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ABSTRACT

With the rapid development of Network Function Virtualization (NFV), the problem of low resource utilization
in traditional data centers is gradually being addressed. However, existing research does not optimize both local
and global allocation of resources in data centers. Hence, we propose an adaptive hybrid optimization strategy that
combines dynamic programming and neural networks to improve resource utilization and service quality in data
centers. Our approach encompasses a service function chain simulation generator, a parallel architecture service
system, a dynamic programming strategy for maximizing the utilization of local server resources, a neural network
for predicting the global utilization rate of resources and a global resource optimization strategy for bottleneck and
redundant resources. With the implementation of our local and global resource allocation strategies, the system
performance is significantly optimized through simulation.
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1 Introduction

Network Function Virtualization (NFV) [1] is an approach that allows network functions to be
implemented using software running on virtualized hardware instead of dedicated physical devices.
This approach was proposed by the operator’s alliance to replace dedicated hardware such as firewalls
and deep packet inspection devices with virtualized resources on general-purpose hardware such as x86
servers, storage, and switching devices. The virtualization technology used in NFV enables hardware
resources, such as computing power, storage capacity, and network bandwidth, to be abstracted and
virtualized, so that they can be dynamically allocated and managed using software. This makes it
possible for operators to manage these virtual resources more easily and efficiently. NFV provides
several benefits for network operators, including the ability to deploy new network services more
quickly and cost-effectively. With NFV, operators can quickly spin up new virtualized network
functions by deploying and managing software applications on virtualized x86 servers. This is in
contrast to traditional hardware-based deployments that require significant time and resources for
installation and configuration. As shown in Fig. 1, the NFV architecture consists of x86 servers
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that host simplified functional applications (APPs) and virtual machines (VMs), which provide
the necessary computing resources and software infrastructure needed to support various network
functions. The virtual machines can run on top of hypervisors, which allow multiple virtual machines
to run on a single physical server. This ability to consolidate multiple network functions onto a single
hardware platform provides significant cost savings in terms of hardware and maintenance costs.

Figure 1: The x86 generic server configuration and simplified functional applications (APPs) and
virtual machines (VMs) in each server under NFV technology

In a data center’s network communication, various network service functions are utilized such as
firewall, deep packet inspection, and network address translation. These functions are then ordered
and configured using a Service Function Chain (SFC) [2]. The SFC is an ordered set of abstract service
functions that enable efficient and flexible traffic processing. As data packets travel through the data
center’s network, they traverse the services in a collection in a sequential fashion. For example, an SFC
such as “Fire Wall (FW)-Quality of Service (QoS)-Deep Packet Inspection (DPI)” can be configured.
When a network service receives a data packet, it processes the packet for its specific function, and
the traffic is then transferred to the next service function in the service chain until all functions of the
service chain are completed.

In the scenario of Network Function Virtualization (NFV), each Service Function Chain (SFC)
can create a network connection topology via virtual network services and virtual links. The SFC can
then determine the forwarding paths to form an ordered virtual network service sequence. Network
services allocated computing and storage resources in the infrastructure to execute these virtual service
functions and coordinate virtual connection scheduling, thus completing related services for user
data packets. To achieve optimal SFC processing efficiency, it is essential to utilize network resources
effectively and efficiently, hence, low resource utilization and high equipment costs are pressing issues.
In recent years, with the development of cloud computing technology, researchers and scholars have
proposed many algorithms and strategies for virtual machine (VM) layout. These approaches include
the VM placement method based on the association of network services in the network forwarding
path [3].
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Due to the complexity of network services and dynamic service requirements, significant research
effort has been dedicated to developing algorithms and optimization methods to automate the scaling
and placement of network services based on current requirements. In addition to determining the
number and location of NFV’s server virtual machines (VMs), these algorithms must also determine
the appropriate allocation of resources to each VM. Typically, VMs are instantiated with a fixed
number of resources that are predetermined by the VM developer and specified in the VM descriptor.
However, the resource requirements of VMs are not fixed, but rather vary depending on the traffic
load. This means that allocating a fixed amount of resources can lead to under-allocation or over-
allocation of resources. If resources are under-allocated, VMs may lack resources to process all
packets, leading to packet loss, service quality degradation or even service function failure. As a
result, operators try to avoid under-allocation by allocating fixed, large amounts of resources to each
VM. However, this approach leads to over-allocation, wasted resources, discourages other VMs from
using those resources, and results in unnecessarily high costs. Therefore, it is important to explore
more efficient methods for allocating resources to VMs. One possible approach is to use dynamic
resource allocation techniques based on actual traffic load, in which resources are allocated to VMs
dynamically and adaptively. This can avoid both under-allocation and over-allocation of resources, and
enables resources to be used in a more efficient manner, thus improving overall resource utilization and
reducing costs.

