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ABSTRACT

For high-reliability systems in military, aerospace, and railway fields, the challenges of reliability analysis lie in
dealing with unclear failure mechanisms, complex fault relationships, lack of fault data, and uncertainty of fault
states. To overcome these problems, this paper proposes a reliability analysis method based on T-S fault tree analysis
(T-S FTA) and Hyper-ellipsoidal Bayesian network (HE-BN). The method describes the connection between the
various system fault events by T-S fuzzy gates and translates them into a Bayesian network (BN) model. Combining
the advantages of T-S fault tree modeling with the advantages of Bayesian network computation, a reliability
modeling method is proposed that can fully reflect the fault characteristics of complex systems. Experts describe
the degree of failure of the event in the form of interval numbers. The knowledge and experience of experts are
fused with the D-S evidence theory to obtain the initial failure probability interval of the BN root node. Then, the
Hyper-ellipsoidal model (HM) constrains the initial failure probability interval and constructs a HE-BN for the
system. A reliability analysis method is proposed to solve the problem of insufficient failure data and uncertainty in
the degree of failure. The failure probability of the system is further calculated and the key components that affect
the system’s reliability are identified. The proposed method accounts for the uncertainty and incompleteness of the
failure data in complex multi-state systems and establishes an easily computable reliability model that fully reflects
the characteristics of complex faults and accurately identifies system weaknesses. The feasibility and accuracy of
the method are further verified by conducting case studies.
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1 Introduction

The system is a complex of many interacting and connected elements that are capable of
performing a specific function. Quantifying the impact of system or human failure on a specific
function is the content of system reliability analysis. For the reliability analysis of complex systems
in military engineering, aerospace, rail transportation, and other fields, the system structure and
operating environment are complex, the test costs are expensive and the historical failure data are
insufficient [1,2]. So how to build a reliability model that is easy to calculate and completely reflects
the failure characteristics of the system? How to overcome the lack of reliability data and effectively
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identify the weak points of the system? These are the main problems in the reliability analysis of
complex systems. Therefore, it is necessary to propose a new reliability analysis method that can
effectively solve these problems.

System reliability is studied for the system as a whole. However, the concept of a system as a
whole is relative. The components that make up a whole system can be seen as subsystems of the whole
system. This whole system can in turn be seen as subsystems of a larger whole system. The study of
system reliability requires the selection of suitable analysis methods according to different applications,
different analysis purposes, and different system characteristics. Commonly used traditional system
reliability analysis methods include the Reliability block diagram (RBD) method, Fault tree analysis
(FTA) method, Bayesian network, Markov analysis, GO method, and Petri net, etc. These traditional
reliability analysis methods are mainly based on exact probability theory. However, the reliability
information of complex systems is diverse and uncertain, and the reliability data is difficult to obtain
[3,4]. So, the above traditional reliability analysis methods are not applicable anymore. Therefore,
some scholars have introduced uncertainty characterization methods such as fuzzy theory [5], interval
analysis [6], and probabilistic boxes [7] into reliability analysis.

The fault tree is an intuitive reliability modeling method that adequately represents component
and system interactions and fault relationships. It has certain advantages for rapid modeling. When
complex systems and equipment fail due to multiple causes and the causal relationship between higher
and lower-level fault events is unclear, fault trees can be used to describe the links between fault events
deterministically through logic gates. The system can then be analyzed qualitatively (to obtain the
minimum cut set) and quantitatively (to obtain the top event reliability data and the bottom event
importance). It has been widely used in the aerospace [8], transportation [9], and power [10] fields.
Based on the fault tree, the Takagi-Sugeno Fault tree analysis (T-S FTA) method is further proposed
to solve the problem of system fault polymorphism and uncertainty of the fault mechanism and data
[11]. T-S fault tree has been applied to the reliability analysis of multi-state complex systems [12–14].
However, when used to calculate the top event probability of system fault trees in real engineering, the
current T-S FTA is computationally intensive and cannot be backward calculated. BN fills exactly this
gap and is widely used in reliability analysis [15,16].

BN uses conditional probabilities to describe the relationships between events in a fault tree.
It has powerful inference and analysis capabilities. It is more suitable for complex systems in
terms of representing polymorphic events, describing node relationships, and computational analysis
capabilities. Therefore, the FTA model constructed based on the fault mechanism is transformed into
BN inference to diagnose faults. It becomes a hot spot in the field of fault research of complex systems.
In [17], the work focused on the use of BN to deal with the uncertainty of accidents and the limitations
of the fault tree. In [18], a multistate fault tree was transformed into a BN model. The reliability of a
semi-submersible drilling rig system under different fault states was calculated.

In the above study, BN requires large amounts of accurate fault data. Sample data are scarce
for most high-reliability systems in practical engineering. The randomness assumption or fuzziness
assumption is not satisfied, but it is easy to determine the uncertain information boundaries. Therefore,
some scholars have introduced methods such as Fuzzy theory, Interval analysis, and Evidence theory
into traditional Bayesian networks. To propose the interval Bayesian network, interval probabilities
are used instead of exact probabilities. It is used to solve the problem of the influence of uncertainty
and incomplete information on the reliability assessment results. The interval triangular fuzzy number
is used to describe Bayesian network node probabilities for the analysis of cognitive uncertainty and
failure correlation in complex multistate systems [19]. The fuzzy prior probability interval of BN is
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obtained by fusing highly conflicting data through D-S evidence theory to perform risk assessment
[20]. In [21], the interval probability was used to quantify the cognitive uncertainty of BN, and the
Bayesian posterior interval probabilities were solved using the GL2U (Generalised Loopy 2-Updating)
algorithm. The interval Bayesian network calculates the upper-level node failure interval when each
root node failure interval is simultaneously taking an interval extreme value. This simultaneous taking
of extremes is difficult to achieve in practical engineering. For the interval Bayesian network, only
upper and lower bounds on the probability of node intervals are used for system reliability analysis.
The correlation of the number of intervals is not taken into account. The results of the calculations
are coarse and conservative.

