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ABSTRACT

This work investigates an oblique stagnation point flow of hybrid nanofluid over a rigid surface with power law fluid
as lubricated layers. Copper (Cu) and Silver (Ag) solid particles are used as hybrid particles acting in water H2O as
a base fluid. The mathematical formulation of flow configuration is presented in terms of differential system that is
nonlinear in nature. The thermal aspects of the flow field are also investigated by assuming the surface is a heated
surface with a constant temperature T . Numerical solutions to the governing mathematical model are calculated
by the RK45 algorithm. The results based on the numerical solution against various flow and thermal controlling
parameters are presented in terms of line graphs. The specific results depict that the heat flux increases over the
lubricated-indexed parameter.
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Nomenclature

Symbols Description Dimensions

Tw, T∞ Temperature field [K]
μr Coefficient of viscous effect K
Pr Prandtl number Pr
λ Lubrication parameter _
αhnf Thermal diffusivity (hybrid model) _
αs1, αs2, αf Thermal diffusivity (nanoparticle Ag, Cu and water) _
σhnf Electrical conductivity of nanofluids _
νhnf Kinematic viscosity (hybrid nanofluid) _
νf , νs Kinematic viscosity (water and nanoparticles) _
khnf Thermal conductivity (hybrid model) _
ks1, ks2, kf Thermal conductivity (nanomaterials and water) _(
ρCp

)
hnf

Heat capacitance (hybrid model) _
ρhnf Density of hybrid nanofluids _
H0 Magnetic field component
ρf , ρs1, ρs2 Density of base fluid and solid fraction
u, v Velocity components u, v
p Pressure P
ψ Stream function ψ

f (y) Normal component of the flow f (y)

x, y Spatial coordinates x, y
p Pressure field P
T Temperature field θ (y)

