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ABSTRACT

To solve the problem of data fusion for prior information such as track information and train status in train
positioning, an adaptive H∞ filtering algorithm with combination constraint is proposed, which fuses prior
information with other sensor information in the form of constraints. Firstly, the train precise track constraint
method of the train is proposed, and the plane position constraint and train motion state constraints are analysed.
A model for combining prior information with constraints is established. Then an adaptive H∞ filter with
combination constraints is derived based on the adaptive adjustment method of the robustness factor. Finally,
the positioning effect of the proposed algorithm is simulated and analysed under the conditions of a straight
track and a curved track. The results show that the positioning accuracy of the algorithm with constrained
filtering is significantly better than that of the algorithm without constrained filtering and that the algorithm with
constrained filtering can achieve better performance when combined with track and condition information, which
can significantly reduce the train positioning error. The effectiveness of the proposed algorithm is verified.
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1 Introduction

For a modern railway transportation system, train tracking and positioning play important roles.
With the development of science and technology, the requirements for train positioning and control
are becoming more stringent. The application of the Global Navigation Satellite System (GNSS),
represented by GPS, in positioning solutions, information fusion and safety assessment of train
running is developing rapidly [1,2]. In information fusion, the Kalman filter is one of the main
algorithms of integrated navigation, and its concept is based on minimum linear variance estimation
[3].

Although the Kalman filter is an effective tool for estimating the state of a system, conventional
filtering does not fully exploit information about prior constraints and thus limiting the filtering per-
formance. For example, the state of motion of a vehicle satisfies the constraints of the road. In this case,
additional prior information can be used to modify the filter and achieve better filtering performance
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[4]. The coupling method of heading angle and road network is used to improve the positioning
accuracy of vehicles [5]. Trajectory estimation of moving targets can achieve better performance by
using map constraints as additional information [6,7]. In summary, the state estimation accuracy of
the filter with state constraints is higher than that of the unconstrained filter [8]. The adaptive Kalman
filter with an observer of vehicle velocity and heading angle can provide robust and highly accurate
estimates of vehicle position [9].

Train positioning based on track constraints has also been developed. A solution based on
GNSS was proposed, which can determine the track occupied by the train in a very short time
[10]. Liu et al. proposed a system model for train state prediction by adding track constraints
[11,12]. Train positioning constrained by three-dimensional track coordinates was proposed [13].
In the current literature, the added track constraint is a simplified constraint, without using the
full track constraint and adding the motion state constraint. Since constraints can fully utilize the
existing prior information to improve the performance of the train positioning algorithm, it is very
important to study train positioning estimation methods under more constraints. Conventional train
positioning methods cannot meet the real-time and high-precision requirements of train positioning
[14]. Therefore, GNSS is used for train-assisted positioning. In order to ensure the continuous output
of positioning data in case of satellite positioning failure, it is possible to use the method of fusion
with an inertial navigation system, speed radar and other sensor information to support positioning
[15,16].

Due to various influencing factors, the movement of the train is uncertain. meanwhile, the safety
and stability of the train are highly required. Therefore, a robust algorithm is important for practical
application. The traditional Kalman filter requires a determined system noise covariance matrix and
a measurement noise covariance matrix, nevertheless, the noise in reality has a certain uncertainty.
However, the H∞ filtering algorithm has good robustness and can adapt to noise uncertainty.

In this paper, an adaptive H∞ filtering algorithm for train positioning with the constraint of
combining prior information is mainly studied. The following problems exist when GNSS is used for
train positioning. Firstly, the map matching algorithm generally uses a simple projection method and
considers the two-point interval on the railway track as a straight line, and the railway track is usually
assumed to be a plurality of straight line segments [17,18], which is significantly different from the real
railway track. Secondly, the measurement values of multi-sensors and train-specific prior information
are not fully utilized, especially the prior information on train state and some redundant sensors with
high measurement accuracy. Finally, the traditional filter algorithm cannot adapt to the complex and
variable environment of train positioning. Hence, a robust filtering algorithm is required. Clearly, a
method of fusing multi-sensor data can improve the comprehensive performance of the system [19,20].

In order to solve the above problems, a data fusion method is proposed to fuse the precise digital
track map information and train status information with train positioning data in the form of prior
combination constraint by a new adaptive H∞ filter algorithm.