The Hyper-ellipsoidal model is a convex set model. The analytical description of uncertain interval
covariate correlations using the HM can effectively circumvent the extreme cases of interval Bayesian
models [22–24]. Therefore, the Hyper-ellipsoidal model has been applied to fatigue life analysis [25]
and structural reliability analysis [26]. The introduction of convex models into the T-S FTA method
to define uncertain covariate boundaries or ranges [27]. Then the problem of relatively conservative
interval T-S FTA results can be solved. The HM was used to describe the uncertain interval variables
of the system fault tree model for reliability assessment, which is more in line with engineering
practice [28,29].

Based on the above considerations, this paper proposes a system reliability analysis method based
on T-S FTA and HE-BN. The main contributions of this paper are as follows:

1. A reliability modeling method that reflects complex system failure characteristics is proposed.
It improves modeling and computational efficiency over traditional reliability analysis meth-
ods.

2. The method can effectively deal with the problem of insufficient system failure data and
uncertainty about the degree of failure.

3. The method solves the problem of relatively conservative calculation results when the tra-
ditional interval Bayesian network describes uncertainty fault data. It is more in line with
engineering practice.

The rest of the paper is organized as follows: In Section 2, the mapping relationship between T-S
FTA and BN in terms of structure and working principle is analyzed. The D-S evidence theory and the
HM are briefly reviewed. In Section 3, a reliability analysis method based on T-S FTA and HE-BN is
proposed. Section 4 presents a case study on the reliability analysis of complex systems. The validity
of the proposed method is illustrated. Finally, Section 5 presents the concluding remarks.

2 Introduction of Basic Theory
2.1 T-S Fault Tree and Bayesian Network

The T-S FTA is an analysis method that considers the impact of multiple fault levels on the system.
It has IF-THEN rules and describes inter-event connections with T-S gates. When the input event fault
state of the IF-THEN rule is two-state and the output event satisfies the traditional fault tree logic
gates, the T-S Fault tree degenerates to the traditional fault tree. The traditional fault tree is a special
case of the T-S Fault tree. The T-S Fault tree model is shown in Fig. 1a, where X1, X2, and X3 are
bottom events, M1 is the middle event, M2 is the top event, and T-S gate 1 and T-S gate 2 are T-S
fuzzy gates.
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Figure 1: Model comparison

Considering the fuzziness of the event fault state, the T-S FTA uses the fuzzy number to describe
the event fault state. For example, the fault state of the T-S gate input event xi(i = 1, 2, . . . , n) is a
fuzzy number xi

[ai ](ai = 1, 2, . . . , ki). The fault state of the output event y is a fuzzy number y[bj ](bj =
1, 2, . . . , nj). Then the fault logic relationship between the events can be described by the T-S gate rules.
Rule l(l = 1, 2, . . . , r): If the input event x1 fault state is x1

[a1], input event x2 fault state is x2
[a2],. . . , and

input event xn fault state is xn
[an ], the probability of output event fault state y[bj ] is Pl(y[bj ]). Among them,

r is the total number of T-S rules that satisfy r = k1k2 . . . kn =
n∏

i=1

ki.

The Bayesian network is a directed acyclic network composed of a directed acyclic graph and a
conditional probability table, as shown in Fig. 1b. Where X1, X2, and X3 are the root nodes, Y1 is
the intermediate node, and Y2 is the leaf node. X1, X2, and X3 are the parent nodes of Y1, and Y2 is
the child node of Y1. The nodes are connected by directed edges and the strength of the connection is
determined by the conditional probability P. P consists of conditional probability parameters between
variables. The probability distribution P(X) of the BN in Fig. 1b is:

P (X) = P (X1, X2, X3) =
3∏

i=1

P (Xi |Pa (Xi)) (1)

where Pa(Xi) is the parent node set of nodes Xi. When Pa(Xi) is an empty set, P(Xi |Pa (Xi)) is the
prior probability P(Xi) of node Xi.

The T-S FTA solves the problem of uncertainty about the failure mechanism and the degree of
failure in complex systems. However, it is computationally complex and cannot be reasoned backward.
And BN is superior to T-S FTA in computational analysis [17]. However, it is more difficult to
construct BN directly.

2.2 D-S Evidence Theory
The fault tree analysis method based on the fuzzy reliability model is relatively mature. However,

in engineering practice, it is often difficult to obtain sufficient data to determine the probability density
function or fuzzy affiliation function of parameters [30]. As a mathematical method to deal with
uncertainty inference problems, D-S evidence theory quantifies the degree of confidence and likelihood
of propositions. It captures the unknown and uncertainty of the problem better than the traditional
probability theory. It provides a way to obtain input data in fault tree analysis.

D-S evidence theory is a theory of information fusion [31]. It expresses the uncertainty problem
through the belief function and the plausibility function [32]. Define the discernment framework �,
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which consists of several completely mutually incompatible elements. Denote A as any subset of the
discernment framework �. Define the basic creditability allocation function for the evidence i to be
mi : 2� → [0, 1] (2� is a powerful set of �) satisfying:⎧⎨
⎩

m(∅) = 0∑
A⊆�

m (A) = 1 (2)

Define the belief degree Bel: 2� → [0, 1] and plausibility degree Pl: 2� → [0, 1]. When ∀A ⊆ �,
and A �= ∅, there are Bel (A) = ∑

B⊆A

m (B), Pl (A) = ∑
B∩A�=∅

m (B), Bel(A) = 1 − Pl(A).

According to the D-S synthesis rule, the synthesis rule for n pieces of independent evidence on the
identification frame � as shown in Eq. (3):

m (A) = (m1 ⊕ m2 ⊕ · · · ⊕ mn) (Ai) = 1
K

∑
A1∩A1∩···∩An=A

n∏
j=1

mj (Ai) (3)

Among them, K is the normalization factor, which is used to measure the degree of conflict
between evidence, and can be obtained by Eq. (4):

K =
∑

A1∩A1∩···∩An �=∅

n∏
j=1

mj (Ai) = 1 −
∑

A1∩A1∩···∩An=∅

n∏
j=1

mj (Ai) (4)

2.3 Hyper-Ellipsoidal Model
The D-S theory of evidence cannot resolve serious conflicts and complete conflicts in the evidence.

