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ABSTRACT

Spherical q-linear Diophantine fuzzy sets (Sq-LDFSs) proved more effective for handling uncertainty and vagueness
in multi-criteria decision-making (MADM). It does not only cover the data in two variable parameters but is
also beneficial for three parametric data. By Pythagorean fuzzy sets, the difference is calculated only between two
parameters (membership and non-membership). According to human thoughts, fuzzy data can be found in three
parameters (membership uncertainty, and non-membership). So, to make a compromise decision, comparing Sq-
LDFSs is essential. Existing measures of different fuzzy sets do, however, can have several flaws that can lead to
counterintuitive results. For instance, they treat any increase or decrease in the membership degree as the same as
the non-membership degree because the uncertainty does not change, even though each parameter has a different
implication. In the Sq-LDFSs comparison, this research develops the differential measure (DFM). The main goal of
the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.
Due to their relative positions in the attribute space and the similarity of their membership and non-membership
degrees, two Sq-LDFSs form this preference connection when the uncertainty remains same in both sets. According
to the degree of superiority or inferiority, two Sq-LDFSs are shown as identical, equivalent, superior, or inferior
over one another. The suggested DFM’s fundamental characteristics are provided. Based on the newly developed
DFM, a unique approach to multiple criterion group decision-making is offered. Our suggested method verifies the
novel way of calculating the expert weights for Sq-LDFSS as in PFSs. Our proposed technique in three parameters
is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking
uncertainty parameter zero. The method’s applicability and validity shown by the findings are contrasted with
those obtained using various other existing approaches. To assess its stability and usefulness, a sensitivity analysis
is done.
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1 Literature Review

Multiple criteria decision-making (GCDM) is a subfield of operations research and a sophisti-
cated mathematical method that explicitly evaluates viable options to competing with many criteria in
order to get the best answer [1]. Due to the growing complexity of decisions in these contexts, group
decision-making (GDM) becomes important since it is typically difficult for a single person to fully
analyze all the aspects of a situation [2]. Group decision-making (GDM) is a procedure in which
several people interact at once to analyze issues, evaluate various alternatives characterized by several
conflicting criteria, and select a suitable alternative [1]. Science, engineering, and medicine all depend
on logic and crisp set theory. A crisp set indicates a digital element’s belongingness by indicating
whether or not it is part of a set. However, in many real-life circumstances, partial belongingness
becomes essential for describing ambiguity. We have to cope with circumstances where the crisp-set
theory fails on mostly real-world issues. The choice of such a person is ambiguous; for instance, if a
decision maker (GDM) has to choose the best instructor, a bright student, a gorgeous female, a young
researcher, etc., what constitutes being the best, young, and youthful varies from person to person.
A fuzzy set consists of partial grade gain values in the unit close interval [0, 1] to show the element’s
partial belongingness to a set under some specific characteristics. The fuzzy set concept created by
Zadeh [3] is a powerful set-theoretic concept for expressing ambiguous information. The fuzzy set
caught the researchers’ attention due to its effectiveness and usefulness. It is used all around the globe
in a variety of domains, including computational intelligence, information fusion, pattern recognition,
engineering, medical diagnostics, artificial intelligence, machine learning, neural networks, and solving
issues with (GCDM). The intuitionistic FS (IFS) concept by Atanassova et al. [4] is one of the
well-known extended structures. Since the IFS contains two grades: truth-membership grade (TM-
grade) and falsity-membership grade (FM-grade), which fulfil the requirement that the total of their
grade values gained from [0, 1] cannot be surpassed by one also 0 ≤ T + F ≤ 1, the selection
is limited to the satisfaction and dissatisfaction classes. In the event that 00.7 + 0.5 > 1, it fails.
Yager [5] was able to overcome this problem by creating the PyFS principle, which imposes the
condition that the square sum of the TM and FM grades cannot be more than 0 ≤ T 2 + F 2 ≤
1. Pythagorean fuzzy information measures and their applications in pattern recognition, cluster
analysis, and medical diagnostics were proposed by Peng et al. [6]. The Pythagorean fuzzy idea
proposed by Peng et al. [6], used in information measures, has applications in pattern recognition,
cluster analysis, and medical diagnostics. Peng et al. [7] highlighted some noteworthy PFS features. In
addition, Yager [8] created a powerful conceptual thought called the qROFS, which is an extension of
both the PFS and the IFS. IFS and PFS are not enough for modeling when 0.712+ 0.722 = 1.0225 > 0.
Wang et al. [9] put out a concept for q-ortho-pair based on the conventional cosine and cotangent
similarity metrics. He defined ten similarity measures and ten weighted similarity measures between q-
ROFS for (GADM) issues such as pattern identification and scheme selection. Also for Q-rung ortho-
pair fuzzy sets with and without hesitation degree, Donyatalab et al. [10] provided a novel similarity
measure that is expanded based on square root cosine similarity. For q-rung ortho-pair fuzzy sets,
four distinct types of square root cosine similarity metrics (q-ROFSs) created. Jana et al. [11] utilized
this article, in which they employed Dombi operations to produce a number of Pythagorean fuzzy
Dombi aggregation operators to address the problems associated with multiple-attribute decision-
making. Jana et al. [12] built a couple Q-rung orthopair fuzzy Dombi aggregation operators using
Dombi operations to address the problems associated with multiple-attribute decision-making in
this setting. Qiyas et al. [13] provided a collection of distances and similarity measures utilizing q-
rung linear diophantine fuzzy (q-ROLDF). He proposed a Jaccard similarity measure, an exponential
similarity measure, and cosine and cotangent function-based similarity measures for q-LDFSs. More
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recently, Kutlu Gündogdu et al. [14] established the concept of the spherical fuzzy set (SFS). With
the eye-catching characteristic that, if one model does not work, the other will handle the uncertain
circumstances, these models have the potential to deal with uncertainties in actual issues. With the
constraint that the sum of the squares of the three indexes, membership grade, hesitation, and non-
membership grade, is less than or equal to 1, an SFS is very significant since it may communicate hazy
and ambiguous information. By utilising SFSs, Ahmmad et al. [15] created novel average aggregation
operators. Kutlu Gündoğdu et al. [16] introduced numerous properties and arithmetic operational laws
of SFSs and their scores and accuracy functions. Shanshan was impressed by the similarity measure
in fuzzy sets, which is one of the most powerful and essential methods for assessing how similar two
things are in comparison. Under a spherical fuzzy environment, Shishavan et al. [17] developed the
Jaccard, exponential, and square root cosine similarity metrics. It has several uses in decision-making,
data mining, medical diagnosis, and pattern detection. Rafiq et al. [18] discussed the family of unique
cosine-based similarity measures for spherical fuzzy sets. He also evaluated them in light of all prior
reflections. Khan et al. [19] investigated the distances and cosines with cotangent similarity measures
in the selection of megaprojects in underdeveloped countries. Rayappan et al. [20] used the spherical
fuzzy weighted cross entropy between the ideal alternative and an alternative to rank the alternatives
according to the cross entropy values and choosed the most desired one(s). Mao et al. [21] used a
simple designed aggregation operator to propose a neutrosophic data envelopment analysis model
with undesired results in his article. Kouatli et al. [22] used fuzzy logic in this paper to identify technical
analyses (TAs). For fuzzyification of these TA(s), he used the modular approach of fuzzy logic and
“fuzzimetric sets” to achieve the “fuzzy spectrum” of forecasted price tolerances when making buying
and selling decisions. As an innovation, Iqbal et al. [23] used the geometric core of a trapezoidal linear
diophantine fuzzy number while ranking trapLDFNs using a centroid index. Hasan et al. [24] set
up a series of picture fuzzy mean operators in the decision-making process to aggregate the picture
fuzzy set, namely picture fuzzy harmonic mean, picture fuzzy weighted harmonic mean, picture fuzzy
arithmetic mean, picture fuzzy weighted arithmetic mean (PFWAM), picture fuzzy geometric mean,
and picture fuzzy weighted geometric mean. Wang et al. [25] presented some innovative dice similarity
measures of SFSs and its generalization, GDSM. He indicates that the dice similarity measures and
asymmetric measures (projection measures) are the specific instances of the GDSM in some parameter
values. Wei et al. [26] applied the cosine function over SFS to find similarity measures in pattern
recognition. Mahmood et al. [27] introduced SFS-based cosine similarity and data measures for
pattern recognition and medical diagnosis. For linear Diophantine fuzzy sets, Mohammad et al. [28]
proposed some novel distance and similarity measures, including the normalized distance measure,
generalized hamming distance, euclidian distance measure, generalized distance measure, jaccard
similarity measure, exponential similarity measure, and cosine and cotangent function similarity
measures. In a spherical fuzzy environment, Donyatalab et al. [29] developed several innovative
distances based on Minkowski and Minkowski-Hausdorff distances. He discussed innovative SF-
similarity measures based on Minkowski and Minkowski-Hausdorff distances with some properties.