In multi-source information fusion positioning systems, the federated filter is widely used because
of low computational complexity, high accuracy and good fault-tolerant performance [21]. The basic
structure of the system based on a federated filter of multiple sensors is shown in Fig. 1.

Inertial Navigation System (INS) is an autonomous navigation system that does not rely on
external information. The GNSS and other sensors generate a preliminary estimation of the position
through the subfilter, and the digital track and train state constraints form a combination constraint.
The partly known prior information of the road constraint can be utilized to enhance the tracking
performance. Combination constraint and preliminary estimation are used to generate the final



CMES, 2024, vol.138, no.2 1797

constraint position estimation in the main filter [22,23]. The main filter uses the adaptive H∞ filtering
algorithm with combination constraint (AHF-CC). The subfilter is updated with the observation and
gives the unconstrained estimation. The constraint is applied to give the final estimation [24]. Finally,
the train positioning information is fused with other sensors in the form of a combination constraint.

Figure 1: Basic structure of the combination constraint system based on a federated filter

2 Material and Methods

In this section, the precise track constraint method of the train is proposed to improve the accuracy
of train positioning. The position constraint of the plane and the train motion state constraints are
analyzed.

We can accurately segment the track by continuous fitting and iteration [25]. Then, the railway
track can be accurately modeled with a piecewise function to construct a high-precision digital track.
Digital track maps will have a constraining effect on trains. The most important constraints are
position constraints and motion state constraints. The track plane of railway lines is composed of
three types including straight line, transition curve and circular curve, in which transition curve is a
cubical parabola [26]. Fig. 2 is a typical precision track from a part of the railway.

Figure 2: Typical structural diagram of precision track

The essence of train constraint positioning is the fusion of track map information and train
position measurement information. The positioning accuracy of the train is improved by the fusion
method.
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2.1 Linear Constraint Modeling
When a train runs on a straight track segment, the track constraint is the linear constraint. The

train is subject to the following linear constraint as [3]

g (x) = Dxk = d, (1)

where D is a given constant, s × n matrix, d is an s × 1 vector and s ≤ n. It is assumed that D has full
row rank. If D is not full rank, it means that there are redundant state constraints. A state estimation
x̂k that satisfies the constraint is expected to get.

2.1.1 Linear Constraint of Linear Railway Track

The coordinates of the points on the railway line are set as (χ , γ ). The general equation for the
linear model of railway track is as[

k 1
] [

χ

γ

]
= −b (2)

where k and b represent straight track slope and intercept, respectively.

2.1.2 Linear Constraint of Motion State

The train’s running speed, acceleration and heading angle are key parameters of the train’s motion
state. The state constraints can indirectly improve the accuracy of train position estimation.

The heading angle can reflect the direction of the track in the plane direction [27]. When the
train travels on different track segments, the change of heading angle is also different. In the straight
segment, the heading angle is a constant value. In the curve segment, the heading angle changes with
the mileage. In general, the heading angle may be output by an inertial navigation device, such as an
angular rate sensor or magnetic compass. When the satellite signal is good, it can also be obtained by
a two-antenna attitude measurement method [28]. The Doppler speed radar equipped on the train has
high-speed measurement accuracy, which is about 0.1% of the measured value [29]. A disadvantage
of Doppler radar is that its performance depends on environmental conditions, such as weather and
the relative motion of ahead objects. The acceleration range of the train is small. According to the
requirements of the railway design code [30], the lateral acceleration of running trains on curved tracks
is less than 0.75 m/s2 for passengers’ comfort. Taking into account the plane of the track only, the
train is subjected to forward acceleration and no lateral acceleration when the train is running in a
straight line. When the train is running on the curve track, the train is encountered with forward
acceleration and lateral acceleration. The measurement of train acceleration can be obtained through
the accelerometer or inertial navigation module, but it needs to pay attention to the influence of
cumulative error.

The train state constraint can be written as⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Ve

Vn

ae

an

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

VDoppler sin θINS

VDoppler cos θINS

aINS sin θINS

aINS cos θINS

⎤
⎥⎥⎦ (3)

where V , a are the forward speed and forward acceleration of the train state estimation, and subscript
e, n mean EAST and NORTH. The θ INS, V doppler, aINS are accurate measurements of the heading angle,
forward speed and forward acceleration of the train, which are usually filtered.
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2.2 Nonlinear Constraint Modeling
The curved portion of the railway track can be represented by a nonlinear equation, and its

constraints on the train are nonlinear constraint. Generally, a nonlinear constraint equation can be
written as

f (x) = d (4)

Fig. 3 shows the difference between linear and nonlinear constraints. It indicates the possible error
caused by the linear approximation of a nonlinear equality constrained state estimation. Moreover, it
shows that the nonlinear constrained state estimation can be projected onto the nonlinear constrained
curve, with the resulting error being much smaller than the linearization-introduced error.

