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ABSTRACT

The utilization of mobile edge computing (MEC) for unmanned aerial vehicle (UAV) communication presents a
viable solution for achieving high reliability and low latency communication. This study explores the potential of
employing intelligent reflective surfaces (IRS) and UAVs as relay nodes to efficiently offload user computing tasks to
the MEC server system model. Specifically, the user node accesses the primary user spectrum, while adhering to the
constraint of satisfying the primary user peak interference power. Furthermore, the UAV acquires energy without
interrupting the primary user’s regular communication by employing two energy harvesting schemes, namely time
switching (TS) and power splitting (PS). The selection of the optimal UAV is based on the maximization of the
instantaneous signal-to-noise ratio. Subsequently, the analytical expression for the outage probability of the system
in Rayleigh channels is derived and analyzed. The study investigates the impact of various system parameters,
including the number of UAVs, peak interference power, TS, and PS factors, on the system’s outage performance
through simulation. The proposed system is also compared to two conventional benchmark schemes: the optimal
UAV link transmission and the IRS link transmission. The simulation results validate the theoretical derivation and
demonstrate the superiority of the proposed scheme over the benchmark schemes.
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1 Introduction

The rapid advancement of emerging technologies, including Artificial Intelligence (AI), Internet
of Things (IoT), and Internet of Everything (IoE), has led to an exponential increase in wireless
connectivity. This growth presents a significant challenge for data-centric automation systems [1]. This
challenge necessitates the deployment of a considerable number of base stations and wireless terminals
to support the increasing demand for mobile services and large-scale wireless connections. However,
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this trend also poses a challenge for future wireless communication systems, as they must contend with
highly complex networks, escalating hardware costs, and a surge in energy consumption. To address
this pressing issue, there is an immediate need for a novel solution that achieves a balance between
system performance and energy consumption costs [2,3].

In recent years, Unmanned Aerial Vehicles (UAVs) have garnered significant interest due to their
high mobility and flexible deployment capabilities. Their flexibility, portability, powerful line-of-sight
communication links, and low-cost, changeable use have made them increasingly popular in both
research and commercial applications. Their essential features enable a wide range of civilian services,
including transport and industrial monitoring, agriculture, forest fire management, and wireless
services. However, the surge in data volume of wireless networks poses a significant challenge to the
computing power demand of equipment. The current terminals are generally limited in computing
resources and battery capacity. Mobile edge computing (MEC) is a novel computing technology that
enables the transfer of computing power from the cloud to the edge of the network, thereby enhancing
the efficiency of data processing and transmission. By integrating wireless networks and technologies,
and deploying computing and storage resources at the edge of the network closer to mobile devices
or sensors, MEC significantly alleviates the pressure on the network and data center, enhances server
response ability, protects privacy data, reduces the risk of data uploading and sharing in the cloud, and
focuses on real-time, short-cycle data analysis. MEC meets the key requirements of IoT digitization in
agile connection, business implementation, data optimization, application intelligence, security, and
privacy protection. It is anticipated that the integration of MEC and UAVs will provide robust support
for embracing the forthcoming era of the Internet of Drones (IOD).

In effect, there is already a substantial body of literature exploring MEC enabled drone solutions.
Reference [4] introduced three MEC architectures that support UAVs, which improve communication
performance and reduce execution latency. A MEC wireless power supply system for UAVs was
developed by [5], and the computational rate maximization problem in the UAVs MEC wireless
power supply system was solved. The problem was constrained by the causal constraints of energy
acquisition and UAV speed. Reference [6] designed a UAV-assisted MEC computing offloading scheme
based on deep reinforcement learning to minimize the total cost, which is the weighted sum of delay,
energy consumption, and bandwidth costs. Reference [7] proposed a resource pricing and trading
scheme based on Stackelberg dynamic game to optimize the allocation of MEC resources, and applied
blockchain technology to record the entire resource trading process to protect security and privacy.
Reference [8] put forth two offloading schemes for enabling MEC networks in multiple UAVs. Their
optimization goal is to minimize the global computing time and energy consumption of all drones,
respectively. Reference [9] advanced four representative architectures of MEC systems based on UAVs,
and by adopting software defined networks, the scalability and controllability of the network are
improved.