However, these studies have limitations. Some focus exclusively on optimizing resource prediction
for a single server, while others concentrate on predicting overall system resources without optimizing
local and global resource scheduling in data centers. To address these shortcomings, inspried by
[4], we propose an adaptive hybrid optimization strategy that combines dynamic programming with
neural networks to enhance resource utilization and service quality intelligently and continuously.
This strategy helps ensure good service quality while avoiding over- and under-allocation. Our
contributions can be summarized as follows:

• We propose a functional integration framework that includes a virtual machine layout strategy,
a redundant virtual machine layout strategy, and a banker resource scheduling optimization
algorithm. This framework aims to optimize the allocation of resources within data centers.

• We design a dynamic resource allocation strategy for each virtual machine (VM) in data centers
to enhance resource utilization. We assess and compare the impact of this strategy on data
centers, and simulation results indicate that it improves resource utilization.

• We develop a neural network and training program to predict the utilization rate of resources
and to design adjustment strategies that pre-adjust the allocation of resources after predicting
bottleneck and redundant resources. This approach aims to enhance response speed and adjust
system resources to a more reasonable level, improving the quality of service.

2 Related Work

In this section, we will briefly review some resource allocation algorithms for demanded network
services in NFV-based and other network infrastructures.

From the perspective of data resources, Rankothge et al. [5] have proposed a VNFs resource alloca-
tion algorithm based on genetic algorithm. Fu et al. [6] have broken down complex VNFS into smaller
virtual network functional components (VNFCS) to make more efficient decisions. Kuo et al. [7] have
developed load balancing algorithms to ensure that network traffic is evenly distributed and thus
prevent congestion in the data center network. Kim et al. [8] have proposed a unified scientific cloud
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framework upon heterogeneous cloud resources while outperforming conventional cloud systems
through various experimental and simulation results. Additionally, some research has been conducted
on system security considerations such as strengthening the security of the data center network [9] and
improving the fault tolerance of the data center network [10].

The resource allocation strategy heavily relies on algorithms, which serve as the cornerstone of this
process. There are various algorithms available to enable efficient resource allocation. For instance,
the Best Fit algorithm [11] finds the smallest free partition that meets the requirement to minimize
fragmentation of partitions. The Banker algorithm [12] aims to avoid deadlocks before resource
allocation. The Ant Colony Optimization algorithm [13] adopts the shortest path for solving opti-
mization problems inspired by ant feeding systems. The Adaptive Dynamic Optimization algorithm
[14] breaks down problems into sub-problems of several stages, solves them sequentially, and selects
the solutions likely to produce the optimal result from the local solutions. The Energy-aware Dynamic
Task Scheduling (EDTS) algorithm [15] minimizes total energy consumption while meeting strict time
and probability constraints in applications, compared to critical path scheduling and parallelism-based
scheduling algorithms. Mashwani et al. [16] presented a multiswarm-intelligence-based algorithm for
solving bound-constrained functions. The algorithm integrates population evolution with SI (Social
Influence) based algorithms and addresses the problems of exploration and exploitation. A hybrid
TLBO (HTLBO) [17] algorithm was proposed to further enhance the exploration and exploitation
capabilities of the baseline TLBO algorithm.

Herrera et al. [18] presented a comprehensive review of NFV resource allocation (NFV-RA)
by introducing a novel classification of the main approaches that offer solutions. These include
service chain, NFV environment and framework, virtual network functions (VNFs) scheduling, and
a comparison of advanced methods for NFV-RA. Zhao et al. [19] achieved the goal of maximizing
the throughput of a socially aware network by taking into account the physical and social attributes
of mobile users. Hotaling et al. [20] introduced Decision-Explicit Probability Sampling (DEPS)
to perform inference of problem properties while accounting for the potential bias introduced by
an allocation strategy. Saini et al. [21] applied joint resource allocation to information security,
optimizing subcarrier allocation, subcarrier pairing (SCP), and power allocation in a cooperative
secure orthogonal frequency division multiple access (OFDMA) communication system, considering
untrusted users. Lastly, a resource load balancing scheduling method based on ant colony algorithm
[22] also inspired an equalization of resources.

The issue of optimizing resource utilization and network load balance in data centers is chal-
lenging, and while several algorithms exist to reconfigure cloud resources, the problem is far from
completely resolved. Responsive strategies for resource management rely on quickly reconfiguring
resources in response to traffic changes, but these solutions are frequently ineffective due to the
excessive time required to reconfigure cloud resources, which may take up to ten minutes [23]. A new
approach has recently emerged that suggests an active method of prediction, which helps avoid the
latency issues accompanying resource allocation. This approach is based on forecasting traffic changes
and predicting resource needs, rather than responding directly to detected changes, assuring faster
reconfiguration times and more efficient resource allocation [24]. This approach has several advantages
over reactive approaches that rely solely on detecting changes in traffic. By using prediction-based
algorithms for resource management, the reconfiguration time required to rebalance resources can
be significantly reduced. Furthermore, predicting usage patterns and optimizing resource allocation
before the event allows for a more proactive and efficient approach to resource management in data
centers.
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Both traditional and artificial intelligence techniques are used to estimate traffic and/or resources
required. In recent years, many researches have adopted machine learning method to realize resource
prediction in NFV. Aiming at the host load prediction problem in cloud infrastructure, Song et al. [25]
completed the prediction based on the time series of LSTM cyclic neural network. Mijumbi et al. [26]
used graph neural networks to derive a model of the VNF resource requirements from the topology of
the subcomponents within the VNF. In [27], VNF-SC was deployed with RL in elastic optical networks
for load balancing and service latency minimization. Most similar to our work, they use machine
learning methods for resource prediction. In contrast to our approach, their approach requires insight
into the internal structure of each VM, ignoring the fact that the same VM may handle different
traffic loads and therefore may have different resource requirements, thus limiting the accuracy of
their models.

