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ABSTRACT

The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanical
design of various structural parts. However, the elements produced by conventional FEM are easily inaccurate and
unstable when applied. Therefore, developing new elements within the framework of the generalized variational
principle is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PH-
Q8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.
According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes to
avoid the zero energy modes. Meanwhile, the stress functions within each element satisfy both the equilibrium and
the compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate the
effectiveness and robustness of the proposed finite element. Numerical results show that various common locking
behaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmark
problems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonable
mesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means to
improve numerical accuracy.

KEYWORDS
8-node plane hybrid element; Hellinger-Reissner variational principle; locking behaviors; structural mechanics
problems

1 Introduction

The FEM is a computational tool for engineering design analysis; it fundamentally revolutionized
the way we perform scientific modeling and engineering design, including automobiles, aircraft,
marine structures, bridges, highways, and high-rise buildings [1–9]. Traditional isoparametric elements
are often limited by various numerical problems, such as limited computational accuracy and sensi-
tivity to mesh distortion. For instance, the accuracy of the 4-node isoparametric element (Q4) may be
obviously limited for bending problems due to shear locking. To improve the performance of these
finite element methods, new finite element formulations need to be derived and applied to mechanical
problems.
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Over the past few decades, numerous techniques have been proposed for developing new finite
element models based on various generalized variational principles. Pian et al. [10,11] pioneered the
hybrid element method using an assumed stress field in the element and an assumed displacement
field along element boundaries. Cen et al. [12] improved on Pian’s hybrid element approach to
develop 8- and 12-node plane elements. The new elements perform well and can work in highly
distorted meshes. Sze et al. [13–18] developed a hybrid stress-assumed natural strain 8-node solid shell
element unaffected by shear, membrane, trapezoidal, thickness, and dilatational locking. This element
is computationally more efficient than conventional hybrid elements because it adopts orthogonal
assumed stress modes and enforces admissible sparsity in the flexibility matrix. Moreover, this element
was generalized for smart structure modeling by the piezoelectric effect. Jog et al. [19] presented 4-node
and 9-node elements for the development of hybrid axisymmetric elements based on the Hellinger-
Reissner principle within the context of linear elasticity. Several examples were presented to show the
excellent performance of both elements in various situations. Ma et al. [20] proposed a 24 degree of
freedom (DOF) quadrilateral hybrid stress element for couple stress theory. Reduced integration and
a stress smoothing technique were introduced to improve the accuracy of this element. Numerical
results showed that this element could pass the enhanced patch test for a convergence condition.
Bussamra et al. [21] proposed hexahedral hybrid-mixed finite elements for free vibration analysis
of three-dimensional solids. These elements were free of shear and volumetric locking and had low
sensitivity to mesh distortion. Agrawal et al. [22] used hybrid finite element methodology to develop an
efficient and robust method based on the Hellinger-Reissner variational principle towards developing
an efficient and robust finite element-based contact strategy. The proposed contact formulation can
effectively model the contact interaction of thin as well as thick geometries as well as contact between
bodies made of almost incompressible materials. Xie et al. [23] developed an atomistic-informed crystal
plasticity finite element method to capture the evolution of geometrically compatible dislocation
patterns as well as crystal plasticity in body-centered cubic crystals at micron or submicron scales.
Liu et al. [24] established a novel three-dimensional progressive damage model based on the generalized
mixed finite element method to investigate the strength and failure behaviors of notched composite
laminate plates. The stress distribution of notched isotropic plates under tension was studied, and the
results verified the good accuracy of the method. Ping and co-workers [25–27] used a specific finite
element eigen-analysis method to predict the singular stress field around the tips of cracks, notches,
and inclusions within the framework of the Hellinger-Reissner variational principle. Based on this,
they [28] proposed an adaptive FEM to examine the issues with fracture propagation in anisotropic
materials, bi-materials, and isotropic materials. Ramtekkar et al. [29] developed a refined 6-node two-
dimensional mixed finite element to analyze a laminated composite using the minimum potential
energy principle. The results obtained through the model showed excellent agreement with the elastic
solution. Additionally, smoothed FEMs can also increase numerical solution accuracy, and the core
idea behind this method is to combine the strain smoothing methodology of meshfree methods into
the standard finite element method [30–32]. According to [33,34], smoothed FEMs can be viewed as
specific assumed strain or stress methods for generalized variational principles.