In order to evaluate logistics AVs, Bonab et al. [30] created an enhanced MCDM framework
based on the Choquet integral (CI) and a spherical fuzzy set (SFS). By employing spherical fuzzy
sets and the spherical fuzzy weight correlation coefficient, Ma et al. [31] initiated a novel failure mode
and effect analysis (FMEA) that enhanced the performance of FMEA. Ali et al. [32] introduced a
novel approach for making decisions called MCDM-total area based on orthogonal vectors with a
few innovative distance measurements made possible by matrix norms. The limitations of the current
distance measurements are removed by this measure, which also meets all axiomatic requirements.
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Das et al. [33] provided a way for resolving group decision-making issues using intuitionistic
fuzzy parameterized intuitionistic multi fuzzy N-soft sets of dimension q by providing its induced
IFP-hesitant N-soft set as an addition to the multi-fuzzy N-soft set-based method. Khan et al. [34]
provided multi-attribute decision-making in a T-spherical fuzzy environment using the Archimedean
aggregation operator for three-dimensional data with n powers.

Measures of similarity and distance are two sides of the same coin. The majority of similarity
tests rely on distance measurements. A lot depends on both metrics when comparing two PFSs. Even
though several studies suggested various distance measurements, the ones that are currently in use still
have certain shortcomings [35]. They can first result in counterintuitive consequences [36]. Second, it
is possible that they will not be able to calculate the maximum distance measurement value [35]. This
will skew the ranking values of the alternatives and result in inaccurate findings. As a result, Shraf
has solved the open problem of determining the distance between two PFSs in the Pythagorean fuzzy
environment [36]. But there is still a problem with the idea, which is that it might not function if the
raw data is in triplet form. To remove this flaw, we created a new fuzzy set to address this problem.

An integer-coefficiented linear Diophantine equation is included in the fuzzy membership func-
tion of Q-linear Diophantine fuzzy sets, a particular kind of fuzzy set. A solution to a q-linear
Diophantine equation is the value that is specifically described as the membership function of a q-
linear Diophantine fuzzy set. Applications that utilise such fuzzy sets in fuzzy set theory include
decision-making, control, pattern recognition, and image processing. Overall, q-linear Diophantine
fuzzy sets are a practical tool in fuzzy set theory for representing ambiguous and imprecise information
and have many applications in a variety of domains. The human mind extends much beyond TM
and FM. As a result, a new fuzzy set was required to take human thinking into account, and
Ashraf et al. [37] proposed the concept of a spherical fuzzy set that provides a more adaptable and
expressive framework for the ideas of classical (crisp) sets. In spherical fuzzy sets, an element of
a set is given a range of membership values rather than a single membership value to represent
the degree of uncertainty or ambiguity in that element’s categorization. This study’s objective is
to identify the differential measure among three parameters using the Sq-LDFS specified fuzzy
set to cover the three degrees of membership (membership, non-membership and indeterminacy).
Razzaque et al. [38] proposed a collection of innovative Einstein aggregation operations by using
sq-LDF data. Additionally, a better VIKOR method is presented to address the uncertainty in
categorising viral hepatitis.

This article introduces the idea of differential measure (DFM), derived from [39] as a novel method
for contrasting spherical q-linear Diophantine fuzzy sets (Sq-LDFSs) [40]. When the uncertainty
grade has equally in both sets, there is a preference connection between two Sq-LDFS because
of their relative positions in the attribute space and the proximity of their membership and non-
membership degrees. Due to the equal consideration of the membership and non-membership degrees,
and uncertainty grade, although each direction has a distinct connotation, the existing Distance
measures and similarity measures across various fuzzy sets, namely PFSs with a zero uncertainty
grade have several shortcomings. To take into To account the effects of each element of an Sq-LDFSs
evaluation, the DFM uses signed distance. According to the degree of superiority or inferiority, two
Sq-LDFSs are shown as the same, equal, superior, or inferior to one another. Based on the newly
established DFM, a novel MCGDM approach is certified by our proposed idea. Since Sq-LDFS are
more adaptable than IFSs, PFSs, q-LDFSs and SFSs to deal with absurdity and ambiguity, as well as
to deal with human evaluation information, it is vital to pay greater attention to collective decision-
making in this context. Therefore,
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1. The proposal of DFM is proposed as a revolutionary technique for contrasting Sq-LDFSs. It
is an association between two Sq-LDFSs based on the position in the attribute space. To cover
the limitations of the current distance in discriminating, a DFM maintains the identity of the
Sq-LDFSs’ parameters.

2. A novel (GCGDM) technique is presented based on the proposed DFM.

3. The experts’ weights in (GCGDM) issues are computed using a novel method that is put forth.
Furthermore, the (GCGDM) problems may have a solution using this method.

The rest of the part is structured as follows: The most recent information regarding Sq-LDFSs is
provided in the following sections: Literature review in Section 1, preliminary definitions in Section 2,
and an explanation of the differential measure in Section 3. We provided the differential rules suggested
for Sq-LDFSs with short numerical examples in Section 4. In Section 5, an enhanced framework for
MCGDM is proposed to explain all phases of the technique and offer some counter-examples for
previously proposed differential measures by our technique. In Subsection 5.1, a numerical example
of diagnosing cancer patients using a variety of tests is provided to bolster the differential measure. In
Sections 6 and 7, a discussion and a conclusion are offered.

2 Preliminaries

Definition 2.1. [40] A spherical q-linear Diophantine fuzzy set (Sq − LDFS) ℘ over a fixed set K
is defined as

℘ = {�,
〈
T℘(�), I℘(�), F℘ (�)

〉
,
〈
i℘(�), j℘(�), k℘ (�)

〉
: ∀� ∈ K

}
(1)

where each membership grade T(�), I(�), F(�) : ℘ → [0, 1] , and each control parameter i(�), j(�),
k(�) : ℘ → [0, 1] , for an element � ∈ K with the limitations.

1. 0 ≤ i
qT℘(�) + j

qI℘(�) + k
qF℘(�) ≤ 1

2. 0 ≤ i
q
℘
(�) + j

q
℘
(�) + k

q
℘
(�) ≤ 1.

Definition 2.2. A compliment of Sq − LDFS℘ over a fixed set K is defined as

℘c = [�,
{
F℘(�), I℘(�), T℘ (�)

}
,
{
k℘(�), j℘(�), i℘ (�)

}
: ∀� ∈ K

]
Definition 2.3. For a Sq-LDFS a score function (SF) � is defined by the transformation �:Śq −

LDFS (e) → [−1, 1], and given by:

� (A) = 1
2N

{
(1 + T − I − F) +

(
1 + i

q − j
q − k

q
)

2

}
; q ≥ 1 (2)

where Śq − LDFS(�) is a collection on Śq − LDFNs over �, ∀� ∈ K.

Definition 2.4. The hamming distance using Sq-LDFSs [38] can be defined as:

HD = 1
6

{∣∣T 3
1 − T 3

2

∣∣+ ∣∣I 3
1 − I 3

2

∣∣+ ∣∣F 3
1 − F 3

2

∣∣+ ∣∣i31 − i
3
2

∣∣+ ∣∣j31 − j
3
2

∣∣+ ∣∣k3
1 − k

3
2

∣∣} (3)

Definition 2.5. The euclidean function using Sq-LDFSs can be defined as:

ED =
√√√√1

n

[
n∑

i=1

∣∣T 3
1 − T 3

2

∣∣+ ∣∣I 3
1 − I 3

2

∣∣+ ∣∣F 3
1 − F 3

2

∣∣+ ∣∣i31 − i
3
2

∣∣+ ∣∣j31 − j
3
2

∣∣+ ∣∣k3
1 − k

3
2

∣∣] (4)