The design of contemporary wireless communication systems has placed significant emphasis on
spectrum and energy efficiency. In this regard, Intelligent Reflective Surface (IRS) has emerged as
a promising green communication technology. IRS is passive, low-cost, and easily deployable, and
has garnered extensive attention [10]. As a promising technology for future wireless networks, it
supports energy-saving and cost-effective communication, and is considered one of the most promising
6G wireless communication technologies [11]. Through the use of low-cost passive components that
exploit time-varying environments, IRS dynamically adjusts the phase shifts of reflected signals
to modify the wireless propagation environment, resulting in high passive beamforming gains and
improved efficiency of wireless power transmission [12]. IRS technology operates in full-duplex mode
and consumes low power, making it a promising solution for enhancing both energy efficiency and
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spectral efficiency. Moreover, several studies have demonstrated the advantages of IRS technology
by comparing it with other technologies. In one study [13], a comparison was made between the
performance of IRS and decoding and forwarding (DF) relays, and it was concluded that even static
relays with relatively low degrees of freedom require very high rates and/or larger IRS to outperform
DF relays. In another study [14], the performance of mobile relays and IRS was compared, and it
was found that mobile relays achieved a higher communication average signal-to-noise ratio than IRS,
primarily due to the greater degree of freedom of motion of mobile relays. However, IRS still possesses
certain inherent advantages over relays, such as lower cost and higher energy efficiency. Specifically,
the work in [11] demonstrates that a proposed resource allocation method based on IRS can achieve
up to 300% higher energy efficiency than traditional amplification and forwarding (AF) relay-based
communication systems by appropriately designing the phase shifts of RIS applications. Additionally,
in [15], it was suggested that IRS can be utilized to actively reprogram the communication environment,
and its advantages in terms of coverage, energy conservation, and security are discussed.

As further research is conducted, the potential applications of IRS-assisted wireless networks in
various scenarios and technologies continue to unfold. These scenarios include IRS-assisted Multiple
Input Multiple Output (MIMO) [16–18], IRS-assisted large-scale MIMO [19], IRS-assisted mobile
edge computing [20], IRS-assisted Unmanned Aerial Vehicle (UAV) communication [21,22], IRS-
assisted physical layer security [23–26], robust beamforming design in IRS-assisted Multiple Input
Single Output (MISO) communication [27], IRS-assisted Simultaneous Wireless Information and
Power Transmission (SWIPT) [28–35], and IRS-enhanced non-orthogonal multiple access transmis-
sions [36–38].

In light of this, this study considers a system model where UAVs and IRS assist users in offloading
computing to edge servers, as presented in the third application scenario in [4]. To address the issue of
energy consumption, the study also explores the use of cognitive radio network (CRN) based energy
harvesting technology, which can provide more efficient, stable, and dependable communication
services.

The contributions of this article are as follows:

Firstly, this paper proposed system model considers using IRS and UAV as relay nodes to
effectively offload user computing tasks to the MEC server. In order to further alleviate the resource
constraints faced by future wireless networks. The UAV in our model is energy harvesting enhanced.

Secondly, the computational offloading outage probability of the proposed model under Rayleigh
channel is constructed and deduced. The correctness of the theoretical derivation is proved by
the consistency between the theory and simulation. Additionally, a comparison is made with the
computational offloading outage performance of traditional systems relying solely on IRS or only
optimal relay links. The results clearly demonstrate that the proposed optimal relay cooperative IRS
system exhibits a lower computational offloading outage probability, i.e., a higher computational
offloading success rate.

This paper is organized as follows. Section 2 outlines the system model for the optimal UAV
cooperative IRS to assist users in offloading computing to edge servers and provides a detailed
description of the information transmission process. In Section 3, an analysis and derivation of
the outage probability for the proposed model in Rayleigh channel is presented. Section 4 offers a
comprehensive set of numerical evaluation results. Finally, Section 5 offers a summary of the findings.
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2 System Model

This section introduces the system model proposed in this article and describes the information
transmission process of the model.