3 System Structure

This section describes the architecture of our resource allocation, which comprises two major
components, namely the system framework and the system sub-modules.

3.1 System Framework
Our system’s service procedure follows the queuing theory. Upon arrival of the Service Function

Chain (SFC), it joins the buffer queue and waits for processing. If there are available resources,
the SFCs in the waiting line are assigned in sequential order to the appropriate server and virtual
machine (VM) for service processing. Once all the services in the SFC have been processed, the
resources occupied are freed up, and the SFC exits the service system. If no resources are currently
available, the SFC in the waiting line must wait until they become available. The service system operates
continuously, providing service to customers throughout the day.

In our system architecture, the servers are interlinked in a parallel configuration where each server
is integrated with every type of APP program. This setup enables the processing of all forms of service
chain SFCs on a single server without any back and forth movements. The parallel structure not only
facilitates a significant reduction in traffic consumption between servers but also effectively prevents
path trace-back issues. Moreover, owing to the complete APP configuration of each server, each server
can be considered a self-contained, small-scale service system. The parallel architecture allows the
system to keep functioning even if one or multiple servers fail, without affecting the overall services of
the system. As a result, we aim to model the service system using this parallel architecture and server
configuration, followed by designing resource allocation and optimization strategies.

Theoretical basis for our system modeling includes the integration of various APP programs in
the system into the same server. Additionally, each SFC in the system occupies the same network
bandwidth resources. Further, every SFC in the same APP occupies a similar size of resources while
processing business in the same APP, while the allocated resources may differ while processing SFCs
for different APPs. Finally, the time spent evaluating how to select the server or VM for the SFC and
the time spent migrating resources between VMs are negligible. A preview of our system framework is
shown in Fig. 2.
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Figure 2: Preview of our system framework. It is the entire procedure from SFC generation to SFC
leaving the system which contains four major modules

We produce simulated SFC data streams by combining user demands for APPs. We then compare
and evaluate the performance of resource allocation systems and the effectiveness of resource alloca-
tion policies. Our main objective is to maximize the utilization rate of CPU, RAM, and Bandwidth by
allocating as few resources as possible. This objective can be divided into two aspects. Firstly, we aim
to maximize the utilization rate of these three resources while reallocating them and adjusting to the
demand of the SFC service chain. Secondly, we aim to control the service waiting length and service
waiting time within reasonable limits while also ensuring a certain throughput rate. We strive to use
as few resources as possible while still delivering the necessary performance. In addition to this, we
also aim to minimize the total system resources and shut down unnecessary virtual machines (VMs).
We aim to reduce total system resource consumption while maintaining the same level of throughput
and resource utilization. Overall, the first goal is to reallocate the three resources to improve their
utilization, and the second goal is to reduce the overall resource consumption. The model can be
simplified into two constrained optimization problems, as shown in Eqs. (1) and (2):

Maximize
1
T

∑T

t=0 Ut
i (i = c, r, b)

s.t. Spc = M1, Spr = M2, Spb = M3

(1)
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where U is utilization of these three types of resources, T indicates time, c means CPU, r means RAM,
b means Bandwidth. Spc, Spr, Spb represent the total resources of CPU, RAM, Bandwidth, respectively.
M1, M2, M3 are fixed numbers.

Minimize P = nopen
s

ns

s.t. Rio = Nout

Nin

≥ K
(2)

where P is the energy consumption rate. We define the energy consumption rate as the ratio of the
energy consumption at this time to the energy consumption of all servers, which can be simplified to
the ratio of the number of open servers to the total number of servers. Rio indicates the throughput
rate, Nout and Nin indicate the number of SFCs leaving the system within a given length of time and the
total number of SFCs in the system, respectively. K is a fixed number.

3.2 System Sub-Modules
The module of our system is composed of three sub-modules: the SFC generator, SFC event

detection module, and resource allocation module.