1930 CMES, 2024, vol.138, no.2

3 The Differential Measure

Song et al. [41] presented the analysis of the distinction between psychological distance measure
and classical distance measurement. The classical distance measurements’ surprising potential to
ignore alternative background information and their competing interactions resolved by psychological
distance. To illustrate, we use the SF to evaluate the three alternatives A1 = {0.8300, 0.2100, 0.4300,
0.7200, 0.1300, 0.1400}, A2 = {0.8300, 0.2100, 0.4300, 0.5100, 0.1800, 0.1700} and A3 = {0.9300,
0.2100, 0.4300, 0.7200, 0.2100, 0.1300} using Sq-LDF evaluation. We observe that A3 is the best
alternative with large value of membership grade and control variable. Also A1 is better alternative
than A2 with same degree of support and indeterminacy degree but less degree of opposition.
But by using the hamming distances according to Sq-LDFS rules we found that DHm (A2,A3) =
0.08 > DHm (A1,A3) = 0.04, this shows that A1 is closed to A3, i.e., A3 is preferable substitute
than A2. Therefore, we can not rely on traditional distance measurements to accurately depict the
preferences of different choices. The reader is recommended to take an eye view at Xiao et al. [36]
and Huang et al. [35] for counter-examples that demonstrate the shortcomings of the existing distance
metrics on pythagorean fuzzy sets. A3 is superior to A1 since it has more support and less opposition.
Since A3 is superior to A1, we can also claim that A1 is inferior to A3. Comparing options A3 and
A2, it is noticeable that A3 is preferable to A2 due to its equal support and lesser opposition and
indeterminacy. While comparing options A3 and A1, A3 is superior to A2 regarding support, but A1

has superiority to A3 regarding the opposition with CFs. Even if each parameter has a different effect,
an increase in the membership degree is treated in the traditional distance measures in the same way as
an increase in the non-membership degree. Therefore, support, indeterminacy, and opposition should
be measured using signed distance. A step toward membership is a positive step, whereas a step away
from membership shows as a negative step. For the three parameters, the differential measures show
by using an Sq-LDFSs. Support T-grade increases as the difference between membership degrees
rises, but opposition F-grade increases as the difference between non-membership degrees gets bigger
and vice versa. Consider about the alternatives A2 and A3 that have the Sq-LD’s fuzzy evaluations
A2 = {〈0.83, 0.21, 0.43〉, 〈0.51, 0.18, 0.17〉}, and A3 = {〈0.93, 0.21, 0.41〉, 〈0.72, 0.21, 0.13〉}. Utilizing
the accuracy function (11), as well as score function (10) Sc (A2) = 0.1284, Sc (A3) = 0.1473 Utilizing
the accuracy function (11), as well as score function (10) A3 = {〈0.93, 0.21, 0.41〉, 〈0.72, 0.21, 0.13〉}
A2 = {〈0.83, 0.21, 0.43〉, 〈0.51, 0.18, 0.17〉} and Sc (A2) = 0.1284, Sc (A3) = 0.1473. Human thoughts
are not limited to satisfaction and dissatisfaction. There are chances to refuse or remain neutral except
to accept or not accept. The elements of an Sq-LDFS {〈T , I , F〉 , 〈i, j, k〉} have a physical interpretation
like “who votes in favor” (satisfaction degree), “who votes against” (dissatisfaction degree) “who
refuses to vote” (refusal grade) “who abstain” (uncertainty or abstinence grade). Hence for alternative
A1, the vote for the resolution in favor, remains neutral, and against is equal amount. In evaluation, a
tie occurs and Sq-LDF evaluations A1, A2, and A3 with their control factors have the same impact. The
accuracy function, which takes the amount of information under consideration, is biased in favor of
A1 in this situation. Naturally, A1 communicates more information than A 2 and A3. However, in this
situation, the Sq-LDFS’s information is significant since it makes one or two solutions appear superior.
Either A1 is superior to A2 and A3 or tie between three and vice versa. That leads us to the fundamental
idea behind a scoring function: better Sq-LDFSs have high values for T and low values for I and F
with their control variables. This is simply the difference between support, neutral, and opposition is
all that matters. In research of sharaf, he found the difference between support and opposition. This
research [39] encourages us to find differences among three variables.
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4 Rules for Differentiation

The differential measure between two Sq-linear Diophantine fuzzy setsA = {〈TA(�), IA(�), FA(�)〉,
〈iA(�), jA(�), kA(�)〉} and B = {〈TB(�), IB(�), FB(�)〉, 〈i B(�), jB(�), kB(�)〉}, ∀ ∼ � ∈ K is determine as
follows.

For triplet grades, membership determinacy and non-membership degrees, the datum is one. In
case where A’s membership degree exceeds B’s, the difference between the grades is added to one,
showing a positive step; in case where A’s membership degree is less than B’s, the difference between
the grades is deducted from one, showing a negative step.

Definition 4.1. A differential measurement between two spherical q-linear Diophantine fuzzy
sets (Sq-LDFSs) A = {〈TA(�), IA(�), FA(�)〉 , 〈iA(�), jA(�), kA(�)〉} and B = {〈TB(�), IB(�), FB(�)〉,
〈iB(�), jB(�), kB(�)〉}, ∀� ∈ K is a preference relationship based on the closeness of two Sq-LDFSs’
membership, indeterminacy, and non-membership degrees about their positions in the attribute space
with cotrol parameters. It can be defined as

diff (A,B) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈
1 + (TA − TB)

3 + (TA + IA + FA) − (TB + IB + FB)
,

1 + (IA − IB)

3 + (TA + IA + FA) − (TB + IB + FB)
,

1 + (FA − FB)

3 + (TA + IA + FA) − (TB + IB + FB)

〉
〈

1 + (iA − iB)

3 + (iA + jA + kA) − (iB + jB + kB)
,

1 + (jA − jB)

3 + (iA + jA + kA) − (iB + jB + kB)
,

1 + (kA − kB)

3 + (iA + jA + kA) − (iB + jB + kB)

〉
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5)

Definition 4.2. Two Sq-LDFSs A = {〈TA(�), IA(�), FA(�)〉 , 〈iA(�), jA(�), kA(�)〉} and B =
{〈TB(�), IB(�), FB(�)〉, 〈i B(�), jB(�), kB(�)〉}, ∀� ∈ K can be categories using differential measurement
(4.1) as below:

1. If diff (A,B) =
(

1
3

,
1
3

,
1
3

)
, then A and B are equivalent A ∼= B, with a degee of superiority

DoS (A,B) = DoS (B,A) = 0, and a degree of inferiority DoN (A,B) = DoN (B,A) = 0. If TA =
TB, IA = IB, FA = FB, iA = iB, jA = jB, kA = kB, then “A” and “B” are the identical “A ≡ B.”
2. If diff (A,B) = {〈TD, ID, FD〉 , 〈iD, jD, kD〉} with i

q
D

TD > 0.5, then A is superior to B. A � B with

the superior degree DoS(A,B) = 1
2n

[(1 + T − I − F) + (1 + i
q − j

q − k
q
)
/2] > 0. 3. If diff (A,B) =

{〈TD, ID, FD〉 , 〈iD, jD, kD〉} with k
q
D

FD > 0.5, then A is inferior to B. A ≺ B with the superior degree

DoN (A,B) = 1
2n

[(1 + T − I − F) + (1 + i
q − j

q − k
q
)
/2] < 0.

Proposition 4.1. For Sq-LDFSs A = {〈TA, IA, FA〉 , 〈iA, jA, kA〉},B = {〈TB, IB, FB〉, 〈iB, jB, kB〉} and
C = {〈TC, IC, FC〉 , 〈iC, jC, kC〉}

1. If A � B,B � C ⇒ A � C.

2. If A ≺ B,B ≺ C ⇒ A ≺ C.

Proposition 4.2. For the Sq-LDFSs A = {〈TA, IA, FA〉 , 〈iA, jA, kA〉} and A
c = {〈FA, IA , TA〉 , 〈kA, jA,

iA〉} diff
(
A,Ac

) = diff
(
A

c,A
)

, And if A is superior to A
c, then DoN

(
A

c,A
) = −DoN

(
A,Ac

)
, and

vice versa. Proof. If we apply the definition of difference between the set A and its compliment Ac,
we get
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diff
(
A,Ac

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈 1 + (TA − FA)

3 + (TA + IA + FA) − (FA + IA + TA)
,

1 + (IA − IA)

3 + (T + IA + FA) − (FA + IA + TA)
,

1 + (FA − TA)

3 + (TA + IA + FA) − (FA + IA + TA)

〉

〈 1 + (iA − kA)

3 + (iA + jA + kA) − (kA + jA + iA)
,

1 + (jA − jA)

3 + (iA + jA + kA) − (kA + jA + iA)
,

1 + (kA − iA)

3 + (iA + jA + kA) − (kA + jA + iA)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈 1 + (TA − FA)

3 + (TA + IA + FA) − (FA + IA + TA)
,

1
3 + (TA + IA + FA) − (FA + IA + TA)

,

1 + (FA − TA)

3 + (TA + IA + FA) − (FA + IA + TA)

〉

〈 1 + (iA − kA)

3 + (iA + jA + kA) − (kA + jA + iA)
,

1
3 + (iA + jA + kA) − (kA + jA + iA)

,

1 + (kA − iA)

3 + (iA + jA + kA) − (kA + jA + iA)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

diff
(
A

c,A
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈 1 + (FA − TA)

3 + (FA + IA + TA) − (TA + IA + FA)
,

1 + (IA − IA)

3 + (FA + IA + TA) − (TA + IA + FA)
,

1 + (TA − FB)

3 + (FA + IA + TA) − (TA + IA + FA)

〉

〈 1 + (kA − iA)

3 + (kA + jA + iA) − (iA + jA + kA)
,

1 + (jA − jA)

3 + (kA + jA + iA) − (iA + jA + kA)
,

1 + (iA − kA)

3 + (kA + jA + iA) − (iA + jA + kA)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈 1 + (FA − TA)

3 + (FA + IA + TA) − (TA + IA + FA)
,

1
3 + (FA + IA + TA) − (TA + IA + FA)

,

1 + (TA − FB)

3 + (FA + IA + TA) − (TA + IA + FA)

〉

〈 1 + (kA − iA)

3 + (kA + jA + iA) − (iA + jA + kA)
,

1
3 + (kA + jA + iA) − (iA + jA + kA)

,

1 + (iA − kA)

3 + (kA + jA + iA) − (iA + jA + kA)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

We noticed that diff
(
A,Ac

) = diff c
(
A

c,A
)

. And if A is superior than A
c, then DON

(
A

c,A
) =

−DOS
(
A,Ac

)
and vice versa.