M Hartman number _

1 Introduction

Nanofluids are believed to be an integral part of nanotechnology. In many industrial sectors and
manufacturing procedures, exchangers for heat are used because of the nanofluid’s ability to exceed
the same degree of heat transfer and thermal conductivity as typical fluids such as water, kerosene and
ethylene glycol. They are utilized as underlying fluids since they have a low viscosity level, density, and
thermal conductivity. In many engineering fields and manufacturing processes, efficient heat transfer is
required. This includes polymer extraction procedures, paper production, residential cooling, nuclear
reactors, the polymer sector, lubricant manufacturing, and food processing. Employing ultrafine
nanometer particles in manufacturing (base) solutions may boost thermal properties. The kinds of
nanoparticles comprise metals (Cu, Al, Fe, Ag), metal oxides, carbides (Silicon carbide, Titanium
carbide), and nonometals (SWCNT and MWCNT). The thermal conductivity of a great deal of
industrial fluids (base fluids), such as kerosene oil, grease, motor oil, propylene glycol and ethylene
glycol etc., is incredibly low. Masuda et al. supplied the initial proposal for dispersing nanomaterials
in the base liquid [1]. Choi et al. [2] later came up with the phrase “nanofluid.” Systems based on
nanofluids have applications in a wide range of industries, including heat exchangers, solar collectors,
automotive cooling, nuclear reactor cooling, and electronic cooling. Hybrid nanofluid, a mixture of
two different types of nanoparticles, has been the focus of several experiments [3,4]. But these types of
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hybrid nanoparticles are used to increase thermal conductivity as compared to nanofluid. Riaz et al. [5]
executed the computational study for hybrid nanofluids with heat exchangers. Khan et al. [6] studied
fundamental aspects of hybrid nanomaterial-confined yaw cylinders. For a hybrid nanofluid issue
induced by a slanted spinning disc, Acharya [7] used spectral quasi-linearization numerical methods.
In contrast with nanoparticles, hybrid nanofluids improved the rate of transmission of heat at the
surface, according to Suresh et al.’s [8] research. The contact of fluid with solid objects creates
stagnation points. Near the point of stagnation, the flow manifests maximal levels of heat transmission,
static push, and mass discharge. Stagnation flows are essential for friction reduction, transpiration
cooling (such as cooling a nuclear activator), some hydraulic and industrial operations. Weidman [9]
thoroughly explored the hybrid nanofluid non-axisymmetric thermal potential. The flow and heat
transfer examinations of nanofluid at the stagnation point on an exponentially surface affected by
a magnetic field were covered by Ur Rehman et al. [10]. When a fluid strikes a surface obliquely at
any angle of occurrence, oblique stagnation point flow occurs. An aircraft wing or blood flow at the
intersection of the anterior cerebral artery (ACA) and the anterior communicating artery are both
instances of such flows. Yuan et al. [11] scrutinised the effect of mixed convection on the flow of viscous
fluid near an oblique stagnation point. The slip boundary circumstance for rotating fluid stagnation
point flow via power law lubricant was identified by Andersson [12]. Recently, scientists conducted
research into heat transmission in non-Newtonian stagnation point flow via lubricant sheets. The
benefits of lubricated surface over oblique stagnation point flow of second-grade fluid with mass
and heat flux have been investigated by Abbasi et al. [13] for hydraulic systems. Nadeem et al. [14]
discovered the effects of a lubricated surface on a micropolar fluid’s oblique stagnation point flow.
The unique type of flow was initially developed by Wang [15] by extending the sheet. Analysing MHD
has fundamental significance for manufacturing, structure, and material investigations. It is greatest
significance during the period related to drug discontinuation, asthma cure, cancer treatments, and
generator intensity. Some recent research articles that address the topic of MHD flow inside a porous
medium with irreversibility analysis and the influence of unsteadiness and Brownian flux on boundary
extent are referred to as [16–18]. The above literature exhibits the study of nanofluids and orthogonal
stagnation flows under various configurations. There is still no solution for the oblique stagnation flow
using Casson fluid with MHD over the lubricant surface. We will find solutions. A hybrid nanofluid
studied over a lubricated surface is considered in this evaluation, influenced by the magnetic effect.
BVP [mid-rich] on the Maple platform is used to address numerically the simulated flow problem.
Graphs and tables are used to demonstrate the results for each of the parameters without dimensions
and to provide an appropriate explanation. By comparing our results to previous publications, we
were able to figure out that all our findings were in excellent agreement, proving the accuracy of our
research.

2 Problem Formulation and Governing Equations

Fig. 1 considers an incompressible, non-Newtonian Casson hybrid nanofluid flowing steadily as
it orthogonally impacts an endless number of lubricated surfaces in the xy-plane. The fluid is placed
in the upper half of plan y ≥ 0. Casson fluid tensor stress is as follows [19]:

τij = −Pij +

⎧⎪⎪⎨⎪⎪⎩
2
[
μB + Py√

2π

]
eijπ > πc

2
[
μB + Py√

2π

]
eijπ < πc

⎫⎪⎪⎬⎪⎪⎭
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where π = eijeij and eij, (i, j) are deformation rate components, π represents the deformation rate, πc

shows critical value. Whereas μB exhibits viscosity parameter. Py is stress of the fluid slurry. Power law
fluid flow rate Q is restricted as given below:

Q =
∫

0

U (x, y) dy

Q =
∫ H

0

U (x, y) dy

Figure 1: Geometrical description of the issue

A 2-D Oblique stagnation point flow is investigated past a power law fluid lubricated surface
with magnetohydrodynamic (MHD) effects. Under this assumption the governing equation are as
follows [20]:
∂u
∂x

+ ∂u
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

= − ∂p
ρhnf ∂x

+ νhnf

(
1 + 1

β

)(
∂2u

∂x2 + ∂2u

∂y2

)
− 4a2σhnf B0

2u
ρhnf (4a2 + b2)

, (2)

u
∂v
∂x

+ v
∂v
∂y

= − ∂p
ρhnf ∂y

+ νhnf

(
1 + 1

β

)(
∂2v

∂x2 + ∂2v

∂y2

)
− 4a2σhnf B0

2v
ρhnf (4a2 + b2)