And the more the number of elements in a subset, the greater the ambiguity of the subset. HM is a
convex set model. It has the advantages of continuous parameter variation, simple model structure,
and easy correlation analysis. It can better compensate for the lack of too-conservative analysis results
of the Interval model [22], as shown in Fig. 2.

Figure 2: Two-dimensional interval model and two-dimensional hyper-ellipsoidal model

The HM is a method of reflecting the deviation of a random variable based on the distance
between its equivalent unit hypersphere coordinate origin and the failure surface of a structure in
normalized vector space. If the random variable Xi ∈ [xi

L, xi
U ](i = 1, 2, · · · , n) in the set of random

variables X , where xi
L and xi

U are the lower bound and upper bound of the value of Xi, respectively.
Then the HM of the set of random variables X is described as:[

X1 − x10

x1

, · · · ,
Xn − xn0

xnr

]T

·
[

X1 − x10

x1

, · · · ,
Xn − xn0

xnr

]
≤ 1 (5)
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where, xi0 = xi
L + xi

U

2
, xir = −xi

L + xi
U

2
are the nominal value and the deviation of xi, respectively.

3 T-S FTA and HE-BN Reliability Analysis Methods of Coupler System

Conditional probability tables for BN are difficult to construct. The T-S FTA method is compu-
tationally complex and cannot be reasoned backward. Using the Interval model to describe the failure
probability of the root node is relatively conservative. To address these problems, a reliability analysis
method based on T-S FTA and HE-BN is proposed. Firstly, a T-S fuzzy gate is used to describe the
connection between each failure event of the system. Then the BN model of the system is constructed.
Secondly, experts describe the event failure degree in the form of interval numbers. The knowledge and
experience of several experts are fused using the D-S evidence theory. The initial failure probability
interval of each root node of the BN is obtained. Then the Hyper-ellipsoidal Model (HM) constrains
the initial failure probability interval. The HE-BN model of the system is constructed. Finally, the
probability of failure of the system is inferred and calculated to find out the key components of the
system. The analysis process is shown in Fig. 3, and the analysis steps are as follows:

Figure 3: T-S FTA and HE-BN reliability analysis process

Step 1: Analyse the system structure and working principle. Determine the top event T and the
bottom event Xi(i = 1, 2, 3, · · · , n). Connect them with a T-S gate to construct a T-S fault tree model of
the system. Describe the fuzzy fault occurrence probability of the bottom event by the interval number
P(Xi) = [xi

L, xi
U ](i = 1, 2, · · · , n). T-S gate rule l is expressed as P(l)(y[n]).

Step 2: Transform the T-S FTA into a BN model according to Fig. 3.

In the working principle, the T-S FTA and BN can be mapped from one to another. Each event
in the T-S FTA corresponds to a BN node. The T-S gate rule and the conditional probability table of



CMES, 2024, vol.138, no.2 1775

the BN can also be mapped, see Table 1. Therefore, the T-S FTA can be used as a reference to build a
BN quickly and efficiently.

Table 1: Comparison of calculation rules

Bottom events/root
nodes

x1 x2 · · · xn

Bottom events/root
nodes state

x1
[a1] x2

[a2] · · · xn
[an ]

Top event/leaf node
state

y[1] y[2] · · · y[n]

Rules l P(l)(y[1]) P(l)(y[2]) · · · P(l)(y[n])

Conditional probability
P(y = y[1] |x1 = x1

[a1],
· · · , xn = xn

[an ])

P(y = y[2] |x1 = x1
[a1],

· · · , xn = xn
[an ])

· · · P(y = y[n] |x1 = x1
[a1],

· · · , xn = xn
[an ])

The events in the T-S fault tree are transformed into nodes one by one according to the
correspondence in Fig. 3 and Table 1. The state of each event corresponds to the state of each node.
The nodes are connected using directed edges according to the logic of T-S gates. The probability of
failure P(Xi) = [xi

L, xi
U ](i = 1, 2, · · · , n) of the bottom event is assigned to the root node as the prior

probability. The T-S gate rules are described using the conditional probability table P(y = y[n] |x1 =
x1

[a1], · · · , xn = xn
[an ]).

Step 3: A component or system will go through multiple states from a normal operating state
to a complete fault state in actual engineering. This paper assumes that the Bayesian network model
component or system has three states. The fault state of the system node in the BN is defined as fault
occurrence, fault non-occurrence, and fault in a fuzzy uncertainty state. Then the system discernment
framework is �= {Fault occurrence, Fault non-occurrence, Fault in fuzzy uncertainty state}, denoted
as � = {A1, A2, (A1, A2)}, see Table 2. There are also two states of nodes in the BN. The fault state
of the node is defined as fault occurrence, fault non-occurrence, then the discernment framework is
�= {Fault occurrence, Fault non-occurrence}, denoted as � = {A1, A2 }. It is calculated in the same
way as the three-state node.

Table 2: Basic creditability distribution

Evidence body Z Basic creditability distribution

Fault occurrence A1 Fault in fuzzy uncertainty state
(A1, A2)

Fault
non-occurrence A2

Z1 m1 n1 1 − m1 − n1

Z2 m2 n2 1 − m2 − n2

Step 4: Adopt expert knowledge and experience as the body of evidence. The two experts make
their judgments about the probability of the state of the various root nodes. Denote their judgments
as evidence Z1, Z2. Construct the basic credibility distribution function for the root node, see Table 2.
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Step 5: According to the D-S synthesis rule, the root node Xi failure probability interval was
calculated under the joint action of two experts’ evidence. Calculating the conflict value according
to Eq. (6), and the synthesis results are shown in Table 3.

k =
∑

Ai∩Aj=∅

s1 (Ai) s2

(
Aj

) = m1 (1 − m2 − n2) + m2 (1 − m1 − n1) (6)

Table 3: Data fusion table

D-S evidence fusion Basic creditability distribution

A1 (A1, A2) A2

Belief function Bel
m1m2 + m1n2 + m2n1

1 − k
n1n2

1 − k
–

Plausibility function Pl
(m1 + n1)(m2 + n2)

1 − k
n1n2

1 − k
–

The failure probability interval of the root node Xi is shown in Eq. (7).

