaft. The
value is 2812.5 Hz.

Figure 20: Spectrogram of 26# finishing mill at 8000 sampling frequency

5.5 Fault Location Result
Combining time domain and frequency domain characteristics, the result in Fig. 21 represents the

gear mesh frequency of the cone shaft and its side frequency. It is consistent with cone shaft bearing
damage on site.

Figure 21: Fault characteristic record in the system

6 Conclusion

First, this paper analyzes the drive system of high-speed wire rod finishing mills. Then, aiming at
the complexity of fault location and difficulty of real-time diagnosis in system-level fault diagnosis,
an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod
finishing mills is proposed in this work. According to the equipment transmission mechanism, the
proposed method analyzes and calculates vibration data and relies on expert experience to set the
parameters and judgment criteria in the algorithm. Finally, this paper uses a single equipment failure
on site as an example for validation. The gear fault characteristic can be found one month in advance.
It provides a practical and feasible choice of engineering application. However, sometimes there may
be false alarms for complex problems. Besides, its adaptive ability needs to be improved. Future work
will focus on solving them.
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