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ABSTRACT

The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applications
in medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In this
paper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of a
Prandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation and
an induced magnetic field. The equations for the current flow scenario are developed, incorporating relevant
assumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and double
diffusion on public health is of particular interest. For instance, infrared radiation techniques have been used to
treat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones to
enhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governing
equations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.
The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticle
volume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared with
the findings of limiting situations for verification.
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Nomenclature

U , V Velocities in X and Y directions
η0 Viscosity of fluid
pm sum of magnetic and ordinary pressure
S1 Strommer’s number
Rm Magnetic Reynolds numbers
(ξ , χ) Prandtl fluid constraints

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.029878
https://www.techscience.com/doi/10.32604/cmes.2023.029878
mailto:drsafiaakram@gmail.com
mailto:drsafiaakram@mcs.edu.pk


1502 CMES, 2024, vol.138, no.2

Rd Thermal radiation
Grt Thermal Grashof number
p Pressure
μe Magnetic permeability
α Channel half-width
(α2 and α3) Amplitudes of left and right walls
S Extra stress tensor for Prandtl fluid
ρf Fluid density
(ρc)f Heat capacity of fluid
βT Volumetric thermal expansion
ρp Nanoparticle mass density
k Thermal conductivity
Θ Nanoparticle volume fraction
DB Brownian diffusion coefficient
Ds Solutal diffusively
θ Dimensionless temperature
DCT Soret diffusively
Re Reynolds number
Ω Nanoparticle volume fraction
γ Dimensionless solutal concentration
ψ Stream function
Nb Brownian motion parameter
c Propagation of velocity
NTC Dufour parameter
Le Lewis number
Br Brinkman number
Ec Eckert number
E Electricfield
NCT Soret parameter
k∗ Rosseland mean absorption
qr Radiative flux for radiation
λ Wavelength
σ Electric conductivity
t Time(
Ã, B̃

)
Material constants of Prandtl fluid

ρf0
Fluid density at T0

(ρc)p Heat capacity of nanoparticle
βC Volumetric solutal expansion
g Acceleration due to gravity
T Temperature
C Solutal concentration
DT Thermophoretic diffusion coefficient
DTC Dufour diffusively
GrF Nanoparticle Grashof number
Grc Solutal Grashof number
σ ∗ Stefan-Boltzmann constant
δ Wave number
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Pr Prandtl number
Ln Nanofluid Lewis number
Nt Thermophoresis parameter

1 Introduction

The peristalsis flow of many physical fluids is significant natural phenomena that has vast
industrial and medical applications. Peristalsis is the extension and condensation that naturally occurs
on longitudinal walls of expandable chamber or tube. Human anatomy has numerous examples of
the phenomenon among various organs such as stomach, large & small intestine, and others. The
substances and liquids in human body move through peristalsis flow, hence the food digestion within
gastrointestinal track, release of sperms and ovum by reproductory organs, blood circulation, lymph
secretion and flow in lymphatic vessels, waste excretion through bladder and secretion of numerous
hormones are all owe to the peristalsis. The same phenomenon is the life deriving force in plants too.
Peristalsis extension and condensation appear in phloem relocation through sucrose suction within
tubules. Other naturally occurring phenomena include propelling movements of insects. Moreover,
in manufacturing industries, the phenomenon is implemented in devising medical equipment such
as machines to pump blood, dialysis apparatus, finger pump machines, lung machinery and heart
apparatuses. These applications attract the attention of many researchers to explore the peristaltic
flow in human anatomy. In addition, its practical utility led many researchers and scientists like
mathematicians, physicists, engineers to investigate the phenomenon actively and intensely. Some
significant studies are referred in [1–10].

Another field of recent investigation is magneto-science which is the combination of biological
systems and medical science with implications of a magnetic field. Many magnetic devices are
available in the market like an instrument for cell segregation, bio-waste transportation equipment,
gastrointestinal control through an induced magnetic field, drug targeting and trafficking devices,
cancer cell control and destruction mechanism build through an alternating magnetic field are some
of the examples of implication of the phenomenon in medical industry. Extension of this phenomenon
is induced magnetic field (IMF) which is a supplementary magnetic flux induced upon electrically
charged fluid with an external magnetic field. This occurrence owes to the effect of greater magnetic
Reynolds number. IMF is applied in both medical and manufacturing industries, some of the examples
include geophysics equipment, in MRI machines, glass production, electric MHD generators, etc. In
medicine, the phenomenon has applications such as IMF combined with blood flows used in blood
pumping, cardiac problems, and many other biological applications. Numerous studies have been
conducted to theoretically and mathematically examine the phenomenon. Few recent works can be
seen in [11–15].

Recently, researchers are engaged in exploring the techniques to ameliorate the thermos-physical
qualities of fluids. One such technique is the addition of minute particles with increased heat
conductivity [16]. If a liquid contains a large particle or nanoparticle, it cannot be stable and develop
resistance to flow. If such kinds of fluids are injected into the human body, it will result in clotting and
roughness. While nanoparticles ranging from 1–100 nm in a suspension can envelope more area with an
increased coefficient of conduction and convection. Nanoparticles have vast engineering applications.
Whereas in medicine, nanofluids are used in targeted drug transfer for cancer therapies and treatments.
Kothandapani et al. [17] investigated the peristaltic nanofluids flow under magnetic flux and thermal
radiation. While the numerous impacts of Jeffrey nanofluid with peristalsis have been examined by
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Reddy et al. [18]. Ramesh et al. [19] further explored the phenomenon with couple stress fluid having
magnetic flux and heat transfer. Recent literature on nanofluid flow has been listed as [20–27].

Thermal and concentration gradients involve in the process of double diffusion. The model was
proposed by Aifanties [28] in 1976, according to which a concentration gradient is produced in a
thermal mixture with sustained temperature difference. The phenomenon is useful in medical, engi-
neering, and industrial solutions. Diffusion convection in peristaltic flow has numerous applications
in the field of biomedicine. The cumulative impact of thermophoresis with Brownian motion under
the magnetic force upon dual nonlinear thermal radiation was examined by Raju et al. [29]. Similarly,
Ganesan et al. [30] explored the impact on non-Newtonian fluids. Further investigations on the flow
of non-Newtonian fluid under double-diffusive convection are referred to in references [31–37].

The multiple advantages of thermal radiation impacts include the temperature control of a system,
varying rate of heat transmission, thermal boundary layer control and regulating the structure of
thermal layer. The investigation of Siddheshwar et al. [38] covers MHD flow with heat transfer
of viscoelastic fluid over tense sheet in induced radiation. Aliakbar et al. [39] have examined the
viscoelastic fluid flow through linear suspended sheet under the conditions of Maxwellian fluid
and cross magnetic field. Similarly, Bataller [40] studied the flow of condensed second-grade liquid
for non-isothermal stretched sheet with irregular heat production and absorption. Asha et al. [41]
further explored the thermal radiation impact on Jeffrey’s liquid peristaltic flow with double diffusion
having gold nanoparticles. Whereas another study conducted by Farooq et al. [42] focused on hybrid
nanomaterials of the peristaltic process of viscous liquid including slip effects, entropy increase and
erratic radiation. Recent research on the topic is mentioned in references [43–49].

The impact of viscous dissolution on the rate of heat exchange is a notable energy source for
continuous heat transfer. The quality and excellence of viscous dissolution are determined by whether
the plate being used is heated or cooled. The material after heat processing mobile in wind rollers and
feed rollers, and material produced through electronic chips, glass fibre, paper manufacturing, cooling
of metals, etc., are examples of the process. Other related studies on viscous dissipation on peristalsis
flow are given in [50–55].

In lieu of the above discussed implications of viscous dissipation, thermal radiation, nanofluid
and double diffusion convection, the current investigation is to study the cumulative impact of
viscous dissipation, thermal radiation, double diffusion convection on peristaltic flow of Prandtl
nanofluid under induced magnetic flux in a tapered asymmetric channel. The present study in broader
perspective deals with the blood circulation in vessels supposition of wall properties thermal radiation.
The partial differential equation system has been resolved to couple ordinary differential equations
through the lubrication method. The resultant equation is mathematically computed and then the
resultant analysis is depicted graphically with altered parameters.

2 Mathematical Model

The following assumptions and approximations are used for the mathematical modelling of the
present work:

• Two-dimensional and directional flow.

• Tapered asymmetric channel.

• Rosseland diffusion approximation for thermal radiation.

• Prandtl nanofluid.
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• Induced magnetic field.

Let us assume the peristalsis of two-dimensional Prandtl nanofluid along the channel with
width 2α. The flow originates like a sinusoidal wave propagation diffused with constant speed
c along with asymmetric tapered channel. H1 = Y and H2 = Y are taken as the left and
right walls of the tapered channel, respectively. The impact of thermal radiation, double diffusion
convection, and viscous dissipation is assumed in the heat exchange. Then temperature, solute
concentration, and nanoparticle volume fraction at the left and right walls are represented as
T0, C0, Θ0 and T1, C1, Θ1, respectively. The velocity field, for two-dimensional & two-directional flow,
is defined as V = (U(X , Y , t), V(X , Y , t), 0). Moreover, an outer cross-uniform persistent magnetic
field H̃0, induced magnetic field H̃+

1 (hX(X , Y , t), H0 + hY(X , Y , t), 0) and cumulative magnetic field
H̃+ (hX(X , Y , t), H0 + hY(X , Y , t), 0) are considered. The schematic illustration of the problem is
defined in Fig. 1.

Figure 1: Schematic illustration of the problem

The tapered channel’s left (H1) and right (H2) walls for a fixed reference frame are defined by
[10,17]

Y = H1 = −α − α1X − α2 sin
[

2π

λ
(X − ct) + ϕ

]
= (left wall),

Y = H2 = α + α1X + α3 sin
[

2π

λ
(X − ct)

]
= (right wall), (1)

here α stands for channel half-width, α1(α1 << 1) indicates a non-uniform constant for tapered
channel, α2 and α3 are amplitudes of the left and right walls respectively, t indicates time, c is the
wave’s phase speed, λ indicates wavelength, the phase difference ϕ lying between [0, π ]. Also α2, α3, α,
and ϕ satisfy the condition α2

2 + α2
3 + 2α2α3 cos ϕ ≤ (2α)

2 .

For the Prandtl fluid, the Cauchy stress tensor is denoted by [37]

τ = −pI + S, (2)
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S =
[

Ãη0 sin−1
[ |∇ V|

B̃

]
|∇V|

]
∇V, (3)

where I is identity tensor, p stands for pressure, S stands for extra stress tensor for Prandtl fluid, (Ã, B̃)

stands for material constants of Prandtl fluid.

The equations describing an incompressible, Prandtl nanofluid in laboratory frame (X , Y ) under
the mechanism of double diffusivity convection, an induced magnetic field, radiation parameter and
viscous dissipation are defined by [31]

∂U
∂X

+ ∂V
∂Y

= 0, (4)

ρf

(
∂

∂t
+ U

∂

∂X
+ V

∂

∂Y

)
U = − ∂p

∂X
+ ∂SXX

∂X
+ ∂SXY

∂Y
+ μe

(
hX

∂hX

∂X
+ hY

∂hX

∂Y
+ H0

∂hX

∂Y

)
− μe

2

(
∂H+2

∂X

)
+ g

{
(1 − Θ0) ρf 0 {βT (T − T0) + βC (C − C0)} − (

ρp − ρf 0

)
(Θ − Θ0)

}
, (5)

ρf

(
∂

∂t
+ U

∂

∂X
+ V

∂

∂Y

)
V = − ∂p

∂Y
+ ∂SYX

∂X
+ ∂SYY

∂Y
− μe

2

(
∂H+2

∂Y

)

+ μe

(
hX

∂hY

∂X
+ hY

∂hY

∂Y
+ H0

∂hY

∂Y

)
, (6)

(ρc)f

(
∂

∂̃t
+ U

∂

∂X
+ V

∂

∂Y

)
T = k

(
∂2T
∂X 2

+ ∂2T
∂Y 2

)
+ (ρc)p

{
DB

(
∂Θ

∂X
∂T
∂X

+ ∂Θ

∂Y
∂T
∂Y

)
(

DT

T0

) [(
∂T
∂X

)2

+
(

∂T
∂Y

)2
]}

+ DTC

(
∂2C
∂X 2

+ ∂2C
∂Y 2

)
− ∂qr

∂Y

+
(

SXX

∂U
∂X

+ SXY

(
∂U
∂Y

+ ∂V
∂X

)
+ SYY

∂V
∂Y

)
, (7)(

∂

∂̃t
+ U

∂

∂X
+ V

∂

∂Y

)
C = Ds

(
∂2C
∂X 2

+ ∂2C
∂Y 2

)
+ DCT

(
∂2T
∂X 2

+ ∂2T
∂Y 2

)
, (8)(

∂

∂̃t
+ U

∂

∂X
+ V

∂

∂Y

)
Θ = DB

(
∂2Θ

∂X 2
+ ∂2Θ

∂Y 2

)
+

(
DT

T0

)(
∂2T
∂X 2

+ ∂2T
∂Y 2

)
, (9)

where ρf0
, g, βC, ρf , βT , (ρc)p , ρp, T , C, Θ, DB, Ds, DCT , (ρc)f , k, DTC, DT , symbolizes density of

fluid at T0, acceleration, volumetric solutal expansion coefficient, density of base fluid, volumetric
thermal expansion of a fluid, heat capacity of nanoparticle, particles density, temperature, concentra-
tion, nanoparticle volume fraction, Brownian diffusion, solutal diffusively, Soret diffusively, fluid heat
capacity, thermal conductivity, Dufour diffusively, and thermophoretic diffusion, respectively.

The radiative flux for radiation (qr), stipulated in Eq. (7), is calculated by employing the Rosseland
diffusion approximation and is given as [48]

qr = −4σ ∗

3k∗
∂T 4

∂Y
, (10)
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Since significant radiation limit is considered in this investigation. So, if temperature variations
inside the flow path are negligibly small, T 4 is linear representation of temperature function and is
modified by performing the Taylor expansion on T 4 about T0 as shown below:

T 4 = T 4
0 + 4T 3

0 (T − T0) + 6T 2
0 (T − T0)

2 + . . . , (11)

By ignoring the higher powers of T (higher that first) in (T − T0) , we get

T 4 = −3T 4
0 + 4T 3

0 T , (12)

From Eqs. (10) and (12), we get

qr = −16σ ∗T 3
0

3k∗
∂T
∂Y

, (13)

∂qr

∂Y
= −16σ ∗T 3

0

3k∗
∂2T
∂Y 2

, (14)

where σ ∗ represents Stefan-Boltzmann constant, and k∗ represents Rosseland mean absorption.

x = X
λ

, m0 = α2

α
, u = U

c
, δ = α

λ
, m1 = α3

α
, p = α2p

η0cλ
, t = ct

λ
, M2 = Re RmS2

1, h1 = H1

α
,

y = Y
α

, v = V
c

, m2 = α1λ

α
, Re = ρf cα

η0

, Θ = T − T0

T1 − T0

, Rm = σμeαc, Br = EcPr, υ = η0

ρf

,

Φ = Φ

H0α
, Sxx = λSXX

η0c
, Sxy = αSXY

η0c
, Syy = αSYY

η0c
, γ = C − C0

C1 − C0

, Pr = (ρc)f υ

k
, Ln = υ

DB

,

pm = p + 1
2

Re δ
μe (H+)

2

ρc2
, Ω = Θ − Θ0

Θ1 − Θ0

, Le = υ

Ds

, NCT = DCT (T1 − T0)

(C1 − C0) Ds

, u = ∂ψ

∂y
,

S1 = H0

c

√
μe

ρ
, v = −δ

∂ψ

∂x
, hy = −δ

∂Φ

∂x
, NTC = DCT (C1 − C0)

k (T1 − T0)
, Nb = (ρc)p DB (Θ1 − Θ0)

k
,

Nt = (ρc)p DT (T1 − T0)

T0k
, GrF = g

(
ρp − ρf

)
(Θ1 − Θ0)

η0c
α2, Grc = (1 − Θ0) ρf βc (C1 − C0) α2g

η0c
,

Grt = gα2 (1 − Θ0) ρf βT (T1 − T0)

η0c
, Rd = −16σ ∗T 3

0

3k∗ . (15)

Using Eq. (15), Eq. (4) is automatically satisfied, but Eqs. (5) to (9) along with Eq. (14) in wave
frame becomes

Re δ
(
ψty + ψyψxy − ψxψyy

) = −∂pm

∂x
+ δ2 ∂Sxx

∂x
+ ∂Sxy

∂y
− Re S2

1Φyy

− Re S2
1δ

(
ΦyΦxy − ΦxΦyy

) + GrtΘ + Grcγ − GrFΩ, (16)

Re δ3
(
ψtx + ψxψxy − ψyψxx

) = − ∂pm

∂y
+ δ2 ∂Sxy

∂x
+ δ

∂Syy

∂y
+ Re δ2S2

1Φyy

− Re S2
1δ

3
(
ΦyΦxx − ΦxΦxy

)
, (17)
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Re δ
(
Θt + ψyΘx − ψxΘy

) = 1
Pr

(
Θyy + δ2Θxx

) + NTC

(
δ2γxx + γyy

) + RdΘyy

+ Ec
(
δ2Sxxψxy + Sxy

(
ψyy − δ2ψxx

) − δSyyψxy

)
+ Nb

(
δ2ΩxΘx + ΩyΘy

) + Nt

(
δ2 (Θx)

2 + (
Θy

)2
)

, (18)

Re δLe
(
γt + ψyγx − ψxγy

) = (
δ2γxx + γyy

) + NCT

(
δ2Θxx + Θyy

)
, (19)

Re δLn
(
Ωt + Ωxψy − Ωyψx

) = (
δ2Ωxx + Ωyy

) + Nt

Nb

(
δ2Θxx + Θyy

)
, (20)

ψy − δ
(
ψyΦx − ψxΦy

) + 1
Rm

(
Φyy + δ2Φxx

) = E, (21)

where Rm stands for magnetic Reynolds numbers, γ signifies solutal (species) concentration, Le stands
for Lewis number, Ω signifies nanoparticle fraction, S1 stands for Strommer’s number, E represents
electric field, Grt signifies thermal Grashof numbers, Ln represents nanofluid Lewis number, Pr indi-
cates Prandtl number, Grc denotes solutal Grashof numbers, Nt indicates thermophoresis parameter,
NTC represents Dufour parameter, Nb indicates Brownian motion, GrF stands for nanoparticle Grashof
numbers, NCT denotes Soret parameter, Re denotes Reynolds number, Θ stand for temperature, and
pm is total pressure in the fluid, which is the sum of magnetic and ordinary pressure.

Now considering the hypotheses of a long wavelength (δ << 1) and a small but finite Reynolds
number, the Eqs. (16) to (21) becomes

0 = −∂p
∂x

+ ∂Sxy

∂y
+ Re S2

1Φyy + GrtΘ + Grcγ − GrFΩ, (22)

− ∂p
∂y

= 0, (23)

∂2Θ

∂y2
+ NTCPr

∂2γ

∂y2
+ NbPr

(
∂Θ

∂y
∂Ω

∂y

)
+ NtPr

(
∂Θ

∂y

)2

+ RdPr
∂2Θ

∂y2

+Br

(
ξ

(
∂2ψ

∂y2

)2

+ χ

6

(
∂2ψ

∂y2

)4
))

= 0, (24)

∂2γ

∂y2
+ NCT

∂2Θ

∂y2
= 0, (25)

∂2Ω

∂y2
+ Nt

Nb

∂2Θ

∂y2
= 0, (26)

Φyy = Rm

(
E − ∂ψ

∂y

)
, (27)

Now omitted pressure from Eqs. (22) and (23), the equation for the stream function becomes

∂2Sxy

∂y2
− Re S2

1Rm

∂2ψ

∂y2
+ Grt

∂Θ

∂y
+ Grc

∂γ

∂y
− GrF

∂Ω

∂y
= 0, (28)

where

Sxy = ξ
∂2ψ

∂y2
+ χ

6

(
∂2ψ

∂y2

)3

, (29)
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where ξ = Ã
η0B̃

and χ = ξc2

B̃2α
denotes Prandtl fluid constraints.

The non-dimensional form of the boundary conditions is

ψ = −F
2

at y = h1 (x) = −1 − m2x − m0 sin [2π (x − t) + ϕ] ,

ψ = F
2

at y = h2 (x) = 1 + m2x + m1 sin [2π (x − t)] ,

∂ψ

∂y
= 0 at y = h1 (x) = −1 − m2x − m0 sin [2π (x − t) + ϕ] ,

∂ψ

∂y
= 0 at y = h2 (x) = 1 + m2x + m1 sin [2π (x − t)] , (30)

Θ = 0, Ω = 0, γ = 0, at y = h1 (x) , (31)

Θ = 1, Ω = 1, γ = 1, at y = h2 (x) , (32)

Φ = 0 at y = h1 (x) and y = h2 (x) . (33)

Volume flow rate:

When a period T = λ/c is taken into consideration, the time-averaged flow at fixed point X is
given by

Q1 = 1
T

∫ T

0

Q1dt. (34)

we now acquire

Q1 = q + α2c sin
[

2π

λ

(
X − ct

)] + α3c sin
[

2π

λ

(
X − ct

) + ϕ

]
. (35)

where q = ∫ H2
H1

u (x, y) dy is the wave frame’s dimensional volume flow rate. Using non-dimensional
mean flows Q in wave frame and F in laboratory frame, we have

F = Q1

cα
, Q = q

cα
, (36)

F (X , t) = Q + m0 sin [2π (x − t)] + m1 sin [2π (x − t) + ϕ] , (37)

where

F =
∫ h2

h1

u dy =
∫ h2

h1

∂ψ

∂y
dy = ψ (h2) − ψ (h1) . (38)

The pressure rise per wave length �p are described by

�p =
∫ 1

0

∫ 1

0

(
∂p
∂x

)
y=0

dxdt. (39)
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3 Methodology of Solutions and Discussion

Numerical simulations are necessary because there are few cases for which analytic solutions
can be found. Numerical simulations give us an alternative way to comprehend the issue and the
solution without squandering the study’s actual resources. We can have a thorough grasp of the flow
circumstances by employing contemporary technologies, such as software like MATHEMATICA,
MATLAB, and ANSYS. The coupled and non-linear properties of the Eqs. (22)–(28) make it difficult
to evaluate the exact solutions. Thus, using MATHEMATICA’s built-in command ND-Solve, the
regressive equations are numerically solved. Solutions are used to calculate temperature, pressure
gradients, concentration, pressure rises, nanoparticle volume fraction, magnetic force function, and
streamlines for various flow parameters.

The biophysical and graphical significance of various flow parameters on Prandtl nanofluids flow
in a tapered channel are examined in Figs. 2 to 11. The temperature effects on Brinkman number Br,
Brownian motion Nb, and Prandtl number Pr are explored in Figs. 2a–2c. It is evident from Fig. 2a
that the Brinkman number Br has an increasing influence on temperature. The fundamental cause
of the temperature rise is that as Br values rise, shear flow resistance also rises. This causes more
heat to be generated owing to viscous dissipation effects, which raises the fluid’s temperature. The
enhancing Brownian motion values also cause an increase in the temperature profile (see Fig. 2b). It
is noticeable that forces exerted on nanometer-sized particles are stochastic forces that accelerate the
particle’s Brownian motion. As a result of the intense stochastic force, the base fluid’s internal energy
has increased, because of which the temperature profile has risen. From Fig. 2c, it is depicted that the
temperature increases with an increase in Prandtl numbers Pr because of the potent effects of viscous
dissipation. The graphs in Figs. 3a–3d explore how Concentration affects the Brinkman number Br,
Brownian motion Nb, Dufour parameter (NCT) , and Prandtl number Pr. It can be shown in Fig. 3a
that the concentration of fluid particles significantly reduces as the impact of Brinkman number Br
increases. Similar effects are observed in the cases of Brownian motion Nb, Dufour NTC number and
Prandtl number Pr. As seen in Fig. 3b, Nb has a declining impact on nanoparticle concentration,
causing the concentration distribution to drop due to the huge transport of nanoparticles from a hot
to a cold location. Fig. 3c shows that raising the Dufour number NCT increases fluid heat transfer,
which affects the fluid’s viscosity by reducing the temperature difference between the wall and the
fluid. The concentration of nanoparticles falls as a result. Fig. 3d shows that increasing the Prandtl
number causes a decrease in the concentration of nanoparticles. Figs. 4a to 4d illustrate the graphic
evolution of the nanoparticle fraction for varying values of Brownian motion Nb, Brinkman number
Br, thermophoresis Nt and Prandtl number Pr. It is illustrated in Fig. 4a that the increasing impact
of Brownian motion Nb causes nanoparticle fraction to rise. Physically, the Brownian motion index is
enhanced because of the simultaneous random motion of the fluid and nanoparticles, which raises the
fluctuations of the nanoparticle volume fraction. Opposite effects are noticed for the case of Br, Nt

and Pr. It is noted from Figs. 4b to 4d that enhancing impact of Br, Nt and Pr causes the decrease in
nanoparticle fraction.

Figs. 5a to 5d depict the effects of various Reynold number Re, nanoparticle Grashof numbers
GrF , magnetic Reynolds number Rm and thermal Grashof number Grt on flow velocity. It is noted in
Fig. 5a that the flow of velocity enhances in the region y ∈ [−1.2, 0] due to the increasing impact
of Reynolds number. Physically, viscous forces become less significant as the Reynolds number rises,
which reduces the propagation of velocity defects in the flow field. The opposite effects are noted
in the region y ∈ [0, 1.3]. In this region, flow velocity increases due to the increasing impact of Re.
As demonstrated seen in Figs. 5b and 5c, enhancing the effect of nanoparticle Grashof numbers GrF

and Reynolds number Rm causes the fluid velocity to increase when y ∈ [−1.2, 0] but decrease when
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y ∈ [0, 1.3]. The opposite characteristic is observed for the case of thermal Grashof number Grt. The
flow velocity drops when y ∈ [−1.2, 0] but increases when y ∈ [0, 1.3] due to increasing impact of Grt

(see Fig. 5d).

Figure 2: Temperature distribution for varying values of Br, Nb, and Pr

Figs. 6a to 6d are provided to illustrate how Br, Pr, GrF , and Rd affect pressure gradients. The
pressure gradient widens as the impact of Br and Pr increases (see Figs. 6a and 6b) but opposite impact
is noted for the case of GrF , and Rd. The pressure gradient drops as GrF , and Rd increases (see Figs. 6c
and 6d). Figs. 7a to 7c describe the outcomes of pressure rises on non-Newtonian parameters (χ and
ξ), and nanoparticle Grashof number GrF . To investigate the characteristic of pressure rise, pumping
regions are split into the following categories: (a) when Q > 0, �p > 0 the peristaltic zone occurs,
where peristalsis oscillations govern pressure and fluid movement along their line of propagation; (b)
when Q > 0, �p < 0 the augmented zone occurs, where peristaltic push pressure boosts flow; (c)
when Q < 0, �p > 0 the retrograde zone exists, In this case, peristalsis is opposing the flow and
(d) when �p = 0 free pumping region exist. Here peristalsis walls are the only cause of flow in this
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region. It is noted in Figs. 7a and 7b that the pressure rise increases in the retrograde region due to the
increasing impact of non-Newtonian parameters (χ and ξ) but opposite effects are noted in peristaltic,
augmented, and free pumping regions. Here pressure rise drops. It is noted in Fig. 7c that the pressure
rise decreases in all the regions of peristaltic due to the increasing behaviour of GrF . Figs. 8a and 8b
are shown to highlight the analysis of Rm and E on the magnetic force function. It is to be observed
in Figs. 8a and 8b that as Rm and E have a greater impact, the magnetic force function’s magnitude
values grow.

Figure 3: Concentration analysis for varying values of Br, Nb, NCT , and Pr

To examine how trapping affects peristaltic flow, streamlines for GrF , Rm, and Grt are created.
The streamlines are analyzed in Figs. 9 and 10 for varying values of nanoparticle Grashof GrF and
magnetic Reynolds number Rm. It is shown that as the influence of the nanoparticle Grashof GrF and
magnetic Reynolds number Rm grows, the size of the confined bolus decreases. By considering the
thermal Grashof number, the opposite effects are observed (see Fig. 11). The thermal Grashof number
(Grc) here causes the confined bolus to grow in size.
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Figure 4: Analysis of Nb, Br, Nt and Pr on nanoparticle fraction

Figure 5: (Continued)



1514 CMES, 2024, vol.138, no.2

Figure 5: Effect of velocity for varying values of Re, GrF , Rm and Grt

Figure 6: Analysis of Br, Pr, GrF , and Rd on pressure gradient
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Figure 7: Impact of χ , ξ , and GrF on pressure rise

Figure 8: Analysis of Rm and E on magnetic force function
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Figure 9: Analysis of GrF on streamlines

Figure 10: Analysis of Rm on streamlines

Figure 11: Analysis of Grt on streamlines

4 Conclusion

In this article, we attempted to simultaneously link the consequences of thermal radiation and
viscous dissipation with the influence of double diffusion convection on the peristaltic flow of
magnetohydrodynamic Prandtl nanofluids in an asymmetric tapered channel. In our investigation,
the equations governing the flow are developed using the preexisting constraints of long wavelength
and low Reynolds values. Finally, reduced equations are solved numerically to achieve a comparative
evaluation. It is observed that by raising Brinkman number the temperature of fluid flow increases
because shear flow resistance increases. Furthermore, it is noted that increasing Brownian motion
values accelerates the movement of nanoparticles along the fluid wall, which increases the temperature.
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Another important finding is that due to the massive transit of nanoparticles from a hot to a cool, site
Brownian motion has a diminishing effect on nanoparticle concentration, causing the concentration
distribution to decrease. It is noted that by raising the effects of Reynolds number, viscous forces
become less significant, which reduces the propagation of velocity defects in the flow field. Moreover, it
is observed that by growing the influence of the nanoparticle Grashof and magnetic Reynolds number,
the size of the confined bolus decreases.

Acknowledgement: Authors gratefully acknowledge technical and financial support from Ministry of
Education and University of Hafr Al Batin, Saudi Arabia.

Funding Statement: This research work was funded by Institutional Fund Projects under No. (IFP-A-
2022-2-5-24) by Ministry of Education and University of Hafr Al Batin, Saudi Arabia.

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Y. K., S. A., A. A.; data collection: K. S., A. R., A. A.; analysis and interpretation of results: S.
A., M. A., K. S.; draft manuscript preparation: S. A., A. R., Y. K.; funding: Y. K., A. A. All authors
reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: No data was used for the research described in the article.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Latham, T. W. (1966). Fluid motion in a peristaltic pump (M.S. Thesis). MIT, Cambridge, MA.
2. Tripathi, D., Bég, O. A., Gupta, P. K., Radhakrishnamacharya, G., Mazumdar, J. (2015). DTM simulation

of peristaltic viscoelastic biofluid flow in asymmetric porous media: A digestive transport model. Journal
of Bionic Engineering, 12, 643–655.

3. Sreenadh, S., Komala, K., Srinivas, A. N. S. (2017). Peristaltic pumping of a power–Law fluid in contact
with a Jeffrey fluid in an inclined channel with permeable walls. Ain Shams Engineering Journal, 8, 605–611.

4. Mishra, M., Rao, A. R. (2003). Peristaltic transport of a Newtonian fluid in an asymmetric channel.
Zeitschrift fur Angewandte Mathematik und Physik (ZAMP), 54, 532–550.

5. Nadeem, S., Akram, S. (2009). Peristaltic transport of a hyperbolic tangent fluid model in an asymmetric
channel. Zeitschrift für Naturforschung A, 64(9–10), 559–567.

6. Ali, N., Abbasi, A., Ahmad, I. (2015). Channel flow of Ellis fluid due to peristalsis. AIP Advances, 5, 097214.
7. Mekheimer, K. S. (2002). Peristaltic transport of a couple stress fluid in a uniform and non-uniform channel.

Biorheology, 39, 755–770.
8. Ellahi, R., Riaz, A., Nadeem, S., Ali, M. (2012). Peristaltic flow of Carreau fluid in a rectangular duct

through a porous medium. Mathematical Problems in Engineering, 2012, 329639.
9. Vajravelu, K., Sreenadh, S., Devaki, P., Prasad, K. V. (2011). Mathematical model for a Herschel-Bulkley

fluid flow in an elastic tube. Central European Journal of Physics, 9, 1357–1365.
10. Hayat, T., Akram, J., Zahir, H., Alsaedi, A. A. (2019). Peristaltic motion of Sisko fluid in an inclined

asymmetric tapered channel with nonlinear radiation. Journal of Thermal Analysis and Calorimetry, 138,
545–558.

11. Vishnyakov, I., Pavlov, K. B., (1972). Peristaltic flow of a conductive liquid in a transverse magnetic field.
Magnetohydrodynamics, 8, 174–178.



1518 CMES, 2024, vol.138, no.2

12. Munawar, S., Saleem, N. (2020). Second law analysis of ciliary pumping transport in an inclined channel
coated with Carreau fluid under a magnetic field. Coatings, 10, 240.

13. Ellahi, R., Riaz, A., Sohail, S., Mushtaq, M. (2013). Series solutions of magnetohydrodynamic peristaltic
flow of a Jeffrey fluid in eccentric cylinders. Journal of Applied Mathematics & Information Sciences, 7,
1441–1449.

14. Ellahi, R., Bhatti, M. M., Riaz, A., Sheikholeslami, M. (2014). Effects of magnetohydrodynamics on
peristaltic flow of Jeffery fluid in a rectangular duct through a porous medium. Journal of Porous Media,
17, 143–157.

15. Akram, S., Nadeem, S. S., Hanif, M. (2013). Numerical and analytical treatment on peristaltic flow of
Williamson fluid in the occurrence of induced magnetic field. Journal of Magnetism and Magnetic Materials,
346, 142–151.

16. Choi, S. U., Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles. Argonne
National Lab: Argonne, IL, USA.

17. Kothandapani, M., Prakash, J. (2015). Effects of thermal radiation parameter and magnetic field on the
peristaltic motion of Williamson nanofluids in a tapered asymmetric channel. International Journal of Heat
and Mass Transfer, 81, 234–245.

18. Reddy, M. G., Makinde, O. D. (2016). Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in
an asymmetric channel. Journal of Molecular Liquids, 223, 1242–1248.

19. Ramesh, K., Devakar, M. (2015). Magnetohydrodynamic peristaltic transport of couple stress fluid through
porous medium in an inclined asymmetric channel with heat transfer. Journal of Magnetism and Magnetic
Materials, 394, 335–348.

20. Rahman, S. U., Ellahi, R., Nadeem, S., Zia, Q. M. Z. (2016). Simultaneous effects of nanoparticles and slip
on Jeffrey fluid through tapered artery with mild stenosis. Journal of Molecular Liquids, 218, 484–493.

21. Akram, S., Nadeem, S. (2014). Significance of nanofluid and partial slip on the peristaltic transport
of a Jeffrey fluid model in an asymmetric channel with different wave forms. IEEE Transactions on
Nanotechnology, 13, 375–385.

22. Akram, S. (2014). Effects of nanofluid on peristaltic flow of a Carreau fluid model in an inclined magnetic
field. Heat Transfer Asian Research, 43, 368–383.

23. Bhatti, M. M., Zeeshan, A., Ellahi, R. (2017). Simultaneous effects of coagulation and variable magnetic
field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism. Microvas-
cular Research, 110, 32–42.

24. Patil, P. M., Shankar, H. F. (2022). Heat transfer attributes of Al2O3–Fe3O4/H2O hybrid nanofluid flow
over a yawed cylinder. Propulsion and Power Research, 11, 416–429.

25. Ali, A., Barman, A., Das, S. (2022). EDL aspect in cilia-regulated bloodstream infused with hybridized
nanoparticles via a microtube under a strong field of magnetic attraction. Thermal Science and Engineering
Progress, 36, 101510.

26. Patil, P. M., Benawadi, S. (2022). Shape effects on the mixed convective hybrid nanoliquid flow
over a rough slender cylinder with convective condition. Waves in Random and Complex Media,
https://doi.org/10.1080/17455030.2022.2143930

27. Abbas, N., Shatanawi, W., Shatnawi, T. A. M. (2023). Thermodynamic study of radiative chemically reactive
flow of induced MHD sutterby nanofluid over a nonlinear stretching cylinder. Alexandria Engineering
Journal, 70, 179–189.

28. Aifanties, E. C. (1976). Continuum basis for diffusion in regions with multiple diffusivities. Journal of
Applied Physics, 50, 1334–1338.

29. Raju, A., Ojjela, O., Kambhatla, P. K. (2020). The combined effects of induced magnetic field, thermophore-
sis and Brownian motion on double stratified nonlinear convective-radiative Jeffrey nanofluid flow with
heat source/sink. Journal of Analysis, 28, 503–532.

https://doi.org/10.1080/17455030.2022.2143930


CMES, 2024, vol.138, no.2 1519

30. Ganesan, S., Vasanthakumari, R. (2020). Influence of magnetic field and thermal radiation on peristaltic
motion with double-diffusive convection in Jeffery nanofluids. Heat Transfer, 49, 2025–2043.

31. Bég, O. A., Tripathi, D. (2011). Mathematica simulation of peristaltic pumping with double-diffusive con-
vection in nanofluids: A bio-nanoengineering model, proceedings of the institution of mechanical engineers.
Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering
and Nanosystems, 225, 99–114.

32. Alolaiyan, H., Riaz, A., Razaq, A., Saleem, N., Zeeshan, A. et al. (2020). Effects of double diffusion
convection on third grade nanofluid through a curved compliant peristaltic channel. Coatings, 10(2), 154.

33. Asha, S. K., Sunitha, G. (2020). Thermal radiation and hall effects on peristaltic blood flow with double
diffusion in the presence of nanoparticles. Case Studies in Thermal Engineering, 17, 100560.

34. Sharma, A., Tripathi, D., Sharma, R. K., Tiwari, A. K. (2019). Analysis of double diffusive convection
in electroosmosis regulated peristaltic transport of nanofluids. Physica A: Statistical Mechanics and its
Applications, 535, 122148.

35. Akram, S., Afzal, Q. (2020). Effects of thermal and concentration convection and induced magnetic field
on peristaltic flow of Williamson nanofluid in inclined uniform channel. European Physical Journal Plus,
135, 857.

36. Akram, S., Athar, M., Saeed, K., Razia, A., Muhammad, T. (2023). Hybridized consequence of thermal
and concentration convection on peristaltic transport of magneto Powell–Eyring nanofluids in inclined
asymmetric channel. Mathematical Methods in the Applied Sciences, 46, 11462–11478.

37. Akram, S., Athar, M., Saeed, K. (2021). Hybrid impact of thermal and concentration convection on
peristaltic pumping of Prandtl nanofluids in non-uniform inclined channel and magnetic field. Case Studies
in Thermal Engineering, 25, 100965.

38. Siddheshwar, P. G., Mahabaleshwar, U. S. (2005). Effects of radiation and heat source on MHD flow of a
viscoelastic liquid and heat transfer over a stretching sheet. International Journal of Non-Linear Mechanics,
40, 807–820.

39. Aliakbar, V., Pahlavan, A. A., Sadeghy, K. (2009). The influence of thermal radiation on MHD flow of
Maxwellian fluids above stretching sheets. Communications in Nonlinear Science and Numerical Simulation,
14, 779–794.

40. Bataller, R. C. (2007). Viscoelastic fluid flow and heat transfer over a stretching sheet under the effects of a
non-uniform heat source, viscous dissipation and thermal radiation. International Journal of Heat and Mass
Transfer, 50(15–16), 3152–3162.

41. Asha, S. K., Sunitha, G. (2019). Influence of thermal radiation on peristaltic blood flow of a Jeffrey fluid
with double diffusion in the presence of gold nanoparticles. Informatics in Medicine Unlocked, 17, 100272.

42. Farooq, S., Khan, M. I., Waqas, M., Hayat, T., Alsaedi, A. (2020). Transport of hybrid type nanomaterials
in peristaltic activity of viscous fluid considering nonlinear radiation, entropy optimization and slip effects.
Computer Methods Programs Biomed, 184, 105086.

43. Mahmoud, M. A. A. (2007). Thermal radiation effects on MHD flow of a micropolar fluid over a stretching
surface with variable thermal conductivity. Physica A: Statistical Mechanics and its Applications, 375,
401–410.

44. Mahantesh, M. N., Vajravelu, K., Abel, M. S. (2011). Heat transfer in MHD viscoelastic boundary layer
flow over a stretching sheet with thermal radiation and non-uniform heat source/sink. Communications in
Nonlinear Science and Numerical Simulation, 16, 3578–3590.

45. Jamshed, W., Devi, S. S. U., Goodarzi, M., Prakash, M., Nisar, K. S. et al. (2021). Evaluating the unsteady
Casson nanofluid over a stretching sheet with solar thermal radiation: An optimal case study. Case Studies
in Thermal Engineering, 26, 101160.

46. Jamshed, W., Nisar, K. S., Gowda, R. J. P., Kumar, R. N., Prasannakumara, B. C. (2021). Radiative heat
transfer of second grade nanofluid flow past a porous flat surface: A single-phase mathematical model.
Physica Scripta, 96, 064006.



1520 CMES, 2024, vol.138, no.2

47. Reddy, M. G., Padma, P., Shankar, B., Gireesha, B. J. (2016). Thermal radiation effects on MHD stagnation
point flow of nanofluid over a stretching sheet in a porous medium. Journal of Nanofluids, 5, 753–764.

48. Nisar, Z., Hayat, T., Muhammad, K., Ahmed, B., Aziz, A. (2023). Significance of Joule heating for radiative
peristaltic flow of couple stress magnetic nanofluid. Journal of Magnetism and Magnetic Materials, 581,
170951.

49. Hayat, T., Ahmed, B., Abbasi, F. M., Alsaedi, A. (2019). Numerical investigation for peristaltic flow of
Carreau–Yasuda magneto-nanofluid with modified Darcy and radiation. Journal of Thermal Analysis and
Calorimetry, 137, 1359–1367.

50. Abou-zeid, M. (2016). Effects of thermal-diffusion and viscous dissipation on peristaltic flow of micropolar
non-Newtonian nanofluid: Application of homotopy perturbation method. Results in Physics, 6, 481–495.

51. Haile, E., Shankar, B. (2014). Heat and mass transfer through a porous media of MHD flow of nanofluids
with thermal radiation, viscous dissipation and chemical reaction effects. American Chemical Science
Journal, 4, 828–846.

52. Li, P., Abbasi, A., El-Zahar, E. R., Farooq, W., Hussain, Z. et al. (2022). Hall effects and viscous dissipation
applications in peristaltic transport of Jeffrey nanofluid due to wave frame. Colloid and Interface Science
Communications, 47, 100593.

53. Yassen, M. F., Mahrous, Y. M., Nazeer, M., Pasha, A. A., Hussain, F. et al. (2021). Theoretical study of
transport of MHD peristaltic flow of fluid under the impact of viscous dissipation. Waves in Random and
Complex Media. https://doi.org/10.1080/17455030.2022.2078519

54. Channakote, M. M., Kalse, V. D. (2022). Combined convective and viscous dissipation effects on peristaltic
flow of Ellis fluid in non uniform tube. Journal of Naval Architecture and Marine Engineering, 19, 1–12.

55. Sadaf, H., Nadeem, S. (2017). Analysis of combined convective and viscous dissipation effects for peristaltic
flow of Rabinowitsch fluid model. Journal of Bionic Engineering, 14, 182–190.

https://doi.org/10.1080/17455030.2022.2078519

	Mechanism of Thermally Radiative Prandtl Nanofluids and Double-Diffusive Convection in Tapered Channel on Peristaltic Flow with Viscous Dissipation and Induced Magnetic Field
	1 Introduction
	2 Mathematical Model
	3 Methodology of Solutions and Discussion
	4 Conclusion
	References