P (Xi) = [Bel, Pl] =
[

m1m2 + m1n2 + m2n1

1 − k
,
(m1 + n1)(m2 + n2)

1 − k

]
(7)

Step 6: Constrain the root node initial failure probability interval using the HM to obtain the root
node probability interval P (Xi) in BN analysis.

In BN, the greater the number of BN nodes, the less likely it is that their failure intervals will require
simultaneous bounds. This simultaneous taking of bounds is thus negligible in the reliability analysis
of complex systems [22]. Therefore, a Hyper-ellipsoidal domain can be used to deal with Bayesian
network node intervals. That is, the uniformly distributed points satisfying Eq. (5) are extracted within
the interval box model. The failure probability interval of each root node of the BN is obtained.

And for multidimensional variables, to enhance the efficiency of sampling, sampling can be carried
out according to Eqs. (8)–(12).

Introduce vector:

z = D−1P (8)⎧⎪⎨
⎪⎩

z = (z1, z2, . . . , zn)
T

D = diag(Pr(X1), Pr(X2), . . . , Pr(Xn))

P = [P(X1), P(X2), . . . , P(Xn)]T

(9)

Eq. (5) is converted into:

(z − z0)
T · (z − z0) ≤ 1 (10)

z0 =
[

P0 (X1)

Pr (X1)
,

P0 (X2)

Pr (X2)
, · · · ,

P0 (Xn)

Pr (Xn)

]T

(11)

From Eq. (10), generating uniformly distributed random numbers in the hyper-ellipsoid is equiva-
lent to uniform sampling in the unit hypersphere of �z space. The interval probability of the root node
shall be uniformly taken within the space hyper-ellipsoid �z = z − z0. Let the unit hyper-ellipsoidal
coordinate be (r, θ1, θ2, · · · , θn−1), where r ∈ [0, 1], θi ∈ [0, 2π ] , then:
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�z = z − z0 =

⎡
⎢⎢⎢⎢⎣

r cos θ1

r sin θ1 cos θ2

...
r sin θ1 sin θ2 · · · sin θn−3 cos θn−2

r sin θ1 sin θ2 · · · sin θn−2 cos θn−1

⎤
⎥⎥⎥⎥⎦ (12)

The HM of interval probability P (Xi) of the root node Xi of BN is:[
P (Xi) − P0 (Xi)

Pr (Xi)
, · · · ,

P (Xn) − P0 (Xn)

Pr (Xn)

]T

·
[

P (Xi) − P0 (Xi)

Pr (Xi)
, · · · ,

P (Xn) − P0 (Xn)

Pr (Xn)

]
≤ 1 (13)

where P0 (Xi) = Bel(Xi) + Pl(Xi)

2
is the nominal value of P (Xi); Pr (Xi) = −Bel(Xi) + Pl(Xi)

2
is the

deviation of P (Xi).

According to Eqs. (8)–(12), the interval probability P (Xi) of the root node is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(X1) = Pr(X1)r cos θ1 + P0(X1)

P(X2) = Pr(X2)r sin θ1 cos θ2 + P0(X2)

...
P(Xn−1) = Pr(Xn−1)r sin θ1 . . . sin θn−2 sin θn−1 + P0(Xn−1)

P(Xn) = Pr(Xn)r sin θ1 . . . sin θn−2 sin θn−1 + P0(Xn)

(14)

Step 7: The HE-BN is used for forward calculation, and the failure probability interval of the leaf
node T with fault state Tq is obtained as shown in (15).

P(T = Tq) =
∑

x1,x2,...,xn ;

y1,y2,...,ym

P(x1, x2, . . . , xn; y1, y2, . . . , ym; T = Tq)

=
∑
λ(T)

P
(
T = Tq|λ(T)

) ×
∑
λ(y1)

P (y1|λ (y1))
∑
λ(y2)

P (y2|λ (y1))×

· · · ×
∑
λ(ym)

P (ym|λ (ym)) P
(
xa1

1

)
P

(
xa2

2

) · · · P
(
xan

n

)
(15)

where P(xai
i ) is the interval probability of fault occurs when the fault state of the root node xi is xai

i .

Step 8: When the fault state of the leaf node is known to be Tq, the posterior probability P(xi =
xi

ai
∣∣T = Tq ) of the root node xi with fault state xi

ai is obtained as Eq. (16).

P
(
xi = xai

i |T = Tq

) = P(xi = xai
i , T = Tq)

P(T = Tq)
=

∑
x1,x2,...,xn

P
(
x

1
, . . . , xi = xai

i . . . xn, T = Tq

)

P
(
T = Tq

)
= P(xai

i )

P(T = Tq)

∑
x1,x2,...,xn

P
(
T = Tq|x1

, . . . , xi = xai
i . . . xn

) · P
(
xa1

i

)
. . . P(x

ai−1
i−1 )P(x

ai+1
i+1 ) . . . P(xan

n )

(16)

where P(xi = xi
ai , T = Tq) is the joint probability of the root node xi with the fault state xi

ai and the
leaf node T with the fault state Tq.
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4 Application Case Analysis
4.1 Multistate Series-Parallel Systems Reliability Analysis

The multistate series-parallel system is shown in Fig. 4. Construct its T-S fault tree as shown
in Fig. 5a, where G1 denotes “AND” gates. G2 and G3 denote “OR” gates. The Fault occurrence
state, Fault in fuzzy uncertainty state, and Fault non-occurrence state of the system and components
are denoted by A1,(A1, A2), and A2. The failure rate of the component Xi(i = 1, 2, 3, 4) in the Fault
occurrence state is 5.0 × 10−5/h, 1.0 × 10−5/h, 1.5 × 10−5/h, and 1.2 × 10−5/h, respectively. The failure
rate of components in the Fault in fuzzy uncertainty state is 9.0 × 10−5/h, 1.0 × 10−4/h, 2.8 × 10−5/h,
and 3.6 × 10−5/h, respectively.