Figure 3: Linear and nonlinear state constraint

In it, x̃k−1 is the previous constrained estimation, x̂k is the current unconstrained estimation, x̃L
k is

the current linear constrained estimation and x̃NL
k is the current nonlinear constrained estimation, xTrue

is the current true value.

The curve segments of railway lines are composed of circular curves and transition curves. The
parametric equation of the circular curve in the independent coordinate system as shown in Fig. 4 can
be expressed as⎧⎨
⎩

χ = R sin β,
γ = R − R cos β,
β = l/R,

(5)

where (χ , γ ) is the coordinate of any point on the circular curve. R is the radius of the circular curve.
l is the curve length of the point along a circular curve to the point of transition curve to circular on
a circular curve. β is the arc angle corresponding to the point.

Taking the center of a circle as the origin of the coordinate, the simplified constraint equation of
the circular curve can be expressed as

χ 2 + γ 2 = R2 (6)

The transition curve is a curved connection between a straight line and a circular curve, whose
radius gradually changes from infinity to the radius of a circular curve. In the construction of the
railway, the cubical parabola is used to approximate the clothoid [26], and it can be written as

γ = aχ 3 + bχ 2 + cχ + d. (7)
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Figure 4: The coordinate of circular curve

Then, the curve line can be expressed as a nonlinear equation

f (x) = 0 (8)

Furthermore, the nonlinear state constraints about a constrained state estimation x̂ are
expanded as

fi (x) = fi

(
x̂
) + f ′

i

(
x̂
)T (

x − x̂
) + 1

2!

(
x − x̂

)T
f ′′

i

(
x̂
) (

x − x̂
) + · · · = 0 (9)

where the superscripts ′,′′ denote the first and second partial derivatives.

Ignoring the higher-order of Taylor series expansion, the constraints can be expressed as

f (x) = xTAx + bTx + xTb + c = [
xT 1

] [
A b
bT c

] [
x
1

]
= 0 (10)

Herein, a railway track segment can be represented by a general equation of the second degree in
two variables.

f (χ , γ ) = aχ 2 + 2bχγ + cγ 2 + 2dχ + 2eγ + f = [
χ γ 1

] ⎡
⎣a b d

b c e
d e f

⎤
⎦

⎡
⎣χ

γ

1

⎤
⎦ = 0. (11)

2.3 Combination Constraint
Through the analysis above, the constraints of train positioning can be linear or nonlinear, and

usually multiple constraints act simultaneously, such as{
gi (x) = xTbi − ci = 0
fi (x) = 0 (12)

If the constraint is linear, it can be considered as a special case of the second-order approximate
constraint of Eq. (10) (i.e., A = 0).
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Therefore, a combination constraint based on multiple constraints is proposed. m represents the
number of constraints, and the combined constraint F(x) can be expressed as

F(x) = [f1(x), f2(x), . . . , fm(x)]T

=

⎡
⎢⎢⎣

xT

xT

. . .
xT

⎤
⎥⎥⎦

⎡
⎢⎢⎣

A1

A2

. . .
Am

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x
x
...
x

⎤
⎥⎥⎦ + 2

⎡
⎢⎢⎣

bT
1

bT
2

...
bT

m

⎤
⎥⎥⎦ x +

⎡
⎢⎢⎣

c1

c2

...
cm

⎤
⎥⎥⎦ = 0

(13)

3 Results

In the complex operating environment of the train, the statistical characteristics of the actual
navigation system noise are difficult to obtain accurately, which leads to the degradation of the
performance of the traditional Kalman filter. Therefore, in order to truly reflect the motion of the
train, an adaptive filtering algorithm is needed. Considering that H∞ filtering has strong robustness,
this paper proposes an adaptive H∞ filtering algorithm with a combination constraint for train
positioning, which makes adaptive improvement based on H∞ filter and combination constraint.