The quadrilateral isoparametric elements contain Lagrangian elements and Serendipity elements.
The Lagrangian elements are more computationally expensive than the Serendipity elements since
they contain internal nodes. Thus, the Serendipity elements are preferred in practical applications,
especially the 8-node isoparametric element (Q8). As the biquadratic interpolation functions are
adopted for the Q8 element, it has better accuracy compared with the Q4 element and the Wilson-
incompatible element. However, the Q8 element is extremely sensitive to mesh distortion [35]. The
design of 8-node plane elements that can both improve the accuracy and overcome the above
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shortcomings has been a research hotspot. Dhananjaya et al. [36] presented a new 8-node Serendipity
quadrilateral plate bending element based on Mindlin-Reissner theory using the integrated force
method. This new element performs excellently in both thin and moderately thick plate bending
situations. Dang et al. [37] presented a hybrid element model derived from a two-field variational
functional; the plausible equilibrated stress field within each element was derived using Airy’s stress
functions. The results indicated that this hybrid element was less sensitive to geometric distortion and
was more accurate for stress than standard finite elements. Wang et al. [38,39] derived a new 8-node
assumed stress quasi-conforming plane element based on the Bernstein basis function and Airy’s stress
function. This element was not affected by mesh distortions and could adjust to the mesh shape, which
deformed into a triangle or concave quadrangle with curved elements. However, derivations of 8-node
plane hybrid elements for solving structural mechanics problems based on the Hellinger-Reissner
variational principle have rarely been reported in previous literature. In this paper, the formulation
of the PH-Q8-15β element is derived based on the Hellinger-Reissner variational principle, and the
new element is tested and verified by numerical examples.

The outline of this paper is as follows. In Section 2, a new 8-node plane hybrid finite element is
proposed based on the Hellinger-Reissner variational principle, and subsequently, the finite element
formulation is derived. Numerical examples with results and discussions are presented in Section 3.
Finally, a brief conclusion is presented in Section 4.

2 Finite Element Equations of the 8-Node Hybrid Element
2.1 The Hellinger-Reissner Variational Principle

Consider a linear elastic body with volume Ω in the Cartesian coordinate system. The domain
boundary is denoted by ∂Ω = ∂Ωu

⋃
∂Ωσ , where ∂Ωu and ∂Ωσ are boundaries over which the

displacements and tractions are prescribed, respectively. When the elastic body is in static equilibrium
subjected to external forces, the following relationships are satisfied:

The equilibrium equation

σij,j + Pi = 0 in Ω, (1)

The strain–displacement relationship

εij = 1
2

(
ui,j + uj,i

)
in Ω, (2)

The constitutive relationship

εij = ∂ψ

∂σij

= Sijklσkl in Ω, (3)

The Neumann condition

σijnj = Ti on ∂Ωσ , (4)

The Dirichlet condition

ui = ui on ∂Ωu. (5)

where σij and εij represent the components of the stress tensor and strain tensor, respectively; ui is the
component of the displacement vector; Pi and Ti are the known load distributions in Ω and along
the boundary ∂Ωσ, respectively; nj is the component of the outwards unit normal vector; Sijkl is the
flexibility tensor; and the complementary energy density ψ is expressed as:
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ψ =
∫ σij

0

εijdσij, (6)

Then, Eqs. (1)–(5) can be expressed in terms of two independent fields, ui and σij, by the
complementary energy principle and the Lagrangian multiplier method:

ΠHR =
∫

Ω

[
−ψ

(
σij

)+ 1
2
σij

(
ui,j + uj,i

)− Piui

]
dΩ −

∫
∂Ωσ

TiuidΓ −
∫

∂Ωu

σijnj (ui − ui) dΓ , (7)

The domain of the elastic body is divided into n elements. Generally, the trial solution of
displacement ui in Eq. (7) is compatible within the entire domain of the elastic body, and the stress
trial solution σ ij is allowed to be piecewise continuous. We can define the energy functional from
Eq. (7) as the sum of the individual elements,

ΠHR =
∑

n

Πe
HR =

∑
n

{∫
Ωe

[
−ψ

(
σij

)+ 1
2
σij

(
ui,j + uj,i

)− Piui

]
dΩe −

∫
∂Ωe

σ

TiuidΓ

}
, (8)

where Ωe is the domain of an element e.