Figure 4: Multistate series-parallel systems

Figure 5: Reliability model for a multi-state series-parallel system

The T-S FTA of the multistate series-parallel system was converted into a BN as shown in Fig. 5b.
The T-S gate rules are converted into a conditional probability table. For the G1 gate, see Table 4.
Conditional probability tables are the same for G2 and G3, see Table 5. Table 4 rule 1 indicates that
under the condition that the S1 state is A1, S2 state is A1, the probability of S0 state A1 is 1 and the
probability of (A1, A2) and A2 is 0. Other rules can be followed in this way.

First, the multistate series-parallel system is analyzed by the traditional Bayesian network method.
Based on the conditional probability table and the exact failure rate of each root node, the probability
of the Fault occurrence state of the leaf node is calculated to be P(S0 = A1) = 298299.7969 × 10−14,
the probability of the Fault in fuzzy uncertainty state is P(S0 = (A1, A2)) = 738060.0823 × 10−14, and
the probability of the Fault non-occurrence state is P(S0 = A2) = 999999.9963 × 10−6. The multistate
series-parallel system was analyzed using the interval Bayesian network and the method proposed in
this paper. Table 6 shows the failure rates at each root node.
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Table 4: Conditional probability table for node S0

Rule S1 S2 S0

A1 (A1, A2) A2

1 A1 A1 1 0 0
2 A1 (A1, A2) 0.6 0.3 0.1
3 A1 A2 0 0 1
· · · · · · · · · · · · · · · · · ·
9 A2 A2 0 0 1

Table 5: Conditional probability table for nodes S1 and S2

Rule X1/X3 X2/X4 S1/S2

A1 (A1, A2) A2

1 A1 A1 1 0 0
2 A1 (A1, A2) 1 0 0
3 A1 A2 1 0 0
· · · · · · · · · · · · · · · · · ·
9 A2 A2 0 0 1

Table 6: Root node failure rate

Root node State Interval Bayesian failure rate Hyper-ellipsoidal Bayesian failure rate

X1
A1 [4.5000 × 10−5, 5.5000 × 10−5] [4.6260 × 10−5, 5.4928 × 10−5]
(A1, A2) [8.5000 × 10−5, 9.5000 × 10−5] [8.6180 × 10−5, 9.4287 × 10−5]

X2
A1 [9.0000 × 10−6, 1.1000 × 10−5] [9.1209 × 10−6, 1.0381 × 10−5]
(A1, A2) [9.0000 × 10−5, 1.1000 × 10−4] [9.4613 × 10−5, 1.0710 × 10−4]

X3
A1 [1.3500 × 10−5, 1.6500 × 10−5] [1.3674 × 10−5, 1.6309 × 10−5]
(A1, A2) [2.5200 × 10−5, 3.0800 × 10−5] [2.5508 × 10−5, 3.0188 × 10−5]

X4
A1 [1.0800 × 10−5, 1.3200 × 10−5] [1.1288 × 10−5, 1.2937 × 10−5]
(A1, A2) [3.2400 × 10−5, 3.9600 × 10−5] [3.3289 × 10−5, 3.7568 × 10−5]

Probability at each state of leaf nodes was obtained by the Bayesian inference algorithm. The
comparative analysis results of the traditional Bayesian network, the interval Bayesian network, and
the method proposed in this paper are shown in Table 7.

The system failure rate is assumed exponentially distributed. The reliability curves of the multistate
series-parallel system under the three methods are obtained as shown in Fig. 6.
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Table 7: Comparison of leaf node failure rate results

State Traditional Bayesian Interval Bayesian Hyper-ellipsoidal Bayesian

A1 2.9829 × 10−9 [2.4332 × 10−9,
3.5885 × 10−9]

[2.5645 × 10−9,
3.3227 × 10−9]

(A1, A2) 7.3806 × 10−10 [6.0743 × 10−10,
8.8132 × 10−10]

[6.4141 × 10−10,
7.6236 × 10−10]

A2 999999.9963 × 10−6 [999999.9955 × 10−6,
999999.9970 × 10−6]

[999999.9959 × 10−6,
999999.9968 × 10−6]

Figure 6: Multistate series-parallel system reliability curves

As can be seen from Table 7 and Fig. 6, the traditional Bayesian analysis results using exact failure
rates are within the HE-BN method interval results. Also, the length of the analysis result interval for
HE-BN is smaller and closer to the exact value than the interval Bayesian results. It proves that the
present method can solve the problem of insufficient failure data. It can also make up for the relatively
conservative calculation results of the Interval model, which is more in line with engineering practice.

Using the HE-BN method, the posterior probability of each root node is calculated by Eq. (16)
when the multistate series-parallel system is in the fault occurrence state. The posterior probability
results are sorted by the interval number sorting method based on the order relationship. For the
interval number A[a−, a+], define the measurement mθ (a) = (1 − θ)a− + θa+ of the interval numbers,
θ ∈ [0, 1]. The larger the value of mθ (a), the larger the corresponding interval number. After sorting
them by the interval number sorting method [33], a comparison with traditional Bayesian results is
shown in Fig. 7.

As can be seen from Fig. 7, the method proposed in this paper is consistent with the results of
the posterior probability ranking of the root nodes obtained from the traditional Bayesian method.
The results are X1>X3>X4>X2. X1 is the most important and X2 is the least important, which
corresponds to the actual situation. The failure rate of component X1 is the highest and the failure
rate of X2 is the lowest, which proves the feasibility of this method.
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Figure 7: Comparing posterior probability results for multistate series-parallel system root nodes

4.2 Shibata-Type Coupler System Reliability Analysis
The Shibata-type coupler consists of a coupler head, coupler knuckle, uncoupling air cylinder,

coupler body, and coupler yoke [34]. The specific structure of the Shibata-type coupler is shown in
Fig. 8.

Figure 8: Shibata-type coupler
Note: 1-Coupler head; 2-Coupler tongue; 3-Coupler body; 4-Air pipeline; 5-Horizontal pin; 6-Frame joint; 7-Vertical pin;
8-Front baffle; 9-Buffer frame; 10-Rubber buffer; 11-Rear baffle.

As can be seen from Fig. 8, the structure of the Shibata-type coupler can be divided into two parts:
the coupler and the buffer. The coupler body includes a coupler head, coupler body, coupler yoke, and
other structures. The buffer is composed of the horizontal pin, vertical pin, frame joint, rubber pile,
baffle, buffer frame, and bracket.