, (3)

u
∂T
∂x

+ v
∂T
∂y

= αhnf

(
∂2T

∂x2 + ∂2T

∂y2

)
, (4)

The boundary condition are

u (x, 0) = 0, v (y, 0) = 0, v (x, y1) = 0, ∀ y1 ∈ [0, δ (x)] ,

T = TW at y = 0, T = T∞ as y = ∞. (5)

The impinging velocity will not distribute owing to power law fluid their vertical velocity is
always zero.
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where μL is the viscosity of lubrication, then

μhnf

(
1 + 1

β

)
du
dy

= μL

dU
dy

(6)

Suppose that
dU
dy

� dÛ
dy

then μL can be composed as

μL = k∗
1

(
dÛ
dy

)n−1

(7)

where k∗
1 and n are coefficient of viscosity and flow behavior index of lubricant, respectively.

Let be velocity components which is given below is used to convert PDEs into ODEs:

u = axf
′
(y) + bg (y)

v = −af (y) (8)

H0 = B0√
4a2 + b2

(
−bî + 2aĵ

)
(9)

Here some constant values are a, b and MHD field effect is H0.

μnf = μf

(1 − ϕ)
2.5
[
(1 − ϕ) ρf + ϕρs

] , ρnf = (1 − ϕ) ρf + ϕρs, νnf = μf

[(1 − ϕ) ρf + ϕρf ] (1 − ϕ)
2.5 ,

(
ρCp

)
nf

= (1 − ϕ)
(
ρCp

)
f
+ ϕ

(
ρCp

)
s
,

knf

kf

=
(
ks + 2kf

)− 2ϕ
(
kf − ks

)(
ks + 2kf

)+ ϕ
(
kf − ks

) , M = 4a2σhnf B0
2

4a2 + b2 ,

Pr = νf

kf

, ξ =
√

a
vf

y, νnf = μf

[(1 − ϕ) ρf + ϕρf ] (1 − ϕ)
2.5 , (10)

using above velocity component, we got these results which are below:

vhnf

(
1 + 1

β

)
f

(iv) + af f ′′ − af ′ f ′′ − 4aB0
2
σhnf f ′′

(4a2 + b2) ρhnf

= 0, (11)

vhnf

(
1 + 1

β

)
g′′′ + a

(
f g′′ − gf ′′

)
− 4aσhnf B0

2g′

(4a2 + b2) ρhnf

= 0, (12)

After taking integration of Eqs. (11) and (12), we get

vhnf

a

(
1 + 1

β

)
f ′′′ + f

′′
f − f

2 +
4aσhnf B0

2

(
1 − f

′2
)

(4a2 + b2) ρhnf

+ 1 = 0, (13)

vhnf

a

(
1 + 1

β

)
g′′ + f

′
g − f g′ − 4aσhnf B0

2
(g − y + β)

(4a2 + b2) ρhnf

+ (β − α) = 0, (14)

Boundary condition of above Eqs. (13) and (14) becomes (15) below here:

f
′
(∞) = 1, g′ (∞) = 1, f (∞) = y − A, g (∞) = y − B, (15)
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With the help of similarty transformation, we changed into a dimensionless equation:

y = y
√

a
vf

, f (y) = f (y)

√
a
vf

, g (y) = g (y)

√
a
vf

, T = T − T∞
TW − T∞

. (16)

We got these Diemensional ODE’s (17−19) from above using similarty trasnformation:

vhnf

vf

(
1 + 1

β

)
f ′′′ + ff ′′ − f ′2 +

M2
σhnf

σf

(1 − f ′)

ρhnf

ρf

+ 1 = 0, (17)

vhnf

vf

(
1 + 1

β

)
g′′ + (fg′ − f ′g) −

M2
σhnf

σf

(g − y + β)

ρhnf

ρf

− (β − α) = 0, (18)

αhnf θ
′′

pr

+ f θ ′ = 0, (19)