3.1 Unconstrained Adaptive H∞ Filter
The state equation and measurement equation of the system are⎧⎨

⎩
xk+1 = Fkxk + wk

yk = Hkxk + vk

zk = Lkxk

(14)

where xk is the state variable, Fk is the state transition matrix, Hk is the measurement matrix. wk

and vk are system noise and measurement noise, respectively [31]. White noise is not required. The
linear combination of state variable zk is the estimated quantity, and Lk is the full rank of the custom
estimation matrix.

For the uncertainty of the system model and the statistical characteristics of noise, H∞ filter
minimizes the H∞ norm from the interference input to the filtered error output by introducing the H∞
norm idea. This method minimizes the estimation error of the system under the worst-case interference
conditions. The cost function of H∞ filtering based on game theory is defined as

J =

N∑
k=1

∥∥xk − x̂k

∥∥2

∥∥x0 − x̂0

∥∥2

P−1
0

+
N∑

k=1

(
‖wk‖2

Q−1
k

+ ‖vk‖2

R−1
k

) (15)

where Qk and Rk are the variances of the system noise term and the measurement noise, x0 is the state
initial value, P0 is the initial state variance, x̂0 is the state estimated value [32].

Generally, it is difficult to minimize J directly, J < 1/θ is established by selecting the performance
boundary θ . Therefore, at any moment, the H∞ filter needs to meet the following requirement:

P−1
k − θLT

k SkLk + HT
k R−1

k Hk > 0 (16)
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where Pk is the error covariance matrix and Sk is the state variable estimation error covariance matrix.
These are pre-set symmetric positive definite matrices. The recursive process of the H∞ filter is

Sk = LT
k SkLk

Kk = Pk

[
I − θSkPk + HT

k R−1
k HkPk

]−1

× HT
k R−1

k

x̂k+1 = Fkx̂k+Kk

(
yk − Hkx̂k

)
Pk+1 = FkPk

[
I − θSkPk + HT

k R−1
k HkPk

]
FT

k + Qk

(17)

The limitation of the filter is that the minimum value of the cost function, J should be satisfied in
each iteration computation, which means the condition Eq. (15) should be satisfied.

It can be seen from the recursive Eq. (17) of the H∞ filter algorithm that Kalman filtering is a
special case of H∞ filtering. When θ = 0, H∞ filtering is simplified to Kalman filtering. θ is an important
factor affecting the robustness of H∞ filtering, which is called the robust factor. The robust factor plays
a vital role in the accuracy, robustness and usability of the filter. When the value of the robust factor is
too large, the system has high robustness but low filtering accuracy. On the contrary, the value of the
robust factor is too small, the stability of the system is weak and even diverges. Therefore, the value of
the robust factor directly influences the performance of the filter.

Generally, the robust factor is set to a constant value according to engineering practice experience.
Therefore, the filter performance is conservative and cannot adapt to the possible changes in the
application environment of the integrated navigation system. It is not guaranteed that the estimation
error is small while the system still has strong robustness. Therefore, the selection of robust factors
should be adaptively optimized.

Assuming rk is a filter innovation, rk = yk − Hkx̂k. rT
k rk is the sum of squares of the innovation

sequence, which reflects the actual estimation error of the filter.

When rT
k rk is large, the performance of the filter is degraded and even diverged. In this case, θ

should be appropriately increased. When rT
k rk is small, it indicates that the filter estimation accuracy is

high, and θ can be appropriately reduced at this time, and the robustness requirement for the filter is
reduced to some extent. It can be found that there is a positive proportional relationship between the
robust factors θ and rT

k rk.

A and B are two n-th order Hermite matrices, A > 0, B ≥ 0, then A > B ⇔ λ
(
BA−1

)
< 1. Here

λ(A) represents the maximum eigenvalue of A [33].

Then, the following formula can be obtained from the existing condition Eq. (16) of the H∞ filter:

θ <
1

λ (A)
, A = LT

k Lk

(
P−1

k + HT
k Hk

)−1
(18)

θ = 1
αλ (A)

, α = 1 + β

rT
k rk

(19)

The coefficient α > 1, β > 0 are the correlation coefficients, which are generally determined by
experiments according to the actual situation of the system.