Numerical Examples In this subsection a few examples are provided to demonstrate the use of
differential measures.
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Example 1. Let A1 = {〈1.0, 0.0, 0.0〉 , 〈1., 0.0, 0.0〉} ,A2 = {〈1.0, 0.0, 0.0〉 , 〈1., 0.0, 0.0〉}, then

diff (A1,A2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈 1 + (1.0 − 1.0)

3 + (1.0 + 0.0 + 0.0) − (1.0 + 0.0 + 0.0)
,

1 + (0.0 − 0.0)

3 + (0.0 + 0.0 + 0.0) − (1.0 + 0.0 + 0.0)
,

1 + (0.0 − 0.0)

3 + (1.0 + 0.0 + 0.0) − (1.0 + 0.0 + 0.0)

〉
,

〈 1 + (1.0 − 1.0)

3 + (1.0 + 0.0 + 0.0) − (1.0 + 0.0 + 0.0)
,

1 + (0.0 − 0.0)

3 + (0.0 + 0.0 + 0.0) − (1.0 + 0.0 + 0.0)
,

1 + (0.0 − 0.0)

3 + (1.0 + 0.0 + 0.0) − (1.0 + 0.0 + 0.0)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= {〈0.33, 0.33, 0.33〉 〈0.33, 0.33, 0.33〉}

diff (A2,A1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈 1 + (1.0 − 1.0)

3 + (1.0 + 0.0 + 0.0) − (1.0 + 0.0 + 0.0)
,

1 + (0.0 − 0.0)

3 + (0.0 + 0.0 + 0.0) − (1.0 + 0.0 + 0.0)
,

1 + (0.0 − 0.0)

3 + (1.0 + 0.0 + 0.0) − (1.0 + 0.0 + 0.0)

〉
,

〈 1 + (1.0 − 1.0)

3 + (1.0 + 0.0 + 0.0) − (1.0 + 0.0 + 0.0)
,

1 + (0.0 − 0.0)

3 + (0.0 + 0.0 + 0.0) − (1.0 + 0.0 + 0.0)
,

1 + (0.0 − 0.0)

3 + (1.0 + 0.0 + 0.0) − (1.0 + 0.0 + 0.0)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= {〈0.33, 0.33, 0.33〉 〈0.33, 0.33, 0.33〉}
Example 2. LetA1 ={〈0.95, 0.24, 0.38〉 , 〈41., 0.21, 0.11〉} ,A2 ={〈0.85, 0.24, 0.45〉 , 〈0.25, 0.34, 0.18〉}

diff (A1,A2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈 1 + (0.95 − 0.85)

3 + (0.95 + 0.24 + 0.38) − (0.85 + 0.24 + 0.45)
,

1 + (0.24 − 0.24)

3 + (0.95 + 0.24 + 0.38) − (0.85 + 0.24 + 0.45)
,

1 + (0.38 − 0.45)

3 + (0.95 + 0.24 + 0.38) − (0.85 + 0.24 + 0.45)

〉
,

〈 1 + (0.41 − 0.25)

3 + (0.41 + 0.21 + 0.11) − (0.25 + 0.34 + 0.18)
,

1 + (0.24 − 0.24)

3 + (0.41 + 0.21 + 0.11) − (0.25 + 0.34 + 0.18)
,

1 + (0.38 − 0.45)

3 + (0.41 + 0.21 + 0.11) − (0.25 + 0.34 + 0.18)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= {〈0.45, 0.50, 0.55〉 〈0.65, 0.50, 0.35〉}

diff (A2,A1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈 1 + (0.85 − 0.95)

3 + (0.85 + 0.24 + 0.45) − (0.95 + 0.24 + 0.38)
,

1 + (0.24 − 0.24)

3 + (0.85 + 0.24 + 0.45) − (0.95 + 0.24 + 0.38)
,

1 + (0.45 − 0.38)

3 + (0.85 + 0.24 + 0.45) − (0.95 + 0.24 + 0.38)

〉
,

〈 1 + (0.41 − 0.25)

3 + (0.41 + 0.21 + 0.11) − (0.25 + 0.34 + 0.18)
,

1 + (0.24 − 0.24)

3 + (0.41 + 0.21 + 0.11) − (0.25 + 0.34 + 0.18)
,

1 + (0.38 − 0.45)

3 + (0.41 + 0.21 + 0.11) − (0.25 + 0.34 + 0.18)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= {〈0.55, 0.50, 0.45〉 , 〈0.35, 0.50, 0.65〉}
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Following that, either A2 is suppior than A1 with a degree of superiority DoS (A2,A1) = 0.2, or
A1 is inferior than A2 with a degree of inferiority DoN (A1,A2) = −0.2.

5 An Improved Proposed Framework for MCGDM

(1) Problem identification. Evaluation of the criteria
{
C1,C2, ...,Cq

}
that experts attribute to alter-

natives
{
A1,A2, ...,Ap

}
. Experts’ {E1, E2, ..., Ek} formation of DM about each alternative in columns

and each criterion in rows.

(2) The creation of decision matrix and weight vector assigned by experts as Sq-LDFSs.

A = [aij

]
t×s

=

⎛
⎜⎜⎜⎜⎝
a∂

11 a∂

12 · · · a∂

1t

a∂

21 a∂

22 · · · a∂

1t

a∂

31 a∂

32 · · · a∂

1t
...

...
. . .

...
a∂

s1 a∂

s2 · · · a∂

st

⎞
⎟⎟⎟⎟⎠

and W = {w∂

1, w∂

2, ..., w∂

t

}
,

(3) Normalize the information in DM to get the best results.

Ast = 1 − ast − min ast

max ast − min ast

(6)

(4) Create the aggregated decision matrix using the formula (7), and then determine the best rating
for each criterion.

Mst = [ast] , ast =
{(

z∑
∂=1

w∂T ∂

st,
z∑

∂=1

w∂I ∂

st,
z∑

∂=1

w∂F ∂

st

)
,

(
z∑

∂=1

w∂ i
∂

st,
z∑

∂=1

w∂ j
∂

st,
z∑

∂=1

w∂k
∂

st

)}
(7)

(5) Determine the DFM between the ideal rating and the rating of each alternative for a criterion
to create the differential matrix.

IRt =
{(

max
s

T ∂

st, min
s

I ∂

st, min
s

F ∂

st

)
, max

s
i
∂

st, min
s

j
∂

st, min
s

k
∂

st

}
, Fst = [fst] , fst = Diff (IRs, ast) (8)

(6) Calculate the collective differential measure (CDFM) for each option.

CDFM (fst) =
{(

z∑
s=1

wsTfst ,
z∑

s=1

wsIfst ,
z∑

s=1

wsFfst

)
,

(
z∑

s=1

wsifst ,
z∑

s=1

wsjfst ,
z∑

s=1

wskfst

)}
(9)

(7) Calculate the CDFM’s score function and rank. The crisp value of the CDFM of each A
is estimated using the score formula. The total degree to which the ideal ratings for the evaluation
criteria outperform the ratings of an alternative is the CDFM. The superiority of the alternative rating
decreases with decreasing ideal rating superiority. The option with the lowest value is the best, and the
alternatives are arranged in ascending order.

The expert weights evaluation technique: With the socioeconomic environment becoming more
complicated, switching from a single expert to a group of experts became necessary since it is
challenging for a single expert to manage all the relevant components of a complex problem [42].
A homogenous group of specialists with comparable attitudes, knowledge, and experience is virtually
impossible when group decision-making. Consideration should be given to the credibility of expert
opinions and how they could influence the choice made. Results may be inaccurate if the relative
importance of the experts is ignored. Studies on calculating the weights of the criteria are abundant,
but studies on calculating the weights of the experts are few [43]. Usually, the weights of the experts are
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chosen based on personal preference. They are decided upon by a manager or through peer reviews.
Credibility is low for this method of allocating the experts’ weights. To give the experts’ opinions
greater weight from a more objective standpoint, objective procedures that make use of quantitative
methodologies are used [44]. Based on the similarity between the opinions of the individual experts
and the group, Zhang [45] suggested a method to calculate the experts’ unknown weights. Experts
are more significant and should be given more weight when their opinions are more in line with the
group’s viewpoint. This study suggests a precise approach for calculating the weights of the unknown
experts based on their agreement with the ranking of the alternatives. The weighted sum approach is
employed to rank each expert (WSM). Spearman’s correlation coefficient is then used to determine the
correlation between each pair of experts’ ranks. The correlation between an expert and other experts
is added to determine the expert’s overall correlation. The final step is to divide the sum of the total
correlations of each expert by that of the experts as a whole. First, each expert’s assessments of a
potential replacement for the evaluation criteria are combined using the Pythagorean fuzzy weighted
averaging operator (7).