Boundary conditions are as follows:(
1 + 1

β

)
f ′′ (0) = μf

μnf

λ(f ′ (0))2n, (20)

(
1 + 1

β

)
f ′ (0) = μf

μnf

λ(f ′ (0))2n−1g (0) , (21)

λ =
√

vf x2n−1a2n

μf a
3
2 (2Q)

n
, (22)

θ (0) = 1, θ (∞) = 0, g (∞) = y − β, f (∞) = y − α, f (0) = 0, f ′ (∞) = 1. (23)

The formulas for Cf and Nu are

Cf = τw

1
2
ρf U 2

w

, Nu = xqw

kf

(
Tw − T∞

) , (24)

where τw, qw are local wall shear stress and the surface heat flux defined by

τw =
[(

μnf + μr

) ∂u
∂y

+ μrN
]∣∣∣∣

y=0

, qw = −knf

∂T
∂y

∣∣∣∣∣
y=0

, (25)

by using Eq. (8), the dimensionless values of Cf and Nu are

Cf =
2
(
μhnf

)√
Ref ′′ + bg′

a√
Reμf

, Nu = −khnf θ ′(0)

kf

, (26)

3 Numerical Method Explanation

Employing the Maple BVP [mid-rich] command with the option numeric, the set of nonlinear
ordinary differential Eqs. (17)–(19) combining boundary Eqs. (20)–(23) has been solved numerically.
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The 4,5 order Rung-Kutta Fehlberg approach for solving issues with boundary values was automati-
cally found by this software.

The RK 45 uses 4th and 5th order Rung-kutta scheme. The used algorithm is as follows:

lO = f
(
xj, yj

)
h,

l1 = f
(

xj + h
4

, yj + l0

4

)
h,

l2 = f
(

xj + 3h
8

, yj + 3l0

32
+ 9l1

32

)
h,

l3 = f
(

xj + 12h
13

, yj + 1932l0

2197
− 7200l1

2197
+ 7296l2

2197

)
h,

l4 = f
(

xj + h, yj + 439l0

216
− 8l1 + 3680l2

513
− 845l3

4104

)
h,

l5 = f
(

xj + h
2

, yj − 8l0

27
+ 2l1 − 3544l2

2565
+ 1859l3

4104
− 11l4

40

)
h,

yi+1 = yj − 8l0

27
+ 2l1 − 3544l2

2565
+ 1859l3

4104
− 11l4

40
,

yj+1 = yj + 25l0

216
+ 1408l2

2565
+ 2197l3

4104
− l4

5
,

zj+1 = zj + 16l0

135
+ 6656l2

12825
+ 28561l3

56430
− 9l4

5
+ 2l5

55
.

4 Results and Discussion

In this portion, we used excellent Maple packages and BVP [mid-rich] tackles for examining the
system of nonlinear differential Eqs. (17) to (19). The BVP [mid-rich] methodology uses mathematics
to tackle boundary value constraints. To explain how physical, non-dimensional characteristics like the
Casson parameter β, the magnetic field variable and the Prandtl number Pr effect nonlinear ODEs,
The Pr value determines the relative thickness of the momentum and thermal boundary extents in heat
transfer problems. Thus, for liquid metals, the temperature boundary layer is much thicker than the
velocity boundary layer. Lubricated parameter λ are examined by graphical representation. The results
of pertinent physical parameters on velocity profile f ′(η), g′(η) and temperature θ(η) are highlighted
in this part through graphics. Fig. 2 is developed to examine the behaviour of f (η), f ′(η) and f ′′(η).
f ′′(η) which is decreasing and gets its minimum value at the boundary. It is maximum at η = 0 and
minimum at η = 5. When the Hartmann number M is increased, the velocity profile f ′ increases. The
Hartmann number M is the ratio of electromagnetic force to viscous force. It decreases convective heat
transfer and fluid velocity. At higher Hartmann numbers M, the magnetic field represents fluid flow,
and conduction becomes the predominant mechanism of heat transfer. When we increase Hartmann
numbers M, heat transfer modes in MHD fluids gradually change from conduction to convection.
When Hartmann number M decreases, it reduces the boundary layer and magnitude of the velocity
profile. In Fig. 3, when we increase Hartmann number, its velocity increases.
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Figure 2: f (η) behavior over the values of η