The H∞ filter updates the robustness factor θ according to the filtering innovation rk continually.
This makes the filter adaptive. It can be seen from the comparison that the improved adaptive H∞
filtering cannot only ensure Eq. (15) is established, but also avoid the filter divergence caused by the
irrational value of θ , and ensure the automatic adjustment ability of the filter.
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3.2 Adaptive H∞ Filter with Combination Constraint
The accuracy of the algorithm is improved by modifying the estimated value through constraints.

When the constraint is linear, the unconstrained state estimation of the train at time k is set as x̂k. Then
the constrained estimation can be written as [34]

x̃k = arg min
x

(
x − x̂k

)T
W

(
x − x̂k

)
, (20)

where W is a symmetric positive definite weighting matrix derived from the Lagrangian multiplier
technique. Then, the Lagrangian function is expressed as

J (x, λ) = (
x − x̂k

)T
W

(
x − x̂k

) + 2λT
(
Dx̂k − d

)
. (21)

The first order conditions necessary for a minimum are given by
∂J
∂x

= 0 ⇒ W
(
x − x̂k

) + DTλ = 0, (22)

∂J
∂λ

= 0 ⇒ Dxk − d = 0. (23)

Under linear constraint, the solution are given below:

λ = (
DW −1DT

)−1 (
Dx̂k − d

)
, (24)

x̃k = x̂k − W −1DT
(
DW −1DT

)−1 (
Dx̂k − d

)
. (25)

The W = P−1
k or W = I is set to obtain the constrained estimation. Furthermore, the obtained

constrained state estimation has a smaller error covariance than that of the unconstrained state
estimation, and it is actually the smallest for all constrained filters of this type. Similar results hold in
terms of the trace of the estimation error covariance matrix when W = I . The estimations of different
constraints with W are shown in Fig. 5.

Figure 5: Different constraints with W

When the constraint is a combination of linear and nonlinear constraints, the state estimation of
the system under the combination constraint condition (13) can be obtained by using the Lagrange
product method. The Lagrangian is expressed as

Φ (x, λ) = (
x − x̂k

)T
W

(
x − x̂k

) + λTF (x) (26)
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where W is any symmetric positive definite weighting matrix, λ = [λ1, λ2, · · ·, λm]T is the Lagrangian
multipliers vector, and x̂ is the unconstrained state estimation. The first-order conditions necessary
for a minimum are given by

∂	

∂x
= 0 ⇒ W

(
x − x̂k

) +
m∑

i=1

λi (Aix + bi) = 0 (27)

∂	

∂λ
= 0 ⇒ F (x) = 0. (28)

Assuming that the inverse matrix of W +
m∑

i=1

λiAi exists, the estimation under the combination

constraint can be obtained from the above formula:

x̃ = L−1M

(
I +

m∑
i=1

λiJi

)
MTL−1T

(
Wx̂ −

m∑
i=1

λibi

)
(29)

4 Discussion

In this section, three examples are used to verify the effectiveness of the train track and state
constrained method and to illustrate the superior performance of combination constrained method
compared with unconstrained method.

4.1 Simulation Environment
The railway track is part of the Harbin-Dalian Railway and consists of straight and curved

segments. The structure of the track is similar to Fig. 2. The radius of the circle is R = 1000 m, and
the length of the transition curve is 140 m. The parameters of each segment of the track line are
shown in Table 1. The train system state variable is assumed to be x = [xe, ẋe, ẍe, xn, ẋn, ẍn]

T , xe, xn

represent East location and North location. The target is tracked by GNSS sensor with a sampling
interval of T = 1 s. Assuming Q = diag ([4, 4, 1, 4, 4, 1]) and R = diag ([100, 100]), the initial state
of the train is x0 = [0, 15, 0, 0, 15, 0]T , and the corresponding covariance matrix is assumed to be
P0 = diag ([100, 4, 1, 100, 4, 1]).

Table 1: The parameters of track line

Key point Type of point East coordinate
(/m)

North
coordinate (/m)

Radius R
(/m)

Length of transition
curve (/m)

P1 Point of
straight line

0 0

P2 Point of
straight to
transition curve

1137.858 59.633 140

P3 Point of
transition curve
to circular

1277.427 70.217 1000

P4 Point of
circular to
transition curve

2110.390 766.192 140

(Continued)
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Table 1 (continued)

Key point Type of point East coordinate
(/m)

North
coordinate (/m)

Radius R
(/m)

Length of transition
curve (/m)

P5 Point of
transition curve
to straight

2145.616 901.656

P6 Point of
straight line

2172.000 1017.000

In the system simulation, the constraints for comparison are unconstrained AHF, only state-
constrained AHF (AHF-SC), only track-constrained AHF (AHF-TC) and the combination con-
strained AHF (AHF-CC) which act simultaneously with the state constraints and the track constraints.
By comparison, the effect of different constraints on the state estimation is analyzed.