Step1: Create each expert’s judgment vector. The pth expert’s evaluations for the ith alternative

are combined utilizing (7). B∂

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s∑
j=1

℘
p
j A

p
1j

s∑
j=1

℘
p
j A

p
2j

...
s∑

j=1

℘
p
j A

p
tj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Step2: Calculate the total rating score for each option and place it in order. B∂

s =

⎡
⎢⎢⎢⎣

Sc
(
B∂

1

)
Sc
(
B∂

2

)
...

Sc
(
B∂

t

)

⎤
⎥⎥⎥⎦. The

choice with the highest score is considered to be the best one, with the alternatives sorted in descending
order. Next, the pth expert is ranked.

Step3: Use Spearman’s correlation coefficient to calculate the correlation between one expert’s
ranking and the other. Using Spearman’s correlation coefficient, the ranking of the pth expert and

each of the other experts is correlated. C (E∂ , Ek) = 1 − 6
∑

d2
∂k

n (n2 − 1)
, for 1 ≤ ∂, k ≤ R, ∂ �= k where

d∂k is the difference in the Sth alternative’s rank as ordered by the ∂th and kth experts, and (E∂ , Ek),
C (E∂ , Ek) is the correlation between the rankings of the E∂ and Ek experts.

Step4: Calculate each expert’s overall correlation. The expert’s total correlation is the result of

adding up all of the expert’s correlations. Assign a weight to the experts. C (E∂) =
R∑

k=1k �=∂

C (E∂ , Ek).

Step5: Each expert’s weight is determined by dividing his or her overall correlation by the sum of

the total correlations of the other experts. w (E∂) = C (E∂)
R∑

∂=1

C (E∂)

.

Fig. 1 depicts the prescribed MCGDM framework.
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Figure 1: Improved technique for MCGDM
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Practical examples: In decision making problem, one of the efficient way to identifying an eligible
preferred alternative from a group of alternatives is its similarity degree to the ideal rating. The best
alternative is chosen by the degree of similarity. The least differential measurement indicates the ideal
option when evaluating the differential measure. In this part, two real-world applications utilizing
Pythagorean fuzzy information are discussed in two practically applications. The first application is
the evaluation of solid-state drives (SSDs) derived from Huang et al. [35]. The second application is
the identification of the finest photovoltaic cell taken from Zhang [45].

Evaluation of SSDs: Flash memory is the primary storage technology used in computers and
mobile devices today. Modern computing systems frequently substitute solid-state drives (SSDs) for
magnetic hard disc drives as secondary memory (HDDs). HDD performance remained sluggish due
to limits on the search time of actuator arms and the rotational speed of magnetic platters. SSDs, on the
other side, do not contain complex mechanical parts. Compared to HDDs, this has a reduced failure
rate and latency. In addition, SSDs have several advantages over HDDs, including more bandwidth,
reduced power use, better random I/O performance, stronger shock tolerance, and increased system
dependability [46]. An enterprise wishes to select one type of SSD from the five accessible types,
symbolized by the letters “A1, A2, A3, A4, A5”. Performance (�1), dependability (�2), capacity (�3),
form factor and connections (�4), battery life (�5), speed (�6), durability (�7), and pricing (�8) all
weigh into the evaluation. Every criterion is a benefit criterion, except the eighth, which is the price,
which is a cost criterion. The criteria have a weights vector {0.19, 0.09, 0.11, 0.12, 0.12, 0.13, 0.07, 0.17}.
A business expert uses PFSs to assess the SSDs according to the specified criteria. The best rating for
the Pythagorean fuzzy decision matrix is in Table 1.

Table 1: The decision matrix for the evaluation of SSDs based on PythFNs

�1 �2 �3 �4 �5 �6 �7 �8

A1 {.7, .1} {.5, .2} {.6, .1} {.6, .1} {.6, .1} {.7, .1} {.6, .4} {.6, .2}
A2 {.6, .1} {.6, .2} {.6, .3} {.5, .1} {.5, .3} {.6, .1} {.6, .4} {.5, .3}
A3 {.8, .1} {.6, .1} {.7, .1} {.6, .4} {.6, .3} {.7, .1} {.7, .3} {.5, .2}
A4 {.3, .6} {.3, .1} {.5, .6} {.5, .1} {.4, .2} {.6, .4} {.2, .5} {.7, .1}
A5 {.4, .5} {.3, .2} {.5, .3} {.4, .2} {.3, .3} {.4, .5} {.3, .4} {.6, .1}
IR {.8, .1} {.6, .1} {.7, .1} {.6, .1} {.6, .1} {.7, .1} {.7, .3} {.7, .1}

Utilizing DM, the differential measurement between the ideal rating (IR) and the rating for each
criterion is computed with the help of the differential measure formula, as shown in Table 2. To obtain
its integrated DiFM, the differential measurements of each alternative are aggregated. After that, the
CDiFMs are defuzzified using the score function (2.3), allowing for the evaluation of the total degree
of the best ratings’ superiority over the ratings of the alternatives available for the evaluating criterion.

Table 2: The matrix based on difference measure in pythFSs for SSDs evaluation

�1 �2 �3 �4 �5 �6 �7 �8

A1 {.4, .3} {.4, .3} {.4, .3} {.3, .3} {.3, .3} {.3, .3} {.4, .3} {.4, .3}
A2 {.4, .3} {.3, .3} {.4, .3} {.4, .3} {.4, .3} {.4, .3} {.4, .3} {.4, .3}
A3 {.3, .3} {.3, .3} {.3, .3} {.4, .3} {.3, .3} {.3, .3} {.3, .3} {.4, .3}

(Continued)
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Table 2 (continued)

�1 �2 �3 �4 �5 �6 �7 �8

A4 {.5, .2} {.4, .3} {.4, .2} {.4, .3} {.4, .3} {.4, .3} {.4, .3} {.3, .3}
A5 {.5, .2} {.4, .3} {.4, .3} {.4, .3} {.4, .3} {.4, .3} {.4, .3} {.4, .3}

The options are ranked as shown in Table 3 in ascending order. According to Table 3, the ranking
order is A3 > A1 > A2 > A4 > A5. The outcomes of other decision-making methodologies, including
the TOPSIS method proposed by Zhang et al. [47], the TODIM approach developed by Ren et al. [48],
the distance and similarity measure introduced by Zeng et al. [49], the fuzzy weighted and ordered
weighted aggregation operators presented by Garg [50], and the differential measure for pythagorean
fuzzy sets, are compared with the outcomes of the proposed methodology. Table 4 displays the rankings
that these techniques produced [39]. Table 4 demonstrates that the suggested technique produced the
same optimal alternative as the ones previously employed. The finest choice is the third substitute. The
ranking results of our proposed method are the same as the Zeng et al. [49], Ren et al. [48], Garg [50],
and Huang et al. [35] techniques.

Table 3: Collective differential measures

Collective difference measure DoS (IR, A) Rank

A1 {0.3514, 0.3164} 0.0959 2
A2 {0.3671, 0.3045} 0.0977 3
A3 {0.3396, 0.3199} 0.0950 1
A4 {0.4039, 0.2695} 0.1021 5
A5 {0.4042, 0.2765} 0.1017 4

Table 4: Ranking comparison of SSDs for different methods

Methods Rankings

Zhang et al.’s method [47] A3 > A1 > A2 > A5 > A4

Ren et al.’s method [48] A3 > A1 > A2 > A5 > A4

Zeng et al.’s method [49] A3 > A1 > A2 > A4 > A5

Garg’s method [50] A3 > A2 > A1 > A5 > A4

Huang et al.’s method [35] A3 > A2 > A1 > A5 > A4

Sharaf’s method [39] A3 > A1 > A2 > A4 > A5

Proposed method A3 > A1 > A2 > A5 > A4

Photovoltaic cells: Photovoltaic (PV) thermoelectric technology has gained a great deal of atten-
tion as a result of the present global crisis caused by the shortage of natural fuels in the earth’s crust [51].
The most effective alternative to conventional sources of energy power is photovoltaic solar energy,
which offers both sustainable and environmentally friendly energy sources [52]. Photovoltaic systems
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produce zero pollution as they directly harness solar energy to produce electricity [53]. They also
provide many benefits, including noiseless operation, low maintenance requirements, and excellent
dependability [54]. The advancement of new photovoltaic technologies has recently been the topic of
extensive research focused on boosting the effectiveness and sustainability of these devices, integrating
with using cheap materials and techniques [52]. These significant efforts combined with outstanding
efforts to identify the best alternative and choice based on the requirements, using multi-criteria
decision approaches, which have been kept parallel to this ongoing search [55]. A photovoltaic cell
is an apparatus that uses the photovoltaic effect, a well-known physical and chemical phenomenon,
to transform light energy into electricity. A generational division of several PV cell types in use. The
first generation, which is the most widely used and conventional kind consisting of monocrystalline
or polycrystalline silicon, controls more than 90% of the market for solar energy today. Due to
the expensive manufacture of crystalline silicon, the experts made more efforts to create alternative
materials with low-cost fabrication methods. The second generation was created of thin-film cells using
less expensive techniques. Amorphous silicon (a-Si), nanocrystalline silicon (nc-Si), cadmium telluride
(CdTe), and copper indium gallium selenide are employed the most frequently (CIGS). However,
they do not perform much better than first-generation cells. The third generation was created to be
highly efficient and inexpensive. They include a range of thin film technologies, some of which employ
organic materials to produce energy while others rely on inorganic materials, such as dye-sensitized
cells (DSSCs), quantum dot-sensitized cells (QDSSCs), organic solar cells, and hybrid perovskite cells
[51]. Table 5 represents the aggregated decision matrix consists of photovoltaic cell data.