Figure 3: f ′(η) for β = 4, Pr = 6.2

In Fig. 4, when the value of Hartmann number M increases and β = 4, the value of f(η) will
decrease. In Fig. 5, variation of Hartmann number M in increasing order at constant lubrication
parameter λ = −2 and Casson parameter β = 4. Lubrication parameter λ constant means
direct impact on the thickness of the oil film is constant because lubricant parameter is used to
find viscosity and coefficient describing the dependence of viscosity on temperature and pressure.
Figs. 6–9 show that when the Hartmann number M is increased but the Casson parameter β

= 4, 0, −4 is varied, the velocity profile g′(η) increases. The velocity field reduced when the
Casson parameter β values grow. However, the temperature rises as the Casson parameter β

rises. In Fig. 10, we increase the Casson parameter β = 1, .6, .36 then it is also decreasing g′(η).
When we increase the Casson parameter β, its temperature and thermal diffusivity are increasing.
Infinity is a large value of the Casson parameter β, and our problem becomes a Newtonian
fluid. Higher values of the Casson parameter β produce resistance in fluids, and the thickness
of the boundary layer reduces. Fig. 11 shows that the velocity profile g(η) is decreasing when
we increase the Hartmaan number from M = 0.4, 0.7, and 0.9. When other parameters are
constant. Temprature θ(η) profile in Fig. 12 Hartmaan number M increases from 0.5 to 4.5, at
β1 = −4 which temperature Profile θ(η) will decrease. We compared our results, and a good
agreement is found between present and current results in Table 3. Table 1 presents “Thermo
Physical characteristics of hybridnanofluid” and Table 2 describes “Thermo Physical properties of
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nanoparticles and base fluid”, respectively, are used to Present graphs and help us to find numerical
solution in maple BVP [mid-rich].

Figure 4: Plots showing f (η) for β = 2, λ = −4 and α = 0.6765

Figure 5: Plots showing f ′(η) for β = 2, β1 = −4 and α = 0.6765

Figure 6: Plots showing g′(η) for β = 4, β1 = 2 and α = 0.6765
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Figure 7: Plots showing g′(η) for β = −4, n = 0, λ = 0.2, β1 = 2 and α = 0.6765

Figure 8: Plots showing g′(η) for β = 0, n = 0, n = 0, λ = 0.2 and α = 0.6765

Figure 9: Plots showing g′(η) for β = 2, β1 = 4, λ = 0.2, α = 0.6765 and n = 0.5
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Figure 10: Plots showing g′(η) for M = 1, β1 = 0, λ = 0.2, n = 0.2 and α = 0.6765

Figure 11: Plots showing g(η) for β = 2, β1 = 4, α = 0.6765, λ = 0.2 and n = 0.5

Figure 12: Plots showing θ(η) for M = 0.5, 2.5, 4.5, β = 2, β1 = −4 and α = 0.6765
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Table 1: Thermo-physical characteristics of Hybride nanofluid [21,22]

Hybrid nanofluid

μhnf = μf[(
1 − ϕs1

) (
1 − ϕs2

)]2.5

ρhnf = [
(
1 − ϕs2

) {(
1 − ϕs1

)
ρ f + ϕs1ρs1

}+ ϕs2ρs2

(ρCp)hnf = [(1 − ϕs2){(1 − ϕs1)(ρCp)f + ϕs1(ρCp)s1}] + ϕs2(ρCp)s2⎡⎢⎢⎢⎢⎣
⎡⎢⎢⎢⎢⎣
(

ks1ϕs1 + ks2ϕs2(
ϕs1 + ϕs2

) + 2kf + 2
(
ks1ϕs1 + ks2ϕs2

)− 2kf

(
ϕs1 + ϕs2

))
(

ks1ϕs1 + ks2ϕs2