Since the discrepancy between the estimated position and the real position is important to the
positioning result, in order to compare the effect of the state estimation after adding the constraint
information, the root mean square error of the distance (RMSED) is used to evaluate the performance
of the algorithm.

RMSED =
√√√√ 1

M

M∑
k=1

((
x̂e,k − xe,k

)2 + (
x̂n,k − xn,k

)2
)

(30)

where x̂e,k, x̂n,k represent the EAST and NORTH position estimation of the target state estimation at
time k. xe,k, xn,k represent the true eastbound and northbound values of the target at time k. M is the
number of positioning points.

4.2 Straight Line Segment Track Simulation
Assume that the train runs at a constant speed on the straight segment track. The angle between

the track and the NORTH axis is θ = π/3. The train position is constrained by the railway track. The
speed of the train is a constant value V , and acceleration is zero. The train motion state constraints
are speed and acceleration. The constraint equations are{

ẋe = V sin θ

ẋn = V cos θ
(31)

⎡
⎣1 0 0 − tan θ 0 0

0 1 0 0 − tan θ 0
0 0 1 0 0 − tan θ

⎤
⎦ x =

⎡
⎣0

0
0

⎤
⎦ . (32)

The simulation results of the train positioning are shown in Fig. 6. In Fig. 6, AHF, AHF-SC have
a distance from the real track, but AHF-TC, AHF-CC are all on the track line, which mean that the
distance errors are small. To accurately understand the distance between the estimated value and the
true value, the order of decreasing distance error of AHF, AHF-SC, AHF-TC, AHF-CC are shown
in Fig. 7. The constraint performance is analyzed by comparing AHF, AHF-SC, AHF-TC, AHF-CC,
measurement and true values.
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Figure 6: The trajectory simulation diagram of line segment

Figure 7: Distance error of linear segment

The evaluation of the constraining effect is listed in Table 2. It can be seen that the constrained
filters can significantly outperform the unconstrained counterparts. The effect of AHF-TC is better
than that of AHF-SC. Combined with state and track constraints, the AHF-CC can achieve excellent
performance and greatly reduce the positioning error.

Table 2: Estimation errors in line segment

Data source RMSED (/m)

Measurement 14.8111
AHF 13.7461
AHF-SC 13.3816
AHF-TC 9.5308
AHF-CC 8.6592

4.3 Circular Curve Segment Track Simulation
In the second example, train is assumed to travel along a circular road segment with the turn center

chosen as the origin of the coordinates and the starting point is (866,500), as shown in Fig. 8. The train
is in a state of near uniform motion, and the state constraints of the train are mainly dominated by the
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heading angle constraint, and the speed and acceleration constraints are negligible. The railway track
constraint is quadratic and can be written as

f
(
xe,k, xn,k

) = x2
e,k + x2

n,k − R2 = [
xe,k xn,k

] [
1 0
0 1

] [
xe,k

xn,k

]
− R2 = 0 (33)

The constraint equation is converted to the form of Eq. (1), that is⎡
⎣x̂e,k 0 0 x̂n,k 0 0

0 1 0 0 − tan θk 0
0 0 1 0 0 − tan θk

⎤
⎦ x =

⎡
⎣R2

0
0

⎤
⎦ (34)

where θk is the heading angle of the train at k time. R is the radius of the circle. x̂e,k, x̂n,k represent the
estimated east and north position of the target at time k before the constraint.

Figure 8: The trajectory simulation of circular curve segment

The final trajectory simulation result of the train on the circular curve is shown in Fig. 8. The
distance between each point and the true point is shown in Fig. 9, and RMSED is listed in Table 3.

It can be seen from Fig. 8 that AHF-TC and AHF-CC with track constraints have better
constrained positioning effects. Fig. 9 and Table 3 further demonstrate that AHF-TC performs better
than AHF-SC and that the combination constraint has relatively best positioning accuracy. The
positioning error is reduced from 12.6906 to 3.9053 m under combination constraint, and the RMSED
decreased by about 69% compared to the measurement. The RMSED of AHF-CC is reduced by about
65% compared with AHF. The constraint method of transition curve can refer to the circular curve.

Figure 9: Distance error of circular curve segment
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Table 3: Estimation errors in circular curve segment

Data source RMSED (/m)

Measurement 12.6906
AHF 11.0943
AHF-SC 9.5373
AHF-TC 7.3305
AHF-CC 3.9053

4.4 Full-Line Simulation
In order to better analyze the effect of the combination constraint on improving train positioning

accuracy, the simulation results of true value, AHF estimation and AHF-CC estimation are compared
in a complete track.

Because there are three types of track segment, the Local Coordinate System (LCS) of each
segment is different. The equation of the track is established by the LCS of the track. Therefore,
for the convenience of calculation, the train coordinates are converted to LCS of each segment
according to the approximations between the measured train coordinates and the segment. Then, the
train coordinates are converted to the track System Coordinate System (SCS) after the constraint
calculation is completed. The basis for the determination of the approximation principle is the
track coordinate range and the train position. The calculation procedure of track constraint from
unconstraint point to constraint point is shown in Fig. 10.

Figure 10: The calculation procedure of track constraint

In Fig. 10, PSCS → PLCS and P′
LCS → P′

SCS represent the coordinate transformation between the
two coordinate systems. Coordinate transformations include rotation and translation of coordinate.
The coordinate transformation equation from the track LCS to the track SCS is[

xSCS
e,k

xSCS
n,k

]
=

[
cos α − sin α

sin α cos α

] [
xLCS

e,k

xLCS
n,k

]
+

[
Oe,m

On,m

]
, (35)

where xSCS
e,k , xSCS

n,k is the coordinate of the point in the SCS at time k. xLCS
e,k , xLCS

n,k is the coordinate of the
point in the LCS at time k. Oe,k, On,k is the origin coordinate of the m-th segment LCS in the SCS. α is
the tangent azimuth of curve starting point in the SCS. The coordinate transformation equation from
the track SCS to track LCS is similar to Eq. (35).

The trajectory of the train is calculated and shown in Fig. 11. Fig. 12 is the distance error for the
full-line simulation, and Table 4 is the RMSED comparison of the combination constraint and AHF.

Based on Figs. 11, 12, and Table 4, the full-line RMSED of AHF-CC is reduced by about 52%
and 55% compared with AHF and measured value, respectively. The positioning accuracy is relatively
high in the curve segment with the time step 62 ∼125 s in Fig. 12, which is due to the better effect on
the heading angle constraint in the curve segment.
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Figure 11: The full-line trajectory of the train

Figure 12: Distance error of the full-line

Table 4: Estimation errors in full-line track

Data source RMSED (/m)

Measurement 13.1099
AHF 12.2536
AHF-CC 5.8476

Table 5 shows the results of RMSED reduction ratio in different circumstances between AHF-
CC and measurement, AHF, respectively. As shown in Table 5, AHF-CC can improve the positioning
accuracy by about one time compared with the measurement and traditional AHF, especially in
circular curve segment.

Table 5: The comparison of RMSED reduction ratio

Filtering method Line condition Circular condition Full-line condition

AHF-CC compare with
measurement

41% 69% 55%

AHF-CC compare with AHF 37% 65% 52%
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5 Conclusions

In this paper, an adaptive H∞ filtering method for train positioning based on the fusion of
prior train information constraints. It melds data from a precise digital track map, prior train status
information, and a train positioning sensor. The method can adjust the robust filter parameters
autonomously, enhancing the system’s robustness and adaptability while preserving the accuracy and
stability of the algorithm. Nonlinear track constraints are treated as quadratic constraints, with linear
constraints viewed as special cases. Moreover, the combined constrained H∞ filter is derived.

The effectiveness and superiority of the algorithm are confirmed by simulation results. The
examples show that the constrained filter is better than the unconstrained filter. The more constraints
the system has, the higher accuracy the filter obtains and the higher estimation accuracy the train
positioning achieves. The effect of train track constraint is better than that of motion state constraint.
The combination constraint with track constraints and motion state constraints can achieve better
performance. Compared with the traditional filter, the adaptive H∞ filter with combination constraint
can greatly reduce the train positioning error by more than 50%. The nonlinear filtering algorithm and
its reliability evaluation under the combination constraint will put forward in further work.
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