Table 5: Aggregated decision matrix

�1 �2 �3 �4 �5

A1 {0.43, 0.82} {0.72, 0.59} {0.52, 0.75} {0.36, 0.62} {0.29, 0.59}
A2 {0.66, 0.46} {0.89, 0.20} {0.79, 0.23} {0.29, 0.52} {0.39, 0.46}
A3 {0.33, 0.56} {0.56, 0.62} {0.66, 0.36} {0.39, 0.56} {0.46, 0.43}
A4 {0.39, 0.75} {0.62, 0.52} {0.62, 0.20} {0.29, 0.62} {0.36, 0.69}
A5 {0.26, 0.66} {0.72, 0.26} {0.85, 0.29} {0.59, 0.59} {0.36, 0.62}
IR {0.66, 0.46} {0.88, 0.20} {0.85, 0.20} {0.59, 0.52} {0.46, 0.43}

After selecting the ideal site for a photovoltaic solar plant installation, it is necessary to choose the
kind of cell among the many PV cell options that best optimize the construction, for example, enhances
production or efficiency, reduces costs, and provides the highest maturation and reliability [55].

The selection of photovoltaic cells: The selection of optimal photovoltaic is required from the listed
alternatives: CdTe and CIGS (A1), amorphous silicon (A2), thin-film III-V with tracking systems (A3),
organic and hybrid cells (A4), and crystalline silicon (A5). These parameters are used to evaluate
these cells: manufacturing cost (�1), energy conversion efficiency (�2), market share (�3), emission
of greenhouse gas from production (�4), and energy payback period (�5). The evaluation involved in
this procedure used weights given by three experts (0.3191, 0.3533, 0.3276). The criteria’s weighting
vector is (0.2, 0.4, 0.1, 0.1, 0.2). PFSs present how the experts rated the potential solutions to the
evaluation criteria. The decision matrices are created and normalized to consider the cost criterion.
Table 6 presents the aggregated decision matrix using the PFWAY (7) and the ideal rating (IR) utilizing
(8). Zhang [45] provided detailed information on Pythagorean fuzzy decision matrices. Then the
diff. measure between IR and the alternative’s rating calculated for evaluation criterion by using
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(4.1) and creating a differential matrix as shown in Table 6. The total differential estimation can be
obtained, and the differential measurements of each alternative are combined. The options are then
rated accordingly to those shown in Table 7 using the scoring function (2.3). The ultimate ranking is
A2 > A5 > A3 > A4 > A1, as shown in Table 7. As a result,A2 is the ideal solar cell (amorphous silicon).
A technique for multi-criteria group decision-making (MCGDM) based on similarity measures and
newly created aggregation operators was described by Zhang [45]. An approach for MCGDM using
similarity measures based on point operators was also put out by Biswas et al. [56]. They created the
Pythagorean fuzzy-dependent averaging operator and the Pythagorean fuzzy-dependent geometric
operator using these similarity measurements as a starting point. These operators are used to combine
the opinions of the experts. The ranking achieved using the methods of Zhang [45] and Biswas et al. [56]
are compared to the results of the suggested technique. Table 8 provides a comparison. Thus according
to Table 8, the ranking produced by the suggested strategy matches the ranking of Biswas et al. [56].

Table 6: Differential measure matrix

�1 �2 �3 �4 �5

A1 {0.43, 0.22} {0.42, 0.22} {0.48, 0.16} {0.39, 0.29} {0.30, 0.26}
A2 {0.33, 0.33} {0.33, 0.33} {0.35, 0.32} {0.39, 0.30} {0.27, 0.30}
A3 {0.41, 0.28} {0.46, 0.20} {0.40, 0.28} {0.38, 0.31} {0.26, 0.30}
A4 {0.43, 0.24} {0.43, 0.23} {0.38, 0.31} {0.41, 0.28} {0.28, 0.24}
A5 {0.44, 0.25} {0.38, 0.30} {0.34, 0.31} {0.34, 0.32} {0.28, 0.25}

Table 7: Collective differential measures

Collective difference measure DoS (IR, A) Rank

A1 {0.4008, 0.2288} 0.1672 5
A2 {0.3293, 0.3204} 0.1509 1
A3 {0.3940, 0.2529} 0.1641 3
A4 {0.3922, 0.2454} 0.1647 4
A5 {0.3626, 0.2840} 0.1578 2

Table 8: Rank of PV cells by different methods

Techniques Rankings

Zhang’s technique [45] A2 > A5 > A4 > A3 > A1

Biswas et al.’s technique [56] A2 > A5 > A3 > A4 > A1

Sharaf’s technique [39] A2 > A5 > A3 > A4 > A1

Proposed technique A2 > A5 > A3 > A4 > A1

It is also obvious that the ranking of the suggested technique is virtually identical to Zhang’s
[45] results. The two best technologies and the poorest technologies are unchanged, however, the
moderately performing technologies have altered somewhat.
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Propose weighting method application: The proposed technique may be used to calculate the
weights of the professionals for the previous PV cell selection task. The illustrations of the stages
are listed below.

Step 1: From the given weight vector by each decision professional, by using (2.3) WVP1
=⎡

⎢⎢⎢⎢⎣
(0.59, 0.67)

(0.73, 0.39)

(0.39, 0.54)

(0.57, 0.54)

(0.51, 0.54)

⎤
⎥⎥⎥⎥⎦ , WVP2

=

⎡
⎢⎢⎢⎢⎣

(0.48, 0.68)

(0.67, 0.32)

(0.53, 0.56)

(0.54, 0.59)

(0.62, 0.44)

⎤
⎥⎥⎥⎥⎦ , WVP3

=

⎡
⎢⎢⎢⎢⎣

(0.52, 0.65)

(0.65, 0.33)

(0.56, 0.54)

(0.39, 0.64)

(0.517, 0.39)

⎤
⎥⎥⎥⎥⎦

Step 2: Evaluate each alternative’s score function (2.3) using Table 10 to rank them. �WV P1
=⎡

⎢⎢⎢⎢⎣
−0.1008
0.3808

−0.1395
0.1649

−0.0315

⎤
⎥⎥⎥⎥⎦, �WV P2

=

⎡
⎢⎢⎢⎢⎣

−0.2320
0.3465

−0.0327
−0.0565
0.1908

⎤
⎥⎥⎥⎥⎦, �WV P3

=

⎡
⎢⎢⎢⎢⎣

−0.1521
0.3201
0.0220

−0.2575
0.1728

⎤
⎥⎥⎥⎥⎦. Using the score function’s values,

each expert’s rank is R(E1) =

⎡
⎢⎢⎢⎢⎣

A2

A4

A5

A1

A3

⎤
⎥⎥⎥⎥⎦ , R(E2) =

⎡
⎢⎢⎢⎢⎣

A2

A5

A3

A4

A1

⎤
⎥⎥⎥⎥⎦ , R(E3) =

⎡
⎢⎢⎢⎢⎣

A2

A5

A3

A1

A4

⎤
⎥⎥⎥⎥⎦

Step 3: Utilize Spearman’s correlation to identify the relationship between the expert ranks. Table 9
summarizes the results.

Table 9: The proposed weighting method used for the PV cell collective differential measure and
ranking

Alternatives R (σ1) R (σ2) δ2
12 R (σ1) R (σ3) δ2

13 R (σ2) R (σ3) δ2
23

A1 4 5 1 4 4 0 5 4 1
A2 1 1 0 1 1 0 1 1 0
A3 5 3 4 5 3 4 3 3 0
A4 2 4 4 2 5 9 4 5 1
A5 3 2 1 3 2 1 2 2 0

C (σ1, σ2) = 0.5 C (σ1, σ3) = 0.3 C (σ2, σ3) = 0.9

Step 4: Computation of each professional’s total correlation C(E1) = C(E1, E2) + C(E1, E3) =
0.8, C(E2) = C(E1, E2) + C(E2, E3) = 1.4 , C(E3) = C(E1, E3) + C(E2, E3) = 1.2

Step 5: Quantify the weights of the experts w (E1) = 0.8
3.4

= 0.24, w (E1) = 01.4
3.4

= 0.41, w (E1) =
1.2
3.4

= 0.35.