2.1 System Model Description
As shown in Fig. 1, this paper considers the system model of the optimal UAV cooperative IRS

offload user computing tasks to the MEC server that utilizes CRN energy harvesting. The system
architecture is illustrated in Fig. 1, which consists of a primary user node P and a cognitive user
node within the cognitive network S, K DF UAVs, a MEC server D and IRS equipped with N signal
reflection elements. In this model, user S generate compute-intensive tasks. Because user have limited
battery capacity and computing power and cannot handle compute-intensive and delay-sensitive tasks.
Although UAV has more computing power than user, considering the inconsistencies and instability
of energy harvesting, this paper chooses to offload computing tasks to edge servers with significantly
better processing power than UAV. It is assumed in this paper that all nodes in the system are equipped
with a single antenna. The UAV node also features an energy harvesting function, and two energy
harvesting schemes, time switching (TS) and power splitting (PS), are adopted. These schemes are
implemented to ensure that energy is not taken away from the primary user’s communication. Instead,
the energy is utilized for the UAV node to offload computing tasks to the MEC server. To address the
communication challenges resulting from blocked line-of-sight link between the user and the MEC
server, IRS is deployed on the exterior walls of tall buildings to dynamically adjust signal phase
and intelligently reflect signals towards the intended recipient user. Moreover, given the presence of
numerous UAVs in the high altitude platform, an optimal UAV Rk (1 ≤ k ≤ K) is selected to support
the communication process.

...

S

P

IRS
D

KRkR

Edge server

UAV...
1RInterference link

Communication link

Blocked link

Figure 1: System model

The communication process between the user and the MEC server is predicated on the assumption
that the signal is transmitted at fixed time intervals that are equally divided into two time slots. In the
first time slot, the signal transmission link is established as S → Rk, Rk → P, S → P, S → IRS.
Specifically, the user broadcasts the signal to both the UAV and the IRS with power PS, subject to
the constraint that the peak interference power IP of the primary user is not exceeded. The UAV node
endeavors to decode the received signal and forward it to the MEC server.
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In the second time slot, the signal transmission link is established as Rk → D, IRS → D. The
selection of the optimal UAV from the available UAV nodes is determined based on the maximization
of the instantaneous signal-to-noise ratio at the MEC server [39,40]. The optimal UAV then decodes
the signal and forwards it to the MEC server, utilizing the energy harvested at the UAV as transmission
power. Furthermore, the IRS adjusts its phase to reflect the signal towards the intended recipient.

In the TS energy harvesting scheme, signal transmission time is bifurcated into two components.
Throughout the entire signal transmission time T , ρ (0 ≤ ρ ≤ 1) represents the time conversion
coefficient. The first part ρT represents the duration expended by the UAV for energy harvesting,
while the second part (1 − ρ) T indicates the time necessitated for the signal transmission from the
user node, to the MEC server. Herein, the time mandated for signal transmission from the user node
to the IRS and UAV is denoted by (1 − ρ) T/2, while the time during which the signal is conveyed
from the IRS to the MEC server and concurrently from the optimal UAV node to the MEC server is
represented by (1 − ρ) T/2.

In the PS energy harvesting scheme, power is apportioned into two components. η denotes a power
division factor, ηPS signifies the power utilized by the UAV node for energy harvesting, and (1 − η) PS

represents the power employed by the user node for information transmission. Correspondingly, the
time designated for the initial and secondary time slots is T/2, respectively.

In this paper, it is postulated that all transmission channels adhere to independent and identically
distributed Rayleigh fading channels with an average channel gain of �u. The noise at each receiving
node nu is modeled as additive white Gaussian noise (AWGN) with a zero mean value and a variance
of σu

2.

2.2 Information Transmission Process
In the first time slot, the user node sends signals to the UAV nodes and the IRS under the constraint

of the peak interference power Ip of the primary user. At this time, the transmission power of the user
node S is

PI = IP∥∥hsp

∥∥2 (1)

where, IP represents the peak interference power, hsp represents the channel parameter from the
cognitive node to the primary user node, and

∥∥hsp

∥∥2
represents the channel gain of the link.

Under the TS and PS energy harvesting schemes, the power used by the user node to transmit
signals is given as

TS : PS = PI (2)

PS : PS = (1 − η) PI (3)

and the signals received by the kth (1 ≤ k ≤ K) UAV are expressed as

yrk
= √

PShsrk
+ nsrk

(4)

where, hsrk
is the channel parameter representing the user node to the kth relay, and nsrk

is AWGN.
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The channel capacity of the kth UAV is expressed as

CSRk
= 1

2
log2

(
1 + γsrk

) = 1
2

log2

(
1 + PS

∥∥hsrk

∥∥2

σsrk
2

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

TS
1
2

log2

(
1 + PI

∥∥hsrk

∥∥2

σsrk
2

)

PS
1
2

log2

(
1 + (1 − η) PI

∥∥hsrk

∥∥2

σsrk
2

) (5)

where, γsrk
is the signal to noise ratio at the kth UAV.