When two couplers are attached, the convex cone of one of the couplers is inserted into the concave
cone of the body of the other coupler. The side of the convex cone presses against the tongue of
the coupler in the concave cone and turns 40° counterclockwise. When the two couplers are fully
connected, the convex cone is no longer pressing on the latch and the latch returns to the closed
position. The automatic coupling is completed. To de-couple, the driver operates the uncoupling valve
or manually pushes the uncoupling lever to turn the coupler tongue counterclockwise to the unlocked
position. The two couplers can then be released.

The T-S FTA model is constructed based on the failure of the Shibata-type coupler system as the
top event, as shown in Fig. 9. And transformed into a BN as shown in Fig. 10 according to the method
in Fig. 3. The event names represented by each node are shown in Table 8.
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Figure 9: T-S FTA module of Shibata-type coupler system

Figure 10: BN of Shibata-type coupler system
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Table 8: Names of Shibata-type coupler system nodes

Symbol Node Symbol Node

T Shibata-type coupler system failure X9 The uncoupling air cylinder
handle cannot be pulled to the
uncoupling position

Y1 Mechanical failure X10 Uncoupling spring rusted or
broken

Y2 Artificial failure X11 Water accumulation in the
uncoupling air cylinder

Y3 Coupler subsystem failure X12 Plug and socket are inclined and
cannot be separated

Y4 Buffer subsystem failure X13 The plug positioning switch fails
to operate

Y5 Coupler body failure X14 Internal water inlet rusted
Y6 Coupler tongue failure X15 Cable damage
Y7 Uncoupling air cylinder failure X16 Air pipeline leaks
Y8 Electrical connector failure X17 The rubber seal ring missing
Y9 Air duct connector failure X18 The Coupler lock is too tight
Y10 Coupler lock failure X19 Coupler lock worn
Y11 Horizontal and vertical pin failure X20 Crack or fracture of Horizontal

and vertical pin
Y12 Buffer frame failure X21 Horizontal and vertical pin

surfaces rusted
X1 Coupler body cracks X22 Wear the horizontal and vertical

pin
X2 Coupler yoke pin fracture, coupler

yoke pin bolt fracture
X23 Frame joint worn

X3 The coupler yoke pin and shaft
sleeve are difficult to disassemble
due to corrosion

X24 Buffer frame cracked

X4 Coupler body wear X25 Buffer frame worn
X5 Coupler tongue crack X26 Rubber sheet produces

permanent deformation
X6 Coupler tongue deformation X27 Carrier failure
X7 Coupler tongue rusted X28 Non-standard operation of

maintenance personnel
X8 Uncoupling lever worn or rusted X29 Improper operation of the

locomotive

The coupler system discernment framework is � = {Fault occurrence, Fault non-occurrence, Fault
in fuzzy uncertainty state}, which is recorded as � = {A1, A2, (A1, A2)}. Using the root node X1 as an
example, calculate the initial failure probability interval. The expert evaluation data for root node X1
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of the coupler system is shown in Table 9. Substitute it into Eqs. (6) and (7) to obtain the evidence
conflict value k1 and the initial failure probability interval P(X1) of root node X1.

Table 9: Expert evaluation data of root node X1

Evidence body Z A1 (A1, A2) A2

Z1 0.1345 × 10−4 0.1566 × 10−4 9999.7089 × 10−4

Z2 0.0929 × 10−4 0.1249 × 10−4 9999.7822 × 10−4

k1 = 0.00000929 × 0.99997089 + 0.00001345 × 0.99997822 = 41.5998 × 10−7

P(X1) = [Bel, Pl]

=
[

0.00001345 × 0.00000929 + 0.00001345 × 0.00001249 + 0.00000929 × 0.00001566
1 − 4.15998 × 10−6

,

(0.00001345 + 0.00001566) × (0.00000929 + 0.00001249)

1 − 4.15998 × 10−6

]

= [
4.3843 × 10−10, 6.3403 × 10−10

]
The initial failure probability interval for each root node is obtained by the same calculation as

above. The root node failure probability interval after the HM constraint is obtained from Eq. (14).
See Table 10 for part of this.

Table 10: Failure probability interval of root nodes

Root node Initial failure probability interval Hyper-ellipsoidal probability interval

X1 [4.3843 × 10−10, 6.3403 × 10−10] [5.1605 × 10−10, 5.4981 × 10−10]
X2 [3.0046 × 10−10, 4.1525 × 10−10] [3.4946 × 10−10, 3.7068 × 10−10]
X3 [1.5232 × 10−10, 2.1699 × 10−10] [1.7865 × 10−10, 1.9124 × 10−10]
X4 [1.7595 × 10−10, 2.5247 × 10−10] [2.0676 × 10−10, 2.2057 × 10−10]
· · · · · · · · ·
X27 [1.1322 × 10−10, 1.6623 × 10−10] [1.3381 × 10−10, 1.4489 × 10−10]
X28 [2.6749 × 10−13, 4.2065 × 10−13] [3.3330 × 10−13, 3.5827 × 10−13]
X29 [1.9017 × 10−12, 2.7183 × 10−12] [2.2376 × 10−12, 2.3911 × 10−12]

The T-S gate rule of the coupler system is derived from historical data and expert experience. The
conditional probability table of the BN is obtained according to the method in Fig. 3. The conditional
probability table for the intermediate node Y2 is shown in Table 11 as an example. Where rule 1
indicates that under the condition that X28 has a fault state of A2 and X29 has a fault state of A2,
the possibility that Y2 fault state being A2 is 1, the possibility that Y2 is (A1, A2) and A1 is 0. Other
rules can be used in this way.
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Table 11: Conditional probability table of intermediate node Y2

Rule X28 X29 Y2

A1 (A1, A2) A2

1 A1 A1 1 0 0
2 A1 (A1, A2) 0 0.3 0.7
3 A1 A2 0.2 0.2 0.6
4 (A1, A2) A1 0.1 0.3 0.6
. . . . . . . . . . . . . . . . . .

8 A2 (A1, A2) 0.6 0.3 0.1
9 A2 A2 0 0 1

According to the failure probability interval of X28 and X29 and Table 11, the failure probability
interval of Y2 in various states can be obtained by using Eq. (15) as follows:

P (y2 − A1) =
∑

x28,x29

P (x28, x29; y2 = A1) =
∑

x28,x29

P(y2 = A1|x28, x29) × P(x28) × P (x29)

= [1.3611 × 10−12, 1.4528 × 10−12]

P (y2 = (A1, A2)) =
∑

x28,x29

P (x28, x29; y2 = (A1, A2))

=
∑

x28,x29

P (y2 = (A1, A2) |x28, x29) × P (x28) × P (x29)

= [9.1862 × 10−13, 9.6967 × 10−13]

P (y2 − A2) =
∑

x28,x29

P (x28, x29; y2 = A2) =
∑

x28,x29

P (y2 = A2|x28, x29) × P (x28) × P (x29)

= [99999999.9998 × 10−8, 99999999.9998 × 10−8]

The above results show that Y2 has a small probability of a fault and a fault-indeterminate state
and a high probability of no fault. This is consistent with the actual situation. Based on the constructed
BN, the probability intervals of failure for leaf node T with fault states A1, (A1, A2), and A2 were found
using the method and combined with the conditional probability tables of the nodes. The reliability
curve of the hook system can be obtained as shown in Fig. 11. As can be seen in Fig. 11, the reliability
of the coupler system is in the range [0.7873, 0.8505] after 1 × 108 h of operation. Based on the results
of the reliability assessment of the coupler system, a basis can be provided for subsequent design and
maintenance work.
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P(T = A1) = [1.6663 × 10−10, 1.4425 × 10−9]

P(T = (A1, A2)) = [1.0585 × 10−9, 1.4525 × 10−9]

P(T = A2) = [99999.9997 × 10−5, 99999.9998 × 10−5]

Figure 11: Coupler system reliability curve

The posterior probability of the root node xi for leaf node T with fault states A1 and (A1, A2) can
be calculated according to Eq. (16). After sorting them by the interval number sorting method [33],
the posterior probability is shown in Fig. 12.

Figure 12: Posterior probability of root nodes

As can be seen from Fig. 12, when the Shibata-type coupler system fails, the root node posterior
probabilities are ordered as follows:

X2>X16>X9>X10>X1>X3>X17>X4>X15>X14>X20>X21>X24>X13>X11>X12>X18>X22
>X7>X27>X25>X29>X23>X19>X5>X6>X8>X28>X26.
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When the fault of the Shibata-type coupler system is in a fuzzy uncertainty state, the posterior
probability of the root node is sorted as follows:

X16>X2>X1>X9>X10>X17>X3>X4>X15>X14>X20>X24>X21>X13>X11>X12>X18>X22
>X7>X27>X25>X29>X23>X19>X5>X6>X8>X26>X28.

A comparison of the failure rates from CRH2 and CRH30A (L) rolling stock operational data
[35] with the results obtained from a reliability analysis method based on T-S FTA and HE-BN is
shown in Fig. 13.

Figure 13: Result comparison

It can be seen from Fig. 13 that in the operation data of CRH2 and CRH380A (L) multiple
units, the failure rate of key components of the Shibata-type coupler system is ranked as follows:
air duct connector, coupler body, uncoupling air cylinder, electrical connector, horizontal and vertical
pin, buffer frame, coupler lock, coupler tongue, uncoupling lever. The results are consistent with the
sequence when the coupler system fault state is A1 in the reliability analysis method of the T-S FTA
and HE-BN, which verifies the correctness and feasibility of the method.

The greater the posterior probability, the greater the impact of the component on the system
failure, which is the weak link that the system should focus on. From the analysis results in Figs. 12
and 13, it can be seen that when the coupler system is in a (A1, A2) state, coupler yoke pin fracture
and coupler yoke pin bolt fracture have the greatest impact on the system. This is followed by the Air
pipeline leak and uncoupling air cylinder failure. Therefore, these components should be inspected
and repaired first when the system is in a half-fault state or has reached the preventive maintenance
time point to ensure longer system life. When the system is in the A1 fault state, the Air pipeline leak
has the greatest impact on the system, followed by the Coupler yoke pin fracture, coupler yoke pin
bolt fracture, and the Coupler body crack, and the impact of the Non-standard operation of the
maintenance personnel is the smallest.

4.3 A Type of Double-Row Tapered Roller Bearing System Reliability Analysis
The structure of a bogie bearing for a moving train is shown in Fig. 14 and includes the inner

ring, the outer ring, the rolling element, and the cage. The inner ring fits with the shaft and rotates
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with it. The outer ring fits into the bearing housing and plays a supporting role. The rolling element is
evenly distributed between the inner ring and outer ring with the help of the cage. The bogie axle box
bearing supports the static load of the vehicle and the longitudinal and transverse impact of the vehicle
in operation and other dynamic loads, and its failure mode can be classified as rust, discoloration,
surface plastic deformation, fatigue spalling and pitting failure, cracks and defects in five categories.

Figure 14: Bearing structure

A T-S fault tree with bearing failure as the top event was constructed for a type of double-row
tapered roller bearing used in the bogie of a moving train, as shown in Fig. 15. It is transformed into
a BN as shown in Fig. 16. The meanings represented by the symbols in Fig. 16 are shown in Table 12.

Figure 15: Bearing system T-S fault tree

Figure 16: Bearing system Bayesian network
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Table 12: Bearing system node names

Symbol Node Symbol Node

T Failure of bogie bearings in locomotives X4 Clearance to little
M1 Rust and corrosion X5 Excessive preload
M2 Discoloration X6 Friction
M3 Surface plastic deformation X7 Low hardness
M4 Fatigue spalling, pitting failure X8 Excessive axial load
M5 Cracks and defects X9 Improper assembly
X1 Seal failure X10 Impurities
X2 Poor lubrication X11 Excessive impact load
X3 Incidental factors

Define the identification framework of the bearing system as � = {Fault occurrence, Fault in
fuzzy uncertainty state, Fault non-occurrence}, denoted as � = {A1, (A1, A2), A2}. Substitute the expert
evaluation data of the root nodes of the bearing Bayesian network into Eqs. (6) and (7) to obtain the
initial failure probability interval of each root node. The failure probability interval of the root node
after the HM constraint is obtained from Eq. (14) and is shown in Table 13.