1. SFC generator.

For the sorting system’s input process and customer arrival rules, we utilize a Poisson flow input.
This means that the probability of k customers arriving per unit of time follows a Poisson distribution,
and λ represents the average customer arrival rate within that unit of time. When simulating the
average number of SFCs in the service chain per unit of time using the Poisson distribution with a
parameter of λ, the time interval between two adjacent SFC arrivals obeys the negative exponential
distribution, with a parameter of 1/λ. In mathematical terms, the probability distribution function can
be expressed as:

F(x) =
{

λe−λx, if x ≥ 0
0, others

(3)

This equation demonstrates that the probability of observing a time period between two SFC
arrivals less than or equal to time x follows an exponential decay with respect to x, and that the rate
of decay is proportional to the arrival rate λ.

Additionally, we use the negative exponential distribution to simulate the service time for each
APP. The service time for each APP can follow the negative exponential distribution with different
parameters. As for the service time of SFC, we use a stack of service times for different APPs.

When simulating the service system, we take into account both the limited capacity of the network
service system and the importance of service performance, quality, and user experience. It is essential
to prevent the number of customers waiting in line from increasing continuously, which is why we have
decided to adopt a mixed queuing rule that includes both the loss system and the waiting system.Under
this rule, the waiting queue of the service system can accommodate a limited number of customers, and
when all resources are occupied, arriving customers cannot be served immediately. When the number
of customers waiting in the queue reaches the maximum capacity, the customer at the end of the queue
is no longer able to wait in line for the service and must leave the system. This service order follows the
first-come-first-serve rule and is the most practical solution at present. In summary, by considering the
limitations of the network service system and its impact on service performance and user experience,
we have adopted a mixed queuing rule that allows for both the loss system and the waiting system to
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coexist, with a limited waiting capacity in the service queue. This approach ensures that customers are
served efficiently while maintaining service quality.

We generate a complete SFC randomly by user demand ratio. First of all, all kinds of APPs are
sorted and numbered according to their different needs. For example, there are five kinds of APPs
in the data center system, then we set the value of the applications as 5, and the order ratio is u =
{1.0; 0.7; 0.5; 0.4; 0.2}, the corresponding APPs are numbered as APP1, APP2, APP3, APP4, and APP5.
Next, we use the generated random number to control the probability of the APP appearing in the
SFC. That is, when simulating the generation of a SFC, we generate a random number that is uniformly
distributed at first, and then we can determine whether an APP appears in it by judging whether the
random number is included in the range corresponding to the demand ratio or probability value of the
APP, so as to determine whether there is the APP in a SFC. The mark M{k} whether the APP appears
in a SFC can be formulated as in (4):

M{k} =
{

1, if 0 < a < u{k}
0, if u{k} < a < 1

(4)

where 1 represents occurrence and 0 is not present. a is the generated random number with random
distribution. u{k} is the demand ratio of APP.

Lastly, each generated SFC is a set of APP numbers that appear in it, which can be represented
by the formula as {k · M{k}|k = 1, 2, . . . , na}, where k represents the serial number of APPs and
na represents the number of types of all APPs in the system. We connect the APP numbers in the
collection to represent a service function chain such as {1 → 2 → 5} or {1 → 4 → 5 → 7}, etc., and
then perform business processing for the SFC in the order of its APP numbers.

2. SFC event detection module

The SFC event detection module has the primary responsibility of detecting events and causing
different responses to different events. There are three types of events that this module handles. The
first event type is whether the SFC has reached the service system, in which case the SFC is allowed
to queue in the buffer. However, if the buffer is full, the SFC is discarded. The second event type is
whether the SFC is being processed. When the SFC gets to the end of the process in the VM service, the
resources it occupies are released. The third event type is whether the SFC has left the service system.
When all the services have finished processing the SFC, the occupied resources are released, and the
SFC throughput is increased by one. If the module does not detect any events, it should continue
looping detection.

3. Resource allocation module

The main task of the resource allocation module is twofold-it must either select an appropriate
service path for an SFC waiting for service or select an available server with sufficient resources.
This module continuously monitors the buffer to determine whether there are any SFCs waiting
in the queue. If the waiting queue is empty, the module continues to monitor the buffer. However,
if there are SFCs waiting in the queue, the SFC of the leader is selected, and the various resource
sizes corresponding to different application programs are calculated based on the content of the third
section. The available resources in each server are also calculated, and the module determines whether
a particular server has enough resources to meet the requirements of the first SFC in the queue. If there
are sufficient resources available, one of the servers meeting the requirements is chosen to process the
first service chain of the team. If no server meets the necessary requirements, the system resource
status of each server is cyclically evaluated. This continues until a server with released resources and
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sufficient available resources is identified. Once a suitable server is found, the first SFC in the queue
can then be processed. When selecting a server for an SFC, the resource allocation module follows
specific preferred principles. First, it prefers to select a server that has sufficient available resources
corresponding to the application programs required by the SFC. Secondly, if there are multiple servers
meeting the requirements under the same optimal conditions, the server with the lowest total available
resources is selected based on the Best Fit algorithm [28] as the destination of the SFC. These principles
are designed to minimize the number of servers used to handle SFCs for cost-saving and energy
consumption reduction.