The UAV node functions in DF mode. When the capacity of the UAV received signal CSRk
surpasses

a specified threshold value Rth (Rth ≥ 0), the UAV successfully decodes the received signal and forwards
it. Conversely, if the capacity of the UAV received signal CSRk

is less than the threshold value Rth, the
UAV fails to decode the signal, and the UAV node ceases transmission. Therefore, the probability that
the secondary UAV cannot successfully decode the signal is

Pk
fail = Pr

(
CSRk

≤ Rth

) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

TS : Pr

(∥∥hsrk

∥∥2∥∥hsp

∥∥ ≤ α1

)

PS : Pr

(∥∥hsrk

∥∥2∥∥hsp

∥∥ ≤ α2

) (6)

where, α1 =
(
22Rth − 1

)
σsrk

2

Ip

, α2 =
(
22Rth − 1

)
σsrk

2

(1 − η) Ip

. Furthermore, we define Φ as the set of UAVs

that have successfully decoded and forwarded received signals in K relays. When the number of
relays is K, the subset of Φ has a total of 2K . At this time, the sample space can be written as
Φ = {∅, Φ2, Φ3, . . . , Φk, . . . , Φ2K }, with Φk representing the kth subset of the decoding set Φ, where,
the number of UAVs containing successful decoding is |Φk| = L, (0 ≤ L ≤ K).

Assuming that the channel state information of all links is available, the aforementioned optimal
UAV selection is based on the strategy of maximizing the signal-to-noise ratio. In other words, it relies
on the instantaneous signal-to-noise ratio maximization at the legitimate user node D. This involves
selecting the optimal node to forward information from the decoded UAV set Φ as expressed below:

k∗ = argmax
k⊂Φ

∥∥hrkd

∥∥2
. (7)

Next, we calculate the energy harvested at the kth UAV under the TS and PS energy harvesting
schemes as

TS : ERk
= ξPI

∥∥hsrk

∥∥2
ρT (8)

PS : ERk
= ξηPI

∥∥hsrk

∥∥2 T
2

(9)

where, ξ represents the energy conversion efficiency.
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At this point, the energy harvested at the UAV will be used to forward the signal, and its power is
expressed as

TS : PRk
= min

k⊂Φ

(
ERk

(1 − ρ) T
2

,
Ip∥∥hrkp

∥∥2

)
(10)

PS : PRk
= min

k⊂Φ

(
ERk

T
2

,
Ip∥∥hrkp

∥∥2

)
(11)

where, hrkp is a channel parameter representing the channel from the kth UAV node to the primary user
node. Similarly, at this time, the transmission power at the kth UAV must also meet the constraints of
the peak interference power IP of the primary user.

At this point, the signals received by the MEC server from the optimal UAVk∗ and IRS can be
represented as

yk∗ = √
Pk∗hk∗dx + nD (12)

yIRS = √
PShid

H
	hsix + nI (13)

where, hk∗d is the channel parameter representing the optimal UAV k∗ to the MEC server D, hsi is the
channel parameter representing the source node S to the IRS, hid is the channel parameter representing
the IRS to the MEC server D, 	 = diag {β1ejϕ1 , β2ejϕ2 , · · · , βNejϕN } represents the IRS phase shift;
herein, ϕn ∈ [0, 2π), 1 ≤ n ≤ N, and assuming that the IRS can only change the phase of the incident
signal, the reflection coefficient of each reflection element meets the following constraints: βn = 1.

Since all links in the model in this paper adopt Rayleigh fading channels, all channel gains ‖hu‖2 are
subject to Rayleigh distribution. The probability density function (PDF) and cumulative distribution
function (CDF) are respectively represented by the following formulas:

fhU (x) = 1
Ωu

e− x
Ωu = λue−λux (14)

FhU (x) = 1 − e− x
Ωu = 1 − e−λux (15)

where, �u = E
[‖hu‖2] represents the expectation of channel gain, λu = 1

�u

.