The stationary condition of Eq. (8) is:

δΠHR = 0. (9)

2.2 Interpolation Functions of Variable Fields in Elements
A standard 8-node element in the natural coordinate system is shown in Fig. 1a, and a curved

edge element after the isoparametric transformation in the Cartesian coordinate system is shown in
Fig. 1b. For isoparametric elements, the interpolation functions of the coordinates and displacements
are the same, i.e.,

X (ξ , η) = NXe, (10)

U (ξ , η) = Nqe, (11)

where X = (xe, ye)T is the coordinate matrix; Xe = (xe
1, ye

1, · · · , xe
8, ye

8)
T is the node coordinate vector;

U = (ue, ve)T is the displacement matrix; qe = (ue
1, ve

1, · · · , ue
8, ve

8)
T is the node displacement vector; and

the shape function matrix N can be expressed as:

N (ξ , η) = [N1I2, N2I2, N3I2, N4I2, N5I2, N6I2, N7I2, N8I2] , (12)

where In is the n-th order identity matrix, and the shape functions are:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ni = 1
4

(1 + ξiξ) (1 + ηiη) (ξiξ + ηiη − 1) (i = 1, 2, 3, 4) ,

Ni = 1
2

(
1 − ξ 2

)
(1 + ηiη) (i = 5, 7) ,

Ni = 1
2

(
1 − η2

)
(1 + ξiξ) (i = 6, 8) .

(13)

where (ξi, ηi) is the coordinate values of the i point.
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Figure 1: Plane quadrilateral 8-node isoparametric element

The strain matrix can be obtained from Eq. (11):

ε =
⎛
⎝εxx

εyy

γxy

⎞
⎠ = (LN) qe = Bqe, (14)

where the geometric matrix B(x, y) can be expressed as:

B (x, y) = LN =

⎡
⎢⎢⎣

∂

∂x
0

∂

∂y

0
∂

∂y
∂

∂x

⎤
⎥⎥⎦

T

[N1I2, N2I2, N3I2, N4I2, N5I2, N6I2, N7I2, N8I2]

= [B1, B2, B3, B4, B5, B6, B7, B8] , (15)

and Bi is given by:

Bi =

⎡
⎢⎢⎣

∂Ni

∂x
0

∂Ni

∂y

0
∂Ni

∂y
∂Ni

∂x

⎤
⎥⎥⎦

T

(i = 1, 2, · · · , 8). (16)

The relationship between the natural coordinates (ξ , η) and the Cartesian coordinates (x, y) is as
follows:⎛
⎜⎜⎝

∂

∂ξ

∂

∂η

⎞
⎟⎟⎠ = J

⎛
⎜⎜⎝

∂

∂x
∂

∂y

⎞
⎟⎟⎠ , (17)

where the Jacobi matrix J is given by:

J =
[

xξ yξ

xη yη

]
=

⎡
⎢⎢⎣

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

⎤
⎥⎥⎦ . (18)

In the hybrid element analysis, the performance of the elements constructed on the basis of
different assumed stress fields differs. Therefore, the key to deriving a hybrid element with superior
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performance lies in the selection of stress functions. Because the plane stresses are required to satisfy
the continuity in each element, the stress functions are derived based on Eq. (1) by using the Airy stress
function. To overcome the zero energy modes and ensure the efficiency of the calculation, it is necessary
to determine the number of stress parameters and express them in nβ . For an 8-node plane hybrid
element, its displacement DOF and rigid body DOF are expressed as nqe = 16 and n0 = 3, respectively.
We select 15 stress parameters in accordance with the theory presented in [40], nβ ≥ nqe −n0. The stress
matrix is expressed as follows:

σ (ξ , η) = Pβ = PLβL + PHβH, (19)

where σ = (σξξ , σηη, σξη)
T is the stress vector; P(ξ ,η) and β are the stress function matrix and the

stress parameter vector, respectively; βL = (β1, β2, β3)
T and βH = (β4, · · · , β15)

T are the low-order stress
parameter vector and the high-order stress parameter vector, respectively; PL = I3 represents the third-
order identity matrix; and the high-order stress matrix PH can be expressed as:

PH =
⎡
⎣ξ η ξη η2 0 0 0 0 0 0 0 0

0 0 0 0 ξ η ξη ξ 2 0 0 0 0
0 0 0 0 0 0 0 0 ξ η ξ 2 η2

⎤
⎦ , (20)

For a generic element, the stress function in the Cartesian coordinate system can be converted
from Eq. (19) by the transformation matrix,

σ = Pβ = PLβL + TcPHβH, (21)

where σ = (σxx, σyy, σxy) T; the transformation matrix Tc is defined as:

Tc =
⎡
⎣ x2

ξ
x2

η
2xξxη

y2
ξ

y2
η

2yξyη

xξyξ xηyη xξyη + xηyξ

⎤
⎦

ξ ,η=0

. (22)

Notably, the form of Eq. (20) obtained by using the Airy stress function is usually not unique.
Eq. (20) possesses the advantages of good accuracy, good stability and strong universality in numerical
examples. For special problems, such as fracture problems, more complex assumed stress functions can
be used to construct the optimal element.

2.3 Derivation of the Finite Element Formulation
Substituting the displacement matrix U, the strain matrix ε and the stress matrix σ into Eq. (9),

we can obtain:

ΠHR =
∑

e

Πe
HR = β

TGqe − 1
2
β

THβ − (qe)
T Qe, (23)

where G = ∫
Ae PT

(DN) t dAe, H = ∫
Ae(P

TSP) t dAe, and Qe = ∫
Ae(N

TP) t dAe + ∫
le
(NTT) t dle; t is the

element thickness; P and T are the body load vector and the surface load vector, respectively. For plane
stress problems, the flexibility matrix S is:

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
E

−μ

E
0

−μ

E
1
E

0

0 0
(1 − μ)

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (24)
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where E is the Young’s modulus and μ is the Poisson’s ratio.

From the stationary condition of the energy functional, δΠe
HR(β, qe) = 0, the following equations

can be obtained:

Gqe − Hβ = 0, (25)

GT
β − Qe = 0, (26)

Eq. (25) imposes a strong geometric constraint on the displacement vector qe, whereas Eq. (26)
imposes a weak equilibrium constraint on the stress parameter β. As a result, the hybrid element is
stiffened in two directions at the same time. In general, more parameters in Eq. (19) imply a better
approximation. However, when nβ � nqe − n0, the element stiffens to the point where locking behaviors
may occur, so 15 parameters are a reasonable choice. It can be seen that the 15 stress modes chosen in
Eq. (19) are independent of one another, and Zhang et al. [41] demonstrated that linear independence
of assumed stress modes is a necessary and sufficient condition for the flexibility matrix H to be non-
singular. As a result of Eq. (25), it follows that:

β = H−1Gqe, (27)

Substituting Eqs. (27) into (26), we obtain:(
GTH−1G

)
qe = Keqe = Qe, (28)

where Ke is the stiffness matrix of the element.

By using Eqs. (23), (27) and (28), the energy functional of the elastic body can be expressed as:

�HR =
∑

e

�e
HR =

∑
e

[
−1

2
(qe)

T Keqe + (qe)
T Qe

]

= −1
2

qTKq + qTQ, (29)

where K is the stiffness matrix of the elastic body; q and Q are the displacement vector and the
load vector of the node, respectively. From the variation of Eq. (29), we can obtain a set of algebraic
equations:

Kq = Q. (30)

After imposing displacement boundary conditions, the stiffness matrix K becomes non-singular,
allowing the Eq. (30) to be solved. In general, the stiffness matrix K generated from the Hellinger-
Reissner variational principle can be decomposed into a traditional stiffness with a reduced integration
method and a higher-order stiffness, with the latter improving hybrid element computational efficiency
and stability [42,43].

3 Numerical Examples

In this section, seven problems are presented to evaluate the performance of the PH-Q8-15β

element. Several elements were taken from the literature for comparison, which are listed in Table 1. In
the following, the geometric and physical parameters of each model are dimensionless, and the relative
error is defined as:

Err =
∣∣∣∣γ − γ ref

γ ref

∣∣∣∣ . (31)
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where γ and γ ref are the numerical solution and the reference solution, respectively.

Table 1: List of elements for the comparison study

No. Elements Formulation methods

1 Q6 Traditional 6-node isoparametric element
2 Q8 Traditional 8-node isoparametric element
3 Q9 Traditional 9-node isoparametric element
4 PS Quadrilateral 4-node hybrid element with 5 stress parameters
5 PS(a) Penalty equilibrium hybrid element with 5 stress parameters
6 QACM8 8-node element using quadrilateral area coordinate
7 ATF-Q8 8-node hybrid plane element based on the complementary energy principle
8 HSF-Q8-15β 8-node hybrid plane quadrilateral element using the Airy stress function

based on the complementary energy principle
9 QC-Q8-15β 8-node quasi-conforming plane element using the Airy stress function based

on the complementary energy principle
10 QC-Q8-B 8-node quasi-conforming plane element using the Bernstein basis function

based on the complementary energy principle
11 HR-Q9 9-node hybrid plane element based on the Hellinger-Reissner variational

principle
12 MHR-Q9 9-node hybrid plane element based on the modified Hellinger-Reissner

variational principle
13 NPB Non prismatic beam model through dimensional reduction procedure based

on the Hellinger-Reissner variational principle
14 TNCB 2-node curved beam element based on the exact analytical solution of the

governing differential equation of planar curved beams

3.1 Patch Test
A rectangular panel (0.24 × 0.001 × 0.12) is divided into five irregular elements, as shown in Fig. 2.

The material properties of the panel are Young’s modulus E = 1500 and Poisson’s ratio μ = 0.3. The
low- and high-order displacement fields given by Eqs. (32) and (33) are applied to the boundary nodes.
The numerical results for the internal nodes in Fig. 2 are consistent with the analytical solutions, which
demonstrates that the new element passes the patch test.⎧⎪⎨
⎪⎩

u (x, y) = x + y
2

,

v (x, y) = y + x
2

,
(32)

⎧⎪⎪⎨
⎪⎪⎩

u (x, y) = 1
4

+ x + 3y − 2x2 − 4xy + 5
2

y2,

v (x, y) = 1 + x
2

+ 2y − 2
3

x2 + 17
5

xy + 3
2

y2.

(33)
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Figure 2: The patch test of membrane elements

3.2 Cantilever Beam with Five Irregular Elements
A cantilever beam with five irregular elements is subjected to the concentrated load F and bending

moment M in Fig. 3. The geometry and material properties of the beam are as follows: length L = 10,
height h = 2, width b = 1, Young’s modulus E = 1500, and Poisson’s ratio μ = 0.3. Numerical results
of the vertical deflection vA at point A and the stress σBx at point B are given in Tables 2 and 3. We find
that compared with the traditional isoparametric elements, PS(a) element and QACM8 element, the
PH-Q8-15β element has better accuracy.

Figure 3: A cantilever beam with five irregular elements

Table 2: Numerical results of the displacement and stress at selected locations in the cantilever beam
subjected to a bending moment M

Elements vA Err (%) σBx Err (%)

Q6 [44] 64.50 35.50 1515.00 49.50
Q8 [44] 99.70 0.30 2984.00 0.53
PS [40] 96.18 3.82 3014.00 0.47
PS(a) [40] 100.40 0.40 3000.00 0.00
QACM8 [44] 101.30 1.30 2920.00 2.67
PH-Q8-15β 99.99 0.01 3001.00 0.03
Analytical solution [44] 100.00 3000.00
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Table 3: Numerical results of the displacement and stress at selected locations in the cantilever beam
subjected to a concentrated force F

Elements vA Err (%) σBx Err (%)

Q6 [44] 66.40 36.00 2923 27.83
Q8 [44] 101.50 2.17 4060 0.25
PS(a) [40] 100.90 0.90 4125 1.85
QACM8 [44] 102.70 1.01 3939 2.74
PH-Q8-15β 102.15 0.44 4084 0.84
Analytical solution [44] 102.60 4050

3.3 Sensitivity Test for Mesh Distortion and Convergence Analysis
A cantilever beam is subjected to two different loads, as shown in Fig. 4. The beam is discretized

using two elements, and e is the distortion parameter. The geometry and material properties of the
beam are the same as those in Subsection 3.2. The normalized results of the vertical displacement vA

are listed in Tables 4 and 5. The tables show that the PH-Q8-15β element provides stable numerical
solutions, even on distorted mesh shapes. Its stability is slightly less than that of the QC-Q8-B element.

Figure 4: A cantilever beam divided by two elements with distortion parameter e

Table 4: The normalized results of the displacement for the cantilever beam subjected to a bending
moment M

Elements e = 0 e = 1 e = 2 e = 3 e = 4 e = 4.9

Q8 [44] 1.00 0.99 0.89 0.52 0.32 0.19
QACM8 [44] 1.00 1.00 1.00 1.02 1.04 1.00
ATF-Q8 [45] 1.00 1.00 1.00 1.00 1.00 1.00
QC-Q8-B [39] 1.00 1.00 1.00 1.00 1.00 1.00
PH-Q8-15β 1.00 1.00 1.00 1.00 0.98 0.96
Note: The standard value of vA is 100.00.
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Table 5: The normalized results of the displacement for the cantilever beam subjected to a concentrated
force F

Elements e = 0 e = 1 e = 2 e = 3 e = 4 e = 4.9

Q8 [44] 0.96 0.92 0.79 0.54 0.32 0.22
QACM8 [44] 0.96 0.94 0.87 0.84 0.84 0.85
ATF-Q8 [45] 0.99 0.98 0.97 0.95 0.89 0.69
QC-Q8-B [39] 0.99 0.98 0.97 0.96 0.93 0.80
PH-Q8-15β 0.97 0.97 0.95 0.90 0.88 0.86
Note: The standard value of vA is 102.60.

We define the displacement norm error as follows in order to further analyze the convergence of
the PH-Q8-15β element:

δv = ‖v − vh‖H0

‖v‖H0
=
[∫


(v − vh)

2 d
] 1

2

(∫


v2d
) 1

2

, (34)

where v and vh are the vertical displacement and the approximated value of vertical displacement,
respectively; ‖·‖H0 represents the norm defined on the Sobolev space.

The displacement norm error is calculated using a typical mesh type, as illustrated in Fig. 5.
Numerical results are shown in Table 6. We can observe that the results for vertical displacement attain
first order convergence.

Figure 5: Typical mesh type models for convergence test

Table 6: Convergence results for different types of loads

Load type The δv in different meshes Order

2 × 2 2 × 4 2 × 6 2 × 8

F 0.1402 0.0592 0.0366 0.0262 1.20
M 0.1086 0.0401 0.0226 0.0152 1.38

3.4 Bending for a Curving Beam with the Uniform Cross Section
A curved cantilever beam subjected to a concentrated force F and the mesh shapes of the models

are shown in Figs. 6 and 7, respectively. The geometric and physical parameters of the beam were
selected from the literature for comparison [39]. For a thick curved beam, the geometry and material
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properties are as follows: inner radius Ri = 10, middle radius Rm = 12.5, thickness t = 5, width b = 1,
Young’s modulus E = 1000, Poisson’s ratio μ = 0.3, and concentrated force F = 600. For a thin
curved beam, the geometry and material properties are as follows: the inner radius Ri = 4.12, the
middle radius Rm = 4.22, the thickness t = 0.2, the width b = 0.1, the Young’s modulus E = 106, the
Poisson’s ratio μ = 0.25, and the concentrated force F = 1. Based on the Castigliano energy theorem,
the analytical solution of the radial displacement uA for this problem is [46]:

uA = πFRm

4

(
R2

m

EI
+ 5

6
1

Gbt
+ 1

Ebt

)
. (35)

where Rm, t and b represent the middle radius, thickness and width, respectively; E is Young’s modulus;

the moment of inertia is I = bh3

12
; and the shear modulus is G = E

2(1 + μ)
.

Figure 6: Curved cantilever beam

Figure 7: Typical mesh type models for the curved cantilever beam

Numerical results of the radial displacement uA are listed in Tables 7 and 8. From the tables, we
find that the results are more accurate for the new element than the other elements. Moreover, as the
number of PH-Q8-15β elements increases, the double-layer mesh can improve the numerical accuracy
of the thick curved beam. Therefore, the thin curved beam should be numerically calculated by the
single-layer mesh.



CMES, 2024, vol.138, no.2 1289

Table 7: Results of uA for the thick curved beam

Elements Meshes

1 × 1 1 × 2 1 × 4 1 × 8 1 × 12 2 × 2 2 × 4 2 × 6

Q8 [44] 30.20 77.40 88.60 – – – – –
ATF-Q8 [45] 56.60 75.50 90.40 – – – – –
QC-Q8-15β [38] 52.49 90.15 90.55 – – – – –
QC-Q8-B [39] 65.10 88.93 90.32 – – – – –
PH-Q8-15β 85.75 96.71 92.80 92.97 92.95 90.63 91.85 92.20
Analytical solution 92.08

Table 8: Results of uA for the thin curved beam

Elements Meshes

1 × 2 1 × 3 1 × 4 1 × 6 1 × 8 2 × 2 2 × 3 2 × 4

Q8 [44] 0.078 0.276 0.515 0.770 – – – –
ATF-Q8 [45] 0.106 0.338 0.577 0.807
QC-Q8-15β [38] 0.105 0.348 0.522 0.797 – – – –
QC-Q8-B [39] 0.288 0.600 0.756 0.856 – – – –
PH-Q8-15β 0.889 0.901 0.895 0.889 0.887 0.813 0.870 0.877
Analytical solution 0.886

The effects of the mesh type on the numerical accuracy for the PH-Q8-15β element for different
t/Ri ratios are investigated in Fig. 8. The vertical coordinate in the figures represents the relative error
between the numerical results obtained by different meshes and the analytical solution for given t/Ri.
The geometry and material properties are as follows: the inner radius Ri = 10, the width b = 0.1, the
Young’s modulus E = 1000, the Poisson’s ratio μ = 0.3, and the concentrated force F = 1. The figures
show that when the value of t/Ri is close to 0.2, the single-layer mesh has better numerical accuracy,
and it becomes more obvious with decreasing t/Ri. Therefore, when t/Ri ≤ 0.2, the single-layer mesh
should be preferred for a curved beam.

3.5 Locking Test
This test, proposed by Macneal and Harder, is a well-known benchmark for testing sensitivity to

mesh distortion [47]. Three different mesh shapes in Fig. 9 are adopted: rectangular, parallelogram
and trapezoidal. Two load types are considered: the bending moment and the concentrated force. The
geometry and material properties are as follows: length L = 6, height h = 0.2, width b = 0.1, Young’s
modulus E = 1500, and Poisson’s ratio μ = 0.3. The normalized results of the vertical deflection vA

are listed in Table 9. Better and more accurate solutions can be obtained by the PH-Q8-15β element
than by the other 8-node elements, and the PH-Q8-15β element can overcome shear and trapezoidal
lockings.
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(a). Six elements (b). Eight elements

(c). Sixteen elements

Figure 8: Influence of mesh type and t/Ri on the numerical accuracy of uA for the curved beam

Additionally, shear locking can be alleviated by using bubble functions for a general plane
stress problem; the functions are typically high-order displacement polynomials that are zero on the
element boundaries [48,49]. This strategy, however, may improve the accuracy of elements with linear
displacement modes (e.g., the Q4 element) but is not appropriate for the Q8 element. Because the Q8
element has a fully displacement mode that simulates the constant bending strain state.
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Figure 9: MacNeal thin beams

Table 9: The normalized results of the displacement for the MacNeal thin beam

Elements Load M Load F

Mesh 1 Mesh 2 Mesh 3 Mesh 1 Mesh 2 Mesh 3

Q8 [31] 0.951 0.919 0.854 1.000 0.994 0.939
Q9 [32] 0.974 0.939 0.942 1.000 1.000 1.000
QACM8 [31] 0.951 0.903 0.895 1.000 1.000 1.000
ATF-Q8 [32] 0.978 0.968 0.966 1.000 1.000 1.000
QC-Q8-B [29] 0.977 0.968 0.966 1.000 1.000 1.000
HSF-Q8-15β [12] 0.978 0.968 0.966 1.000 1.000 1.000
PH-Q8-15β 0.974 0.975 0.973 1.000 1.000 1.000
Note: aThe standard value of vA is 0.0054; bThe standard value of vA is 0.1081.

Membrane locking can be examined by the analysis of a ring, and many arch elements exhibit
membrane locking in the analysis of deep arches even though they may give good results in the analysis
of shallow arches [50]. A ring is subjected to two pinching concentrated loads F in Fig. 10a. Because of
the symmetry, only a quarter of the ring is analyzed with appropriate boundary conditions in Fig. 10b.
The geometry and material properties are as follows: inner radius Ri = 5, thickness t = 0.1, width
b = 0.1, Young’s modulus E = 1 × 107, Poisson’s ratio μ = 0.3, and concentrated force F = 1.

According to the conclusion in Subsection 3.4, the single-layer mesh is adopted for the quarter of
the thin pinched ring. Numerical results of the radial deflection vA are listed in Table 10. The result
obtained by eight PH-Q8-15β elements is consistent with the reference solution and converges to the
reference solution quickly. Therefore, the PH-Q8-15β element can overcome membrane locking and
can be successfully used to solve the pinched ring. We find that the numerical accuracy of the PH-Q8-
15β element is lower than the HR-Q9 element and the MHR-Q9 element when the number of elements
is 2.
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Figure 10: Pinched ring

Table 10: Normalized results of vA for the pinched ring

Elements Meshes

1 × 2 1 × 4 1 × 8

HR-Q9 [51] 0.977 0.996 0.996
MHR-Q9 [51] 1.020 1.008 1.000
Q8 0.266 0.830 0.892
PH-Q8-15β 0.872 0.992 1.000
Note: The standard value of vA is 0.00109.

Through the two examples in this subsection, it is evident that the proposed element has greatly
improved the Q8 element and overcomes the common locking behaviors in plane stress problems.
Meanwhile, when compared to other 8-node elements in the literature, better numerical accuracy was
demonstrated.

3.6 Axisymmetric Annular Plate with Uniformly Distributed Internal Pressure
An axisymmetric annular plate is subjected to a uniformly distributed internal pressure q in

Fig. 11a. The annular plate modelled by a quarter plate with appropriate boundary conditions is shown
in Fig. 11b. The geometry and material properties are as follows: inner radius Ri = 10, outer radius
Ro = 15, thickness t = 0.1, Young’s modulus E = 105, Poisson’s ratio μ = 0.3, and internal pressure
q = 1. The polar coordinate system is established at the central of the circular hole, and the analytical
solutions of this problem for the radial stress σρ and the hoop stress σθ can be expressed in Eq. (36):

σρ = −
R2

o

ρ2
− 1

R2
o

R2
i

− 1
q, σϕ =

R2
o

ρ2
+ 1

R2
o

R2
i

− 1
q. (36)
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Figure 11: Axisymmetric annular plate with uniformly distributed internal pressure

The stress solutions of σρ and σθ are functions of the variable ρ, independent of the angle θ .
Fig. 12 shows the effects of the polar radius ρ and the number of elements on the radial stress σρ

and the hoop stress σθ , and the numerical results obtained by the PH-Q8-15β element are compared
with the analytical solutions. With increasing ρ, the absolute values of σρ and σθ gradually decrease,
and the numerical results gradually converge to the analytical solutions with the increase in the number
of elements. Therefore, the PH-Q8-15β element can be successfully used for this problem.

(a). The relationship between �� and � (b). The relationship between �� and �

Figure 12: The variation in the radial stress σρ and the hoop stress σθ relative to the polar radius ρ and
number of elements for the axisymmetric annular plate

3.7 Straight/Curved Beams with Varying Cross Sections
A symmetric tapered beam is subjected to a concentrated load F in Fig. 13. The geometry and

material properties are as follows: length L = 10, height of clamped end h = 1, height of cantilever
end h = 0.5, width b = 1, Young’s modulus E = 105, Poisson’s ratio μ = 0.25, and concentrated
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force F = 1. Table 11 reports the numerical results of the vertical deflection vA obtained by the PH-
Q8-15β element and the NPB element. The “Axis Meshes” in Table 11 represent the number of evenly
divided elements in the horizontal direction of the symmetric tapered beam. The table shows that the
PH-Q8-15β element has better accuracy than the NPB element.

Figure 13: A symmetric tapered beam

Table 11: Results at selected location A that were obtained considering different axis meshes for the
symmetric tapered beam subjected to a concentrated load F

Axis meshes NPB [52] PH-Q8-15β

1 −64.19e-3 −64.32e-3
4 −65.66e-3 −65.42e-3
20 −65.73e-3 −65.72e-3
Reference solution [52] −65.71e-3

A cantilever curving beam with a varying cross section is subjected to a concentrated load F in
Fig. 14. The geometry and material properties are as follows: the middle radius Rm = 5, the thickness
of the clamped end t1 = 0.6(1 + a), the thickness of the cantilever end t2 = 0.6(1 − a), where a is the
taper ratio, the width b = 0.4, the Young’s modulus E = 3 × 1010, the Poisson’s ratio μ = 0.3, and the
concentrated force F = 1.

Figure 14: A curved beam with varying cross section
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The single-layer mesh is adopted, as shown in Fig. 7. The results obtained by the 80 TNCB
elements in [53] are taken as reference solutions and listed in Table 12. Fig. 15 shows the effects of
the number of elements on the relative error between the numerical results obtained by the PH-Q8-
15β element and the reference solution under different taper ratios a. The horizontal coordinate in
figures represents the number of elements. We find that the PH-Q8-15β element can approximate the
radial displacement uA and the tangential displacement vA with reasonable accuracy. Moreover, with
the increase of the number of elements, the solution converges to the reference solution, which reflects
the superior performance of the PH-Q8-15β element.

Table 12: Results of uA and vA for the curved beam with varying cross section

a uA × 10−5 vA × 10−5

0.1 5.2168 3.1716
0.2 4.7893 2.7801
0.4 4.3172 2.2567

(a). Radial displacement uA (b). Tangential displacement vA

Figure 15: The variation in the relative error relative to the number of elements N for the curved beam
with varying cross section

4 Conclusion

Because of the shortcomings of the Q8 element, a new PH-Q8-15β element is proposed for
structural mechanics problems in this paper. We obtain the formulation of this element based on the
Hellinger-Reissner variational principle. Fifteen unknown parameters are adopted in the selection of
stress modes according to the design principle of Pian. Several numerical benchmark problems are
presented to verify the performance of the PH-Q8-15β element. Numerical examples demonstrate that
the PH-Q8-15β element has good accuracy and is not limited by various common locking behaviors of
plane elements. Furthermore, the PH-Q8-15β element has better performance than the other elements
in thin/thick curved beams with uniform cross sections. When the inner radius Ri of a curved beam
is constant and t/Ri ≤ 0.2, the curved beam should be modelled by a single-layer mesh. Finally,
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the PH-Q8-15β element can be successfully applied to the problems of straight/curved beams with
varying cross sections, and numerical results obtained with only a few elements are able to accurately
approximate the reference solution.

In the future, we will extend the new PH-Q8-15β element to intelligent structures considering the
flexoelectric effect and micromachinery and nanomachinery involving nonlocal strain gradient theory.
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