4 Resource Allocation Strategy

In our system framework of network service function integration, there are three steps in the design
of our resource allocation strategy. The first strategy is based on the Best Fit algorithm for the dynamic
migration and scheduling of virtual machine resources; the second strategy is the prediction of system
functions based on neural networks; the third strategy is based on balanced and extended resource
configuration optimization.

4.1 Dynamic Migration Strategy
The Best Fit algorithm [28] is to find free resources from the entire free space that can satisfy the

business requirements and have the smallest size. The best fit algorithm flow is as follows: first, all the
free areas are sorted from small to large, and then the order is compared with the size of the required
resources, the free area where the first available resource size meets the demand is the final selected
free area. Compared to the first fit algorithm [29] and the worst fit algorithm [30], this method is more
feasible. Because the available resource size allocated to the service every time is the most suitable for
this service. This can make the remaining resource fragments in the free area as little as possible and
occupy less free area.

Our resource allocation procedure based on dynamic programming for SFCs is as Algorithm 1.
For those corresponding application programs originally have enough available resources, the corre-
sponding demand resources can be directly deducted when the SFC enters the server; however, for
those available resources of VM are insufficient for the selected server, but the sum of the resources
available to all virtual machines in the server meets the demand, the resources need to be adjusted
dynamically by the algorithm above.

Algorithm 1: Resource allocation based on dynamic programming
Require:

The SFC waiting queue, Qt;
The length of simulation time, T ;
The total system resource, Sp

i , where i = c, r, b representing CPU, RAM and Bandwidth,
respectively;
Ensure:

The resource utilization, Ui ;
1: Initialization: set the simulation time t = 0 and the available system resource Sa

i = Sp
i ;

2: while t ≤ T do
3: if Q �= φ then
4: Calculate the required resource Qt

1 of the first SFC in the waiting queue and Sa
i ;

(Continued)
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Algorithm 1 (Continued)
5: Select an available VM to provide service for Qt

1 with the resource dynamic migration strategy
among VMs;

6: Update Qt and Sa
i ;

7: end if

8: calculate: Ut
i = Sa

i

Sp
i

;

9: update t;
10: end while
11: return Ui = {Ut

i |t = 0, . . . , T ; i = c, r, b}.

Specifically, for example, when the SFC {1 → 2 → 5} arrives at the system, its corresponding
resource requirements for these five application are [8, 16, 0, 0, 7], but the corresponding resources is
[5, 12, 6, 2, 10] left in the server which is finally allocated. By comparison, we can see that the VM1 and
VM2 do not have enough available resources to perform service processing on SFCs, while resources
available for VM3, VM4 and VM5 are remained. At this time, we can reclaim and redistribute these
remaining resources so that VM1 and VM2 can meet the service requirements of the SFC. Table 1
lists the analysis data in the process of dynamically adjusting each virtual machine resource for the
above example, and decomposes the entire dynamic adjustment step, including the original available
resource of each virtual machine, the demand resource of the SFC, the remaining or missing resources
of each virtual machine, the resources reclaimed by the server from the VMs with the remaining
resources, the reallocation of the reclaimed resources to insufficient VMs and the available resources
after adjustment. With reference to Table 1, the advantages of the above resource allocation strategy
lie in that resources can be dynamically adjusted according to requirements, and servers for SFCs can
be arranged according to the principle of optimal adaptation algorithm, hence, the servers turned on
can be as little as possible.

Table 1: Example of resource (CPU) migration in a server

Original Required Redundant Recall Reallocated Updated

5 8 −3 0 3 8
12 16 −4 0 4 16
6 0 +6 6 0 0
2 0 +2 0 0 2
10 7 +3 1 0 9

4.2 Resource Prediction Strategy
To understand the performance indicators of a service system in an actual data center, we typically

need to operate the system in real-time to observe the necessary index data. However, every time
we want to adjust the system resource configuration, the service system must be interrupted, and
the system must be restarted after configuring. This process takes up valuable time and energy and
causes interruptions in ongoing SFC services, resulting in a poor user experience. As a solution to
avoid interrupting the service system and the SFC service, we have developed an off-line adjustment
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strategy for optimizing the system resource allocation. This involves replacing the observed real-
time performance indicators with predicted values of the service system’s performance index in the
data center, enabling us to adjust and optimize the system’s resource configuration accordingly. To
accomplish this, we have utilized the backpropagation (BP) neural network, which is effective in self-
tuning parameters and designing controllers [31]. Through thorough investigation, we have identified
two applicable neural networks based on the cyclic steepest descent (CSD) optimization algorithm [32]
and the L-BFGS optimization algorithm [33]. We conducted performance comparison experiments to
determine the better network that fits the curve between the data center service chain information,
system resource configuration information, and system performance indicators. This enables us to
make further predictions and optimizations to improve the system’s performance.