Letting hS = hSP

hSRK

=
∥∥hsp

∥∥2∥∥hsrk

∥∥2 , where hsrk
∈ hsk, the PDF of hS can be represented by the following

formula:

fhS
(z) =

∫ ∞

0

yfhSP
(zy) fhSRK

(y) dy

= Q1

1(
zλsp + λsk

)2

(16)

where Q1 = λspλsk.
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3 Outage Probability Performance Analysis

This section concerns the derivation and analysis of a closed-form expression for the outage
probability of the optimal UAV cooperative IRS offload user computing tasks to the MEC server
system model.

The outage probability of a system is a measure of its link capacity, representing the probability
of the link being unable to meet the minimum required transmission rate γth. Applying the total
probability formula, the outage probability of the optimal UAV cooperative IRS system can be
formulated as follows:

Pout = Pr (CR ≤ γth) Pr (CIRS ≤ γth)

=
(

Pr (Φ = ∅) +
2N −1∑
n=1

Pr (CR ≤ γth, Φ = |Φn|)
)

Pr (CIRS ≤ γth)

=
⎛
⎝Pr (Φ = ∅) +

2N −1∑
n=1

Pr (Φ = |Φn|)
I1

Pr (CR ≤ γth |Φ = |Φn|)
I2

⎞
⎠

︸ ︷︷ ︸
A

Pr (CIRS ≤ γth)︸ ︷︷ ︸
B

(17)

where, CR and CIRS represent the capacity of the MEC server to receive from the UAV link and the
IRS link, respectively. Moreover, A and B represent the outage probability of the UAV link and the
IRS link, respectively. Only when both links are interrupted simultaneously will the entire system be
interrupted.

3.1 Optimal UAV Link Outage Probability
Pr (Φ = ∅) indicates the probability that all UAVs fail to decode the signal successfully in the first

time slot. Using the binomial expansion formula
(

K1

IPU1

y + β1z
)q

=
q∑

s=0

(
q
s

)
(β1z)

s

(
K1

IPU1

y
)q−s

and

bringing fSP (x) in the expression, it can be obtained that

Pr (Φ = ∅) = ∏
1≤k≤N

Pr

(∥∥hsrk

∥∥2∥∥hsp

∥∥2 ≤ α

)
=
∫ ∞

0

[
FhSRK

(αx)
]N

fhSP
(x) dx

=
N∑

r=0

(
N
r

)
(−1)

r
λsp

1
rαλsk + λsp

(18)

Pr (Φ = |Φn|) indicates the probability that the number of successfully decoded relays in the UAV
set is L. Similarly, using the binomial expansion formula and incorporating fSP (x) into the expression,
it can be calculated as follows:

I1 = Pr (Φ = |Φn|) =
∫ ∞

0

∏
k⊂Φn

Pr
(∥∥hsrk

∥∥2
> αx

)
×
∏
v⊂Φn

Pr
(∥∥hsrv

∥∥2 ≤ αx
)

fhSP
(x) dx

=
∫ ∞

0

(
N
L

) L∑
S=0

(
L
S

)
(−1)

S
(

FhSRk
(αx)

)S+N−L

fhSP
(x) dx

=
L∑

S=0

S+N−L∑
d=0

(
N
L

)(
L
S

)(
S + N − L
d

)
λsp (−1)

S+d

αd
(
λsk + λsp

)
(19)



CMES, 2024, vol.138, no.2 1893

Pr (CR ≤ Rth |Φ = |Φn|) indicates the probability that the capacity will be less than when the UAV
successfully decodes the information. The calculation process is as follows:

I2 = Pr (CR ≤ γth|Φ = |Φn|)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TS :
∏

k⊂|Φn|

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pr
(

hK∗D ≤ K
U1

hS, hS ≥ hK∗PU1

)
︸ ︷︷ ︸

W1

+Pr (hK∗D ≤ KhK∗P, U1hK∗P > hS)︸ ︷︷ ︸
W2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

PS :
∏

k⊂|Φn|

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pr
(

hK∗D ≤ K
U2

hS, hS ≥ hK∗PU2

)
︸ ︷︷ ︸

W3

+Pr (hK∗D ≤ KhK∗P, U2hK∗P > hS)︸ ︷︷ ︸
W4

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(20)

where, U1 = 2ξρ

1 − ρ
, K = σ 2

D (β − 1)

Ip

, β = 22γth . Using binomial expansion formulas, i.e.,∫ ∞

0

xα−1

(x + z)ρ e−pxdx = γ (α) zα−ρψ (α, α + 1 − ρ, pz) , Reα, Reρ > 0; {arg z} < π , and
∫ ∞