After the resolution of PV cell selection by qualities, the weights are calculated by the proposed
technique, and the obtained data are summarized in Table 10. The obtained ranking is consistent
with previous results. It is worth noting that this methodology can detect the optimum alternative
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for selecting expert weights. After determining how each expert ranked the choices, if one alternative
comes in first among all experts, it is the best option, and thereafter step is not necessary unless a
complete ranking list is required. The three professionals select the PV cell at number second A2 first
in the preceding case. In that case, it is the best choice.

5.1 Case Study
Cancer [57] is not only a disease but rather a collection of diseases that collectively cause the body’s

cells to alter and proliferate uncontrollably. Cancers are classed either based on the type of fluid or
tissue from which they arise or based on where in the body they first manifested themselves. Some
cancers are of mixed kinds. The origins of cancer in the tissues and blood may be subdivided into the
five major categories below:

Carcinoma: A carcinoma cancer develops in epithelial tissue, which covers or lines the surfaces of
organs, glands, and other body organs. A carcinoma, for instance, is a cancer of the stomach lining.
Numerous carcinomas attack organs or glands that secrete substances, such as milk-producing breasts.
80%–90% of all cancer cases are carcinomas.

Table 10: The modified SSD problem’s over all differential measure and ranking

Alternatives CDFM DoS (IR,Ai) Ranking

A1 {0.4315, 0.2271} 0.2131 5
A2 {0.3455, 0.3259} 0.1899 1
A3 {0.4162, 0.2621} 0.2068 3
A4 {0.4274, 0.2430} 0.2105 4
A5 {0.3846, 0.2893} 0.1994 2

Sarcoma: Sarcomas are cancerous tumors that grow from connective tissues such as cartilage,
fat, muscle, tendons, and bones. The most prevalent sarcoma, a bone tumor, usually affects young
individuals. Chondrosarcoma (cartilage) and osteosarcoma are two examples of sarcoma.

Lymphoma: Lymphoma-type cancer develops in the lymph systems nodes or glands, whose job
is to produce white blood cells and clean body fluids, as in organs like the brain and breast. The two
types of lymphomas are Hodgkin’s lymphoma and Hodgkin’s non-lymphoma.

Leukemia: Leukemia, widely known as blood cancer, is a bone marrow cancer that resists the
marrow from creating healthy red, white, and platelet blood cells. To fight infection, white blood cells
are necessary. To avoid anemic, red blood cells are necessary. The presence of platelets helps to prevent
rapid bleeding and bruising.

Myeloma: Bone marrow plasma cells are where myeloma develops. Myeloma cells can sometimes
gather in one bone to create a single tumor known as plasmacytoma. However, in some instances,
the myeloma cells assemble in several bones, producing numerous bone tumors. Several medical tests
[58] are used to diagnose these cancer types namely CT scan, MRI, Nuclear scan, Bone scan, PET
scan, Ultrasound, X-rays, and Biopsy. Suppose a medical expert have five cancer patients namely A1

= Jown, A2 = Jerry, A3 = Wilson, A4 = Hang, and A5 = Wang, who is suffering from cancer of
different types at the last stages. After some medical tests report namely CT scan, MRI, Nuclear scan,
Bone scan, PET scan, ultrasound, X-rays, and Biopsy reports, the medical expert’s target is to find the
cancer patient who is in the most critical condition due to one of the listed cancer types. Let us say a
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medical expert examines five cancer patients, each of whom has a different type of cancer. According
to their tests reports respective values of f = {f1 (CT scan), f2 (MRI), f3 (Nuclearscan), f4 (PETscan),
and f5 (Biopsy)} of five patients are given in SLDFNs. Different values for medical reports are
associated with the cancer types R = {r1(Leukemia), r2 (Carcinoma), r3 (Sarcoma), r4 (Lymphoma),
and r5 (Myeloma)}. The criteria’s weights are {0.45, 0.21, 0.20, 0.10, 0.04} specialists diagnose the
patients for the specified cancer types based on Sq-LDFSs. The table provides the spherical q-linear
Diophantine fuzzy decision matrix with the optimal rating.

Step1: Creation of a decision matrix based on Sq-LDFSs w.r.t the reports of five cancer patients
in Table 11.

Table 11: Sq-LDF decision matrix {〈TA, IA, FA〉, 〈iA, jA, kA〉}
Alternatives Criterias

A1

f1 = {〈.85, .24, .45〉, 〈.25, .34, .18〉}, f2 = {〈.73, .31, .48〉 , 〈.34, .11, .23〉}
f3 = {〈.63, .45, .38〉, 〈.41, .28, .11〉}, f4 = {〈.81, .41, .32〉, 〈.31, .23, .31〉}
f5 = {〈.78, .17, .45〉, 〈.33, .12, .27〉}

A2

f1 = {〈.77, .41, .52〉, 〈.34, .21, .22〉}, f2 = {〈.82, .51, .43〉, 〈.13, .25, .21〉}
f3 = {〈.58, .43, .41〉, 〈.31, .23, .15〉}, f4 = {〈.78, .45, .31〉, 〈.51, .11, .18〉}
f5 = {〈.83, .21, .43〉, 〈.72, .13, .14〉}

A3

f1 = {〈.95, .41, .38〉, 〈.41, .25, .18〉}, f2 = {〈.77, .62, .43〉, 〈.31, .25, .21〉}
f3 = {〈.86, .41, .38〉, 〈.41, .23, .17〉}, f4 = {〈.89, .38, .46〉, 〈.46, .32, .11〉}
f5 = {〈.83, .21, .38〉, 〈.51, .18, .17〉}

A4

f1 = {〈.82, .41, .38〉, 〈.41, .21, .11〉}, f2 = {〈.91, .61, .53〉, 〈.38, .21, .22〉}
f3 = {〈.73, .61, .48〉, 〈.25, .31, .18〉}, f4 = {〈.83, .63, .47〉, 〈.38, .21, .17〉}
f5 = {〈.76, .58, .43〉, 〈.31, .23, .33〉}

A5

f1 = {〈.73, .61, .53〉, 〈.41, .21, .18〉}, f2 = {〈.83, .51, .68〉, 〈.31, .21, .15〉}
f3 = {〈.73, .61, .58〉, 〈.41, .23, .16〉}, f4 = {〈.81, .32, .58〉, 〈.38, .31, .14〉}
f5 = {〈.93, .21, .41〉, 〈.41, .21, .13〉}

Step2: Normalized fuzzy data given in Table 12.

Table 12: Normalized Sq-LDF decision matrix

Alternatives Criterias

A1

f1 = {〈.45, 1.0, .53〉, 〈1.00, .00, .36〉}, f2 = {〈.82, .54, .07〉, 〈.44, 1.0, .00〉}
f3 = {〈.00, .54, 1.0〉, 〈.00, .79, .36〉}, f4 = {〈.59, .54, 1.0〉, 〈.00, 1.0, 1.0〉}
f5 = {〈1.0, .00, .00〉, 〈.00, 1.0, .36〉}

A2

f1 = {〈1.0, 1.0, .80〉, 〈.16, 1.0, .00〉}, f2 = {〈.50, .35, 1.0〉, 〈1.0, .00, .25〉}
f3 = {〈.78, .00, 1.0〉, 〈.28, .00, .63〉}, f4 = {〈.00, .03, .60〉, 〈.00, .29, .13〉}
f5 = {〈.44, .35, .00〉, 〈.28, .29, 1.0〉}

(Continued)
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Table 12 (continued)

Alternatives Criterias

A3

f1 = {〈.82, .80, 1.00〉, 〈.00, .38, 1.0〉}, f2 = {〈1.0, .90, .85〉, 〈.63, 1.0, .43〉}
f3 = {〈.00, 1.0, 1.0〉, 〈.00, 1.0, .14〉}, f4 = {〈.46, .00, .50〉, 〈1.0, .00, .00〉}
f5 = {〈.46, .00, .00〉, 〈.00, 1.0, .29〉}

A4

f1 = {〈.73, .71, .96〉, 〈1.0, .43, .00〉}, f2 = {〈1.0, .58, 1.0〉, 〈.00, 1.0, .65〉}
f3 = {〈.00, .81, .44〉, 〈.25, .00, 1.0〉}, f4 = {〈.55, .00, .41〉, 〈.65, .52, .70〉}
f5 = {〈.73, 1.0, .00〉, 〈.65, .05, .85〉}

A5

f1 = {〈.88, 1.0, .00〉, 〈.95, 1.0, .30〉}, f2 = {〈.59, .90, .29〉, 〈.00, .91, .95〉}
f3 = {〈.59, .90, 1.0〉, 〈.51, .45, .80〉}, f4 = {〈1.0, .00, .29〉, 〈1.0, .00, .00〉}
f5 = {〈.00, .90, .57〉, 〈.76, .18, 1.0〉}

Step3: The differential measure between the ideal ratings and the ratings of each alternative for the
criterion is derived using the decision matrix. Following that, the differential matrix shows the results
in Table 13.