The data samples for neural network training and testing are randomly generated by our data
center service system. Each data sample includes two items: sample features X and sample tags Y . For
the sample features, the information includes: the arrival rate of the SFC λ; the service rate of each
application program u{k}; the CPU resources required Sac{k} and RAM resources required Sar{k} for
each service chain to process services in each APP; the bandwidth resources occupied Sab by each SFC
when accepting service processing; CPU resources Ssc, RAM resources Ssr and bandwidth resources
Ssb owned by each server. Moreover, before training the neural network model, these data sets must
be normalized, so that the training error of the model can be converged more quickly. At the same
time, in order to eliminate the correlation between sample feature values, we perform the following
processing on the above feature information to obtain the feature vector as in (5):

X =
{

r{k}, u{k}
λ

,
Sac{k}

Ssc

,
Sar{k}

Ssr

,
Sab

Ssb

}
(5)

where k = 1, 2, . . . , na.

The eigenvector contains information about the number of application APP types, and the
dimension of the eigenvector can vary depending on the number of APP types in the system. In order
to maintain the consistency of the training sample dimensions for the network model, a fixed value of
na is set. For the subsequent experiments, na is set to 5.

We generated 10,000 data samples randomly and divided them into non-overlapping training data
sets and test data sets with 4:1 ratio. Put the corresponding sample features into the trained regression
model and we can get the prediction of the system throughput, system resource utilization and other
performance indicators. When we test the trained neural network model, we evaluate the accuracy of
the model by calculating the Root Mean-Square Error (RMSE) of the predicted value and the true
value of the sample label, the formula is as in (6):

RMSE =
√∑n

i=1(yi − ŷi)2

n
(6)

where n presents the number of test samples, i is the index of sample, yi presents the label value, ŷi

presents the predicted value.

To select an appropriate BP neural network structure for our forecasting work, we conducted
comparative experiments on different configurations, such as varying the number of neurons in a single
hidden layer and adding additional hidden layers to the BP neural network. Ultimately, we determined
that the BP neural network structure with two hidden layers, each consisting of 21 neurons, delivered
the best performance.
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4.3 Resource Optimization Strategy
From the perspective of maintaining the service system’s long-term operations, there exists a

proportional relationship between the demand for different resources of the system. The ratio of
the system’s throughput and its resource demand also demonstrates a corresponding proportional
relationship. Under the resource allocation conditions of the original resource pool Spc, Spr, Spb, the
optimal value of each resource can be determined by leveraging the ratio relationship between
them when the neural network model predicts the utilization rate of each resource and the system’s
throughput rate, as demonstrated in (7):

Rio : (Spc · Uall
c ) : (Spr · Uall

r ) : (Spb · Uall
b ) =

1 : Sproper
pc : Sproper

pr : Sproper
pb

(7)

Since the servers in the system shares the resource pool resources evenly, after optimization, the
size of each resource in each server can be calculated as in (8):

Sproper
sc = Sproper

pc /ns

Sproper
sr = Sproper

pr /ns

Sproper
sb = Sproper

pb /ns

(8)

when the system throughput approaches saturation, it indicates that the system is performing well and
has sufficient resources. In this case, the resource with low utilization is considered to be redundant. On
the other hand, when a certain resource’s utilization approaches saturation, but the system throughput
rate is relatively low, such resources are considered to be bottlenecks. Based on the proportional
relationships of the resources mentioned above, we can optimize redundant and bottleneck resources
individually.

For the redundant resources, we adjust and optimize these resources by reducing them. Taking the
CPU resource as an example, we can get the predicted CPU resource utilization by our neural network,
and the total CPU resource in the system resource pool is already known, then the product of the
two represents the CPU resource used in the resource pool, and is also the value after the redundant
resource is adjusted. It can be formulated as Sproper

pc = Uall
c · SPC. The same resource configuration

adjustments can also be made for other redundant resources such as RAM and bandwidth.

For the bottleneck resources, our extended optimization method is to do a certain amount of
resource expansion. For example, when the CPU resource is bottleneck resource, the system resource
pool is configured to Spc, the resource utilization is 1. And the RAM resource is a non-bottleneck
resource, its system resource pool is configured to Spr, Uall

c indicates its resource utilization, and then
the demand ratio of CPU resource and RAM resource can be calculated as in (9):

Acr = Spc

Spr · Uall
r

(9)

Next, a reasonable resource pool for adjusting CPU resources as a bottleneck resource is as in (10):

Sproper
pc = Spc + Acr · Spr · (1 − Uall

r ) (10)

To simplify we get Sproper
pc = Spc/Uall

r . For other bottleneck resources, the adjustment method is the
same as above. This relieves the bottleneck resource from limited performance of system and improves
the utilization of other resources too. It can be deduced from the formula that the utilization rates of
three resources are saturated and tend to be 1.
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However, when the CPU, RAM and bandwidth resources are all bottomed out, we will not be
able to adjust their resources. At this time, although the resource utilization rate tends to 1, the service
quality is not high. In order to solve this problem, We can increase CPU resources firstly. If it becomes
redundant resources, continue to adjust resources through (9) and (10). Otherwise, continue to increase
CPU resources. Through this fine-tuning method, we can improve the quality of our service, reduce
queue time and queue length.