0

xv−1e−uxdx =
�(v)

uv
, (Reu > 0, Rev > 0), we can exchange the integration order. Thus, the calculation process of W1

is as follows:

W1 = Pr
(

hK∗D ≤ K
U1

hS, hS ≥ hK∗PU1

)

=
∫ ∞

0

∫ ∞

U1x

FK∗D

(
K
U1

y
)

fhS
(y) dyfhK∗P

(x) dx

= Q1

∫ ∞

0

1(
yλsp + λsk

)2 − e− λk∗p
U1

y 1(
yλsp + λsk

)2 (21)

− e− Kλk∗d
U1

y 1(
yλsp + λsk

)2 + e
−
(

Kλk∗d
U1

+ λk∗p
U1

)
y 1(

yλsp + λsk

)2 dy

= 1 − ψ

(
1, 0,

λk∗pλsk

U1λsp

)
− ψ

(
1, 0,

Kλk∗dλsk

U1λsp

)
+ ψ

(
1, 0,

Kλk∗dλsk + λk∗pλsk

U1λsp

)
where, ψ (a, b, c) is the confluent hypergeometric function, and ψ (1, 0, 0) = 1.
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Similarly, the calculation process of W2 is as follows:

W2 = Pr (hK∗D ≤ KhK∗P, U1hK∗P > hS)

=
∫ ∞

0

∫ ∞

U1
x

FhK∗D
(Ky) fhK∗P

(y) dyfhS
(x) dx (22)

= −1 + 1
K + 1

+ ψ

(
1, 0,

λk∗pλsk

U1λsp

)
− λk∗p(

Kλk∗d + λk∗p

)ψ (
1, 0,

Kλk∗dλsk + λk∗pλsk

U1λsp

)

W3 and W4 can be calculated by following similar approaches.

The precise closed expression of the optimal UAV link outage probability is given as

Pr (CR ≤ γth) =
N∑

L=0

I1 (I2)
L (23)

3.2 IRS Link Outage Probability
The CDF of the signal-to-noise ratio of the IRS link under Rayleigh fading channels has been

explicitly provided in literature [41] as

Pr (CIRS ≤ γth) = F (γth) ≈ 1
� (kw) � (mw)

G2,1
1,3

[
�̃γth|1

kw ,mw ,0

]
(24)

where, �̃ =
√

kwmw/
(
γ 1�w

)
, kw = −b + √

b2 − 4ac
2a

and mw = −b − √
b2 − 4ac

2a
are shaping

parameters, and the values of a, b and c are defined in the paper [42]. γ 1 represents the average signal-
to-noise ratio.

In summary, the outage probability of the proposed system model in the calculation primarily
encompasses determining the optimal UAV link outage probability and IRS link outage probability.
The specific algorithmic flow is illustrated in Table 1. Initially, UAV link transmission entails the
user node transmitting signals to multiple UAV nodes with power PS under the constraint of peak
interference power IP. The UAV node ascertains whether K relays have successfully decoded the
information and incorporates the successfully decoded relays into the set Φ. Subsequently, the optimal
UAV selection strategy based on the maximum signal-to-noise ratio of the destination node is chosen.
When the UAV node satisfies the constraint of the primary user’s peak interference power, it forwards
the signal to the MEC server with power PRk∗ . Subsequently, it compares the outage capacity threshold
γth of the MEC server with the capacity of the optimal UAV link to determine link interruption. Due to
the passive reflection characteristics of IRS, the IRS link interruption implies that the capacity of the
target IRS link to receive signals is smaller than the outage capacity threshold γth. It is crucial to note
that when the IRS link and the optimal UAV link are interrupted simultaneously, the entire system is
disrupted.
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Table 1: Energy harvesting enhanced optimal UAV cooperative IRS outage probability algorithm

Algorithm 1 The outage probability of energy harvesting enhanced optimal UAV cooperative IRS

Input: N, the number of IRS elements
K, the number of relay
L, the number of successful decoding UAV
IP, peak interference power
PS, the power used by the source node to send information
PRk

, the power of UAV
Output: Pout, outage probability
1: Initialize N = 3, K = 3, L = 0, σu