Table 13: Failure probability interval of root nodes

Root node Initial failure probability interval Hyper-ellipsoidal probability interval

X1 [6.8000 × 10−6, 7.0000 × 10−6] [6.8188 × 10−6, 6.9800 × 10−6]
X2 [2.3000 × 10−6, 3.3000 × 10−6] [2.3427 × 10−6, 3.2413 × 10−6]
X3 [5.0000 × 10−7, 8.1000 × 10−7] [5.1590 × 10−7, 7.3547 × 10−7]
. . . . . . . . .

X10 [2.8000 × 10−6, 3.4000 × 10−6] [2.8087 × 10−6, 3.3776 × 10−6]
X11 [7.0000 × 10−6, 9.0000 × 10−6] [7.4884 × 10−6, 8.8251 × 10−6]

The T-S gate rule for the bearing system is derived from historical data and expert experience, and
the conditional probability table for the BN is obtained according to the method in Fig. 3. Take the
conditional probability table of the intermediate node M1 as an example, see Table 14.

Based on the constructed BN and the conditional probability tables of the nodes, the probability
intervals of failure for leaf node T with fault states A1, (A1, A2), and A2 were found. A reliability
curve for the bearing system can be obtained, as shown in Fig. 17. As can be seen in Fig. 17, the
bearing system reliability interval is [0.8793, 0.8975] after 1954 h of system operation, and the reliability
decreases sharply within 40,000 h of operation. Based on the results of the reliability assessment of the
bearing system, a basis for subsequent design and maintenance work can be provided.

P(T = 0) = [9.9987 × 10−1, 9.9989 × 10−1]

P(T = 0.5) = [5.4848 × 10−5, 6.5295 × 10−5]

P(T = 1) = [5.5327 × 10−5, 6.5835 × 10−5]
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Table 14: Conditional probability table of intermediate node M1

Rule X1 X2 X3 M1

A1 (A1, A2) A2

1 A1 A1 A1 1 0 0
2 A1 A1 (A1, A2) 1 0 0
3 A1 A1 A2 1 0 0
4 A1 (A1, A2) A1 1 0 0
. . . . . . . . . . . . . . . . . . . . .

8 A2 A2 (A1, A2) 0 1 0
9 A2 A2 A2 0 0 1

Figure 17: Bearing system reliability curve

The posterior probability of the root node xi for leaf node T with fault states A1 and (A1, A2) can
be calculated according to Eq. (16). After sorting them by the interval number sorting method [33],
they are shown in Fig. 18.

Figure 18: Posterior probability of the bearing system root nodes
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As can be seen from Fig. 18, when the bearing system failure occurs, the root node posterior
probability ranking is as follows: X1>X2>X11>X10>X9>X4>X7>X6>X8>X5>X3.

When the failure of the bearing system is in a state of fuzzy uncertainty, the root node posterior
probabilities are ordered as follows: X2>X1>X11>X10>X9>X4>X7>X6>X8>X5>X3.

As can be seen in Fig. 18, X1,X2, and X8 are of greater importance. The main faults of these three
basic events are poor lubrication, seal failure, and excessive impact loads. Therefore, the following
improvement measures can be prioritized to improve the reliability of this bearing system.

Strengthen and improve the bearing lubrication technology, and bearing seal device maintenance,
to ensure that the bearings are subject to good lubrication. In bearing maintenance, develop on-site
applicable maintenance and cleaning cycles, improve the operational level of maintenance of bearings,
improve maintenance conditions, and ensure the quality of bearing maintenance. In terms of bearing
design, improve the structure of the bearing to increase the bearing’s impact resistance and improve
the internal force condition of the bearing.

5 Conclusions

This paper proposes a system reliability analysis method based on T-S FTA and HE-BN.
Combining the advantages of T-S FTA and BN, directed acyclic graphs and conditional probability
tables of BN are constructed through T-S gates and T-S rules. Evidence theory and the HM are applied
to obtain the fault interval of the system BN root node. The fault interval of the system is obtained
by forward calculation based on the directed acyclic graph, the conditional probability table, and the
fault interval of the root node. The reverse calculation is then carried out to identify the weak points
of the system. The following conclusions were obtained:

(1) Constructing directed acyclic graphs and conditional probability tables for BN by T-S gates and
T-S rules. Combines the advantages of simple T-S FTA modeling and easy BN computation.
The disadvantage is solved that the BN constructed by traditional fault trees cannot describe
the fuzzy logical relationship between nodes. It also solves the shortcomings of the T-S FTA
which is complex in operation and cannot reason in both directions. The modeling and
computational efficiency of the coupler system reliability model are improved.

(2) The D-S evidence theory is used to fuse expert experience to obtain the failure probability
interval for the BN root nodes. The HM is introduced to define the range of values of the
uncertainty probability. It can effectively deal with the problems of insufficient failure data
and uncertainty of failure degree. And it solves the problem that the calculation results are
relatively conservative when the traditional fuzzy interval model describes the uncertain failure
mechanism and data. It is more in line with engineering practice.

(3) The application of the proposed method to a real engineering case study shows that the
proposed method can establish a reliability model that is easy to calculate and fully reflects
the failure characteristics of a complex structural system by integrating the failure modes
and causes of the system when dealing with the reliability analysis of a multi-state complex
system. It can accurately identify the weak points of the system under the uncertainty and
incompleteness of the data.

In addition, the system reliability analysis method based on the T-S FTA and HE-BN proposed
in this paper can be applied to other subsystems of rail vehicles, aerospace, and other fields. It can
quantify the reliability level of the system, effectively identify the weak links, and has generality.
However, this paper only considers the structural complexity of the system, the uncertainty and
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incompleteness of the data, and the polymorphic nature of the degree of component failure. A
reliability analysis method that considers the dynamic characteristics of the system in operation and
fault correlation could be the next step in the research.
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