The benefits of resource extended optimization is that resources can be dynamically adjusted and
resource consumption reduced as business needs change. When the number of SFCs increases, the
original resource configuration is not sufficient to complete the service processing efficiently. At this
time, various resources need to be expanded. Assuming that the ratio of the original allocation of
various resources is reasonable, that is, the redundant resources and bottleneck resources have been
adjusted and optimized through the above-mentioned contents. Furthermore, we need to increase each
resource on a basis according to the change in the service chain arrival rate. The resource expansion
ratio can be calculated as this: A = λbefore/λnow, where λbefore and λnow represent the arrival rate of
SFCs before and after change respectively. Then we can expand the CPU resource proportionally by
multiplying the resource expansion ratio. The expansion method can also applied to RAM resource
and bandwidth resource. The algorithm flow is shown in Algorithm 2.

Algorithm 2: Resource prediction and optimization based on machine learning
Require:

The SFC arrival rate, λ;
The number of SFCs processed by APPk per second, u{k};
The requirements ratio of APPk, r{k};
The CPU resources, RAM resources, and bandwidth resources owned by each server, Ssc, Ssr, Ssb;

Ensure:
Optimized resources (Sproper

sc , Sproper
sr , Sproper

sb );
1: Initialization: λ and u{k} are the Poisson distribution parameters, we set r{k} = {1.0; 0.7; 0.5;

0.4; 0.2}, and unbalanced owned resources, (Ssc, Ssr, Ssb) = (500, 1000, 500);
2: Processing the input feature information to obtain the feature vector X :

X =
{

r{k}, u{k}
λ

,
Sac{k}

Ssc

,
Sar{k}

Ssr

,
Sab

Ssb

}
3: Predict the CPU, RAM and bandwidth resources required for SFC to process services in each

APP through our prediction network model, Sac{k}, Sar{k}, Sab, where k = 1, . . . , na, here we set
na = 5; predict the SFC throughput rate of system, Rio and the utilization of these three resources,
(Uall

c , Uall
r , Uall

b );
4: if Uall

i ≥ 1
2
Uall

j (i, j = r, c, b; i �= j) then
5: Calculate:

Rio :
(
Spc · Uall

c

)
:
(
Spr · Uall

r

)
:
(
Spb · Uall

b

)
= 1 : Sproper

pc : Sproper
pr : Sproper

pb

6: end if
7: return

(
Sproper

sc , Sproper
sr , Sproper

sb

)
.
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5 Expriments and Analysis

Since we apply the best fit algorithm to allocate suitable servers for the service chain SFCs, we
can reduce the number of working servers while maximizing the utilization of server resource. We
evaluate the effectiveness of our resource allocation strategies by comparing SFC throughput Rio,
CPU resources utilization, RAM resources utilization, bandwidth resource utilization, system energy
consumption rate P, the length of the system waiting queue, and the waiting time of the service chain
in the waiting queue.

As shown in Fig. 3, under the dynamic resource allocation strategy, the resource utilization of
each server with the number 9 and 10 is 0, and then the two idle servers can be shut down. While the
static resource allocation requires that all servers be turned on. This means that the dynamic allocation
strategy can reduce energy consumption when doing the same task, that is, occupy a smaller number
of servers.

Figure 3: Comparison of resource utilization

The prediction error distribution histograms in Fig. 4 is to count the number of samples with
different error values. The abscissa of each sub-graph represents the error value, and the ordinate is
the number of samples of the corresponding error value. When the column in the distribution map is
concentrated near the zero value of the abscissa and the corresponding ordinate value is higher, the
more the data samples have the error value near zero which also indicates the higher of the prediction
accuracy with this prediction method to the test sample. So we can see that the prediction error of
CPU resource utilization based on L-BFGS algorithm is smaller than the other two methods from
Fig. 4. In details, the error value distribution of linear regression model is more dispersed, that is,
the number of samples with larger error value is more. And the distribution histogram of error value
predicted by neural network is more concentrated near zero value, meanwhile the distribution interval
is narrower and the prediction accuracy is higher especially for the neural network with L-BFGS
algorithm. There are three sub-graphs correspond to error statistics of CPU resource utilization, RAM
resource utilization, and bandwidth resource utilization in Fig. 5. These three color curves of red, green
and blue in each sub-graph represents the linear regression model, the BP neural network model based
on C-SD optimization algorithm and the BP neural network model based on L-BFGS optimization
algorithm. From Fig. 5, we can see that the accumulated sample ratio of three resources utilization
with an absolute error below 0.1 are different. Specifically, the BP neural network regression model
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based on the L-BFGS optimization algorithm has the highest value corresponding to 93% while the
corresponding values of the BP neural network regression model of the CSD optimization algorithm
are centered around 86% and the corresponding value of the linear regression model is the lowest,
roughly 66%. That is, the accuracy of the BP neural network regression model based on the L-BFGS
optimization algorithm is the highest. The experimental results in Figs. 4 and 5 show that the BP
neural network regression model with the L-BFGS optimization algorithm performs best in resource
utilization prediction among these three predicting methods. It can be proved from Table 2 too because
the neural network based on L-BFGS has the lowest RMSE value for CPU, RAM, and bandwidth
resource utilization predictions.

Figure 4: These are prediction error distribution histograms of CPU utilization by three different
predicting methods, which are the prediction results of linear regression, neural network with CSD
algorithm and neural network with L-BFGS algorithm, respectively. The horizontal axis is the
prediction error, and the vertical axis is the number of corresponding sample statistics

Figure 5: These are graphs of the accumulated sample ratio of three different resources utilization
forecast errors, which are CPU, RAM and bandwidth resource utilization

Table 2: Comparison of RMSE results of different prediction models

Uall
c Uall

r Uall
b

Linear regression model 0.2559 0.1225 0.0959
Neural network based on CSD 0.0944 0.0565 0.0452
Neural network based on L-BFGS 0.0493 0.0401 0.0233
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Fig. 6 shows the resource utilization transformation over time in the system and the three
resource utilization rates in different servers before and after optimization. We can see from the
first sub-graph that the utilization of CPU, RAM, and bandwidth resources is not balanced before
optimization, in which the utilization of RAM resources has reached saturation but the utilization
of CPU and bandwidth resources is low. The utilization of various resources of each server is in
the same disproportion situation as can be seen in the third sub-graph. After the optimization, the
resource utilization are balanced and all reach around 1 as shown in the second sub-graph and last
sub-graph. Fig. 7 compares the waiting length and wait time of the system service chain before and
after optimization. From first two sub-graphs in Fig. 7, we see that the number of waiting service chains
for the optimized system is greatly reduced along time compared with the SFC waiting numbers before
the optimization. And from the histogram statistics for waiting time in last two sub-graphs, it can also
be seen that the waiting time before optimization is longer than the waiting time after optimization. In
conclusion, the balanced optimization of resources improve the system service performance effectively.

Figure 6: Comparison of the utilization change of various resources (CPU, RAM, bandwidth) of our
system before and after optimization. The first column represents the utilization change in one hour
and the resource utilization rate of each server before optimization, while the second column represents
the utilization change in one hour and the resource utilization rate of each server change trend after
optimization, respectively

When conducting resource scheduling in NFV, the following types of uncertainty factors may be
encountered:

1. Internal uncertainty factors.
These factors involve the characteristics or performance of the network and services them-
selves. For example, using virtualization technology to convert network functions into software
may result in decreased performance or increased network latency.

2. External uncertainty factors.
These factors involve changes in the environment or network context, such as changes in
network traffic volume or network topology adjustments.



CMES, 2024, vol.138, no.2 1633

3. Parameter uncertainty factors.
These factors refer to uncertain or difficult-to-predict input parameter or resource values,
which may cause network performance or service quality instability.

4. Non-parameter uncertainty factors.
These factors refer to factors that do not involve input parameter or resource values, such as
service request patterns or hardware failures.

5. Constant uncertainty factors.
These factors refer to constant values that are difficult to determine in NFV deployment, such
as network transmission latency or processor performance.

6. Characteristic uncertainty factors.
These factors refer to the characteristics involved in NFV deployment, such as network traffic
distribution and service request processing time.

7. Stochastic uncertainty factors.
These factors refer to uncertainty caused by probability distribution or random events, such as
the randomness of network traffic or unpredictability of hardware failures.

Figure 7: Comparison of customer service quality before and after optimization. The first column
represents the SFC waiting queue length change curve and the SFC waiting time distribution
histogram before optimization, the second column represent the SFC waiting queue length change
curve and the SFC waiting time distribution histogram after optimization. The unit of time is seconds

Determining the structure and quantity of these factors in real-time applications is challenging and
requires comprehensive consideration of different types of uncertainty factors to develop appropriate
resource scheduling strategies to ensure network performance and service quality.

6 Conclusion

In this paper, we have proposed resource scheduling optimization strategies for data centers in
the context of Network Function Virtualization. These strategies aim to improve system resource
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utilization and other performance metrics. To validate the effectiveness of our approach, we modeled
the data center network service using queuing theory and simulated the generation of service chain
data flow in the Matlab platform. We applied our designed resource allocation optimization strategies
to the service system, leading to the realization and improvement of system service performance.

However, we must note that the design of the system architecture and integration of the application
programs were implemented only in the simulation of the Matlab platform. To achieve the integration
of all the application programs in an actual data center, it is necessary to configure enough resources
for the general server. Therefore, in our future work, we plan to apply our designed dynamic resource
allocation strategies to the metropolitan area network. In doing so, we can observe the service
performance and resource utilization of the system in more realistic conditions.
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