2 = 1, �u = 1, ρ = 0.5, η = 0.5, Pr (CR ≤ γth) = 0
2: for IP = 20dB, IP++, do
3: for k = 1, k++, k ≤ K do
4: Calculate PS under TS and PS energy harvesting schemes using (2) and (3)
5: Calculate the channel capacity of each UAV and check whether the information is

successfully decoded
6: if CSRk

(k) ≥ Rth

7: Calculate PRk
using (10) and (11)

8: else
9: PRk

← 0
10: end if
11: for L = 0, L ≤ K, L++ do
12: The optimal UAV is selected from the set Φ based on instantaneous

signal-to-noise ratio maximization
13: PRk∗ ← PRk

(L)

14: end for
15: Calculate the channel capacity of the IRS link and the optimal UAV link at the MEC server
16: end for
17: Pr (CR ≤ γth) = Pr (CR ≤ γth) + sum (CR ≤ γth)

18: Pout = Pr (CR ≤ γth) · Pr (CIRS ≤ γth)

19: end for
20: return Pout

4 Simulation and Result Analysis

This study employs Monte Carlo simulation to validate the accuracy of the proposed scheme and
theory in deriving the closed expression and examines the effect of various parameters on its outage
performance. Additionally, a comparison is made with the outage performance of traditional systems
that rely solely on IRS or only optimal UAV links. The results clearly demonstrate that the proposed
optimal UAV cooperative IRS system exhibits a lower outage probability, i.e., higher stability and
reliability.
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To facilitate analysis and simulation, it is assumed that parameters related to network size are set
to a smaller value, and the initial values of each parameter are set to N = 3 and K = 3. During the
simulation process, the UAV decoding threshold is Rth = 0.5, the system outage threshold is set to
γth = 0.5, the time conversion factor of TS scheme is ρ = 0.5, PS energy conversion factor η = 0.5,
energy conversion coefficient ξ = 1, and AWGN variance σu

2 = 1. The channels are all Rayleigh
fading channels, and it is assumed that the channel parameters are identical, with an average channel
power gain Ωu = 1. The simulation results reveal that the derivation results of the proposed scheme in
this study align well with the Monte Carlo simulation results, which substantiates the accuracy of the
derivation and analysis in this study and the feasibility of the scheme.

Fig. 2 simulates the change curve of outage probability with the primary user’s peak interference
power Ip under different UAV decoding thresholds Rth and various energy harvesting schemes. As Ip

gradually increases, the system outage probability progressively diminishes and approaches zero, that
is, the probability of successfully offloading user computing tasks to the MEC server increases. This is
because the Ip increase signifies that the user and UAV nodes can transmit signals with greater power
without disrupting the primary user’s normal communication. As the UAV decoding threshold Rth

continues to rise, the system outage probability enlarges and the probability of computing offloading
process interruption increases. And under identical conditions, the system performance utilizing TS
energy harvesting scheme is superior to that of the PS energy harvesting scheme.

Figure 2: The curves of outage probability with different Rth and energy harvesting scheme

Fig. 3 simulates the change curve of outage probability with UAV decoding threshold Rth under
different primary user peak interference power IP and various energy harvesting schemes. Simulation
results demonstrate that with the increase of the UAV decoding threshold Rth, the probability of
successful UAV decoding decreases, resulting in an increase in the system computation offloading
outage probability. Under the same energy harvesting scheme and the same UAV decoding threshold
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Rth, a larger signal-to-noise ratio can compensate for the performance loss under adverse decoding
conditions.

Figure 3: The curves of outage probability with different IP and energy harvesting scheme

Fig. 4 simulates the outage probability as a function of the primary user’s peak interference power
Ip under different outage thresholds γth and various energy harvesting schemes. The simulation results
indicate that the derived results of the proposed scheme match well with the Monte Carlo simulation
results. As Ip gradually increases, the system computation offloading outage probability progressively
diminishes and approaches zero. As the outage threshold γth continues to decrease, the system outage
probability continues to decrease, that is, the less likely the system computation offloading is to be
interrupted, and similarly, the system performance using TS energy harvesting scheme is superior to
that of the PS energy harvesting scheme.

Fig. 5 simulates the outage probability as a function of the outage threshold γth under different
primary user peak interference power IP and various energy harvesting schemes. Simulation results
reveal that the computation offloading outage probability increases with the increase of outage
threshold γth. Similarly, under the same energy harvesting scheme and the same outage threshold,
larger IP means higher signal-to-noise ratio, which can compensate for the performance loss under
harsh conditions.

Fig. 6 simulates the outage probability as a function of the number of relays under different
primary user peak interference power Ip and various energy harvesting schemes. Under the condition
of high IP, the system outage probability is small, and as the number of relays K continues to increase,
the system computation offloading outage probability continues to decrease. This is because the larger
the value of K, the larger the range of UAV sets and the greater the probability that the performance
of the optimal UAV selected from a large UAV set will be better than that of the optimal UAV selected
from a small UAV set.
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Figure 4: The curves of outage probability with different γth and energy harvesting scheme

Figure 5: The curves of outage probability with different γth and energy harvesting scheme

Fig. 7 simulates the change of the outage probability curve with the primary user peak interference
power Ip under different IRS elements and various energy harvesting schemes. At N = 8, the
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probability of the system outage is lower than that of N = 5 and N = 2. This is because a larger number
of IRS elements can improve the diversity gain of the system, thereby achieving better performance.

Figure 6: The curves of outage probability with different K and energy harvesting scheme

Figure 7: The curves of outage probability with different IP and energy harvesting scheme
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Fig. 8 simulates the change of the outage probability curve with time conversion factor ρ and
power division factor η under different Ip. As Ip continues to increase, the constraints on user and UAV
transmission power decrease, the system achieves a lower computation offloading outage probability.
Moreover, the system outage probability tends to decrease slowly with the increase of the time
conversion factor ρ; however, the decrease is not significant. The system outage probability gradually
increases with the increase of the power division factor η, which indicates that the source node uses a
larger proportion of power to harvest energy, i.e., if the power of the transmitted signal is smaller it
results in a weaker signal received by the MEC server, therefore, the probability of system interruption
increases.

Figure 8: The curves of outage probability with different ρ/η and energy harvesting scheme

Fig. 9 simulates the change of outage probability curve vs. energy conversion coefficient ξ

under different primary user peak interference power Ip and various energy harvesting schemes.
The simulation results again verify the conclusion that the system computation offloading outage
probability continues to decrease as Ip increases. Moreover, while the system computation offloading
outage probability has a slow decreasing trend with the increase of energy conversion coefficient, the
decrease is not significant.
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Figure 9: The curves of outage probability with different ξ and energy harvesting scheme

Fig. 10 simulates and compares the only optimal UAV transmission link, the only IRS trans-
mission link, and the optimal UAV cooperative IRS system proposed in this paper. The simulation
has been carried out under different energy harvesting schemes, when the outage probability varies
with Ip. The simulation results show that under the same energy harvesting scheme, the optimal UAV
cooperative IRS system proposed in this paper has a smaller outage probability than two traditional
transmission links. This finding also verifies the effectiveness of the system model proposed in this
article. When IP is at a smaller value, the outage probability of the only optimal UAV transmission
system using the TS energy harvesting scheme is superior to the optimal UAV cooperative IRS system
using the PS energy harvesting scheme. This is because when the IP value is smaller, the transmission
power of the source node is extremely small under constraints, resulting in smaller power value used
by the UAV to harvest energy. At this level, the outage probability of the UAV link inevitably increases,
resulting in an increase in the computation offloading outage probability of the entire system, thus,
verifying the conclusion that TS is superior to PS energy harvesting scheme. When IP ranges between
−5 and 0, the performance of the optimal UAV cooperative IRS system using the PS energy harvesting
scheme begins to surpass that of the optimal UAV transmission only system using the TS energy
harvesting scheme.
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Figure 10: The curves of outage probability with different link and energy harvesting schemes

5 Conclusion

This paper presents an analysis of the outage probability of a Rayleigh fading channel-based
energy harvesting enhanced optimal UAV cooperative IRS to assist users in offloading computing
tasks to MEC servers’ system model. The simulation results demonstrate that the theoretical analysis
matches well with the actual simulation results, thereby validating the accuracy of the theoretical
analysis presented in this paper. In addition, the proposed system is compared to a system that
solely relies on optimal UAV link transmission and another system that exclusively relies on IRS link
transmission. The simulation results indicate that the optimal UAV cooperative IRS system model
proposed in this paper exhibits a higher computation offloading success rate. Due to the cluster
communication characteristics of future mobile networks, in the face of massive computing tasks,
in order to be closer to the actual situation, more complex heterogeneous and complex models will be
considered, and AI and blockchain technology will be combined to optimize the computing offload
performance.
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