Table 13: Weighted measurement among parameters

Alternatives Criterias

A1

f1 = {〈1.5, .00, .46〉, 〈.61, .61, .39〉}, f2 = {〈.75, .29, .59〉, 〈1.0, .00, .64〉}
f3 = {〈1.4, .31, .00〉, 〈1.0, .16, .33〉}, f4 = {〈1.6, .53, .00〉, 〈2.0, .00, .00〉}
f5 = {〈.50, .50, .50〉, 〈1.2, .00, .39〉}

A2

f1 = {〈5.0, .00, 1.0〉, 〈1.0, .00, .54〉}, f2 = {〈1.3, .56, .00〉, 〈.57, .57, .43〉}
f3 = {〈1.0, .82, .00〉, 〈.82, .48, .18〉}, f4 = {〈.84, .41, .17〉, 〈.77, .28, .34〉}
f5 = {〈.71, .29, .45〉, 〈1.2, .50, .00〉}

A3

f1 = {〈3.1, .53, .00〉, 〈1.2, .38, .00〉}, f2 = {〈4.0, .40, .60〉, 〈1.5, .00, .60〉}
f3 = {〈2.0, .00, .00〉, 〈1.1, .00, .46〉}, f4 = {〈.75, .49, .25〉, 〈.50, .50, .50〉}
f5 = {〈.61, .39, .39〉, 〈1.2, .00, .42〉}

A4

f1 = {〈2.1, .48, .06〉, 〈.64, .36, .64〉}, f2 = {〈2.4, 1.0, .00〉, 〈1.5, .00, .26〉}
f3 = {〈1.1, .11, .32〉, 〈1.0, .57, .00〉}, f4 = {〈.71, .49, .29〉, 〈1.2, .42, .27〉}
f5 = {〈1.0, .00, .79〉, 〈.93, .66, .10〉}

A5

f1 = {〈1.0, .00, .89〉, 〈1.4, .00, .93〉}, f2 = {〈1.2, .08, .58〉, 〈1.8, .08, .04〉}
f3 = {〈2.8, .19, .00〉, 〈1.2, .44, .16〉}, f4 = {〈.58, .58, .42〉, 〈.50, .50, .50〉}
f5 = {〈1.3, .06, .28〉, 〈1.2, .77, .00〉}
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The collective differential measure and ranks for cancer patients can be seen in Table 14. The
ranking of patients according to their condition is presented in Table 15.

Table 14: By proposed weighting method

CDFM DoS (IR,Ai) Ranks

A1 {〈0.6869, 0.9310, 0.7043〉, 〈0.6216, 0.3679, 0.3756〉} 0.0620 2
A2 {〈0.7967, 0.5919, 0.5214〉, 〈0.5319, 0.7864, 0.2412〉} 0.1008 4
A3 {〈0.1869, 0.5600, 0.9444〉, 〈0.1043, 0.5297, 0.4555〉} 0.0061 1
A4 {〈0.4533, 0.2500, 0.7282〉, 〈0.3050, 0.5624, 0.5463〉} 0.0819 3
A5 {〈0.7089, 0.2106, 0.0229〉, 〈0.1540, 0.7220, 0.5558〉} 0.1703 5

Table 15: Ranking of patients according to their condition

Method Ranking

Riaz’s method A3 > A1 > A4 > A2 > A5

Proposed method A3 > A1 > A4 > A2 > A5

6 Disscusion

The purpose of this paper is to discriminate the Sq-LDFSs by the proposed notion of DFM. It
is a preference connection between two Sq-LDFSs because of where they are in the attribute space
and how closely their degrees of membership, indeterminacy and non-membership with the control
parameter are correlated. Overcoming potential flaws in the current measures between fuzzy sets
is the primary goal of the DFM. The shortcomings of the current distance and similarity metrics
come from treating membership, indeterminacy, and non-membership degree identically, although
each direction has a different connotation. Differently, a DFM handles variations in a spherical q-
linear diophantine fuzzy assessment’s parameters. A step taken in the support direction is viewed as a
+ve point, while an opposite step is shown as −ve with the same indeterminacy values. The degree
of superiority or inferiority between two Sq-LDFSs is determined by whether they are classed as
identical, equivalent, superior, or inferior to one another. Based on the newly introduced DFM, a
new method for calculating the expert weights is created, and an MCGDM method is also defined.
To demonstrate the approach, two real-world issues were resolved. The suggested method’s results
are contrasted with those of several other existing MCDM approaches. The comparison’s primary
goal is to confirm and show the method’s applicability. There is no worst or best methodology; all
of the MCDM methods can be compared to one another. Even when processing the same data
and information, different methodologies can yield different conclusions. We can determine which
approach is most appropriate in a specific circumstance [59]. When the MCDM methods based
on distance or similarity measurements are impacted by the aforementioned flaws, resulting to
inaccurate findings, the proposed method would be preferable. The assessment of solid-state drives is
the first illustration. The proposed method’s outcome is contrasted with that of other decision-making
techniques, including the TOPSIS method put forth by Zhang et al. [47], the TODIM approach created
by Ren et al. [48], the distance and similarity measures introduced by Zeng et al. [49], the fuzzy weighted
and ordered weighted aggregation operators put forth by Garg [50], and the PF-MULTIMOORA
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method put forth by Huang et al. [35]. The best choice was found using the same techniques. With a
few minor differences from previous ranking lists, the ranking list produced by the suggested method
is consistent with the outcomes of Zeng et al. The choice of the best photovoltaic cell serves as the
second illustration. The outcome of the suggested strategy is contrasted with that of Zhang [45] and
Biswas et al. [56]. The best alternative was determined using all three procedures. The ranking list of
the suggested technique is almost identical to the ranking list of Zhang [45] and correlates with the
ranking list of Biswas et al. [56]. Finally, using Spearman’s correlation coefficient as a base, an improved
method for calculating the expert weights is created and used for the photovoltaic cell problem.
The weights obtained from the experts differ slightly from those reported by Zhang [45] in some
respects. Nevertheless, the experts’ relative weights are equal, and the same answer is reached when the
problem is solved using the suggested weights. Practical applications for the proposed DFM include
image processing, pattern recognition, machine learning, information retrieval, medical diagnosis,
and decision-making. The suggested framework might reduce preferences that might develop in the
decision-making process as a result of giving decision-makers subjective weights, which frequently
results in outcomes that are not accurate [60]. The framework offers decision-makers objective weights
to counteract the unfavorable impact of subjective weights. The suggested approach can therefore help
managers make better judgments. It is predicted that the created method will work successfully in
any GDM setting, including corporate management and industrial engineering. Fig. 2 represents the
differential measurement in both PyFS and Sq-LDFS graphically.

Figure 2: Differential measure comparison

7 Conclusion

The construction of an appropriate evaluation method for the fuzzy data to find differential
measures is essential. There are a lot of techniques to find a difference in fuzzy sets, i.e., similarity
measures, distance measures, and methods such as VIKOR, TOPSIS, EDAS, etc. In this article, we
proposed differential measures among three grades membership, indeterminacy, and non-membership
related to their control variables. The results of our technique show efficient performance. we use
the previous examples from Pythagorean fuzzy sets data but got the same results as our proposed
technique of differential measure in Sq-LDFSs. The MCGDM method proposed by finding the
weights by Spearman’s correlation coefficient got identical results in three grades. “Differential
Measure for Pythagorean Fuzzy Sets” only covers two membership grades; however, there is a need
for a fuzzy set to fill in this gap and cover the data for the three grades when the Pythagorean fuzzy set
constraints fall short in specific situations. Therefore, using data from three grades, we determine the
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Sq-LDFS and find the differential measure. The outcome validates the effectiveness of the suggested
method. We infer that our approach is useful for three parametric data in addition to two degree data
based on our ranking results and comparison.

The proposed Sq-LDFS concept can be used in other existing methods, such as MAIRCA, ELEC-
TREE, AHP, or PROMETHEE, to enhance its performance and accuracy. The proposed technique
can be applicable to several real-life problems that involve decision-making under uncertainty and
imprecision. For instance, in green supplier selection, the proposed method can be used to evaluate
and rank potential suppliers based on multiple criteria, such as quality, price, and delivery time etc. In
medical field, the proposed method can be used to analyze patient data and provide a diagnosis based
on multiple symptoms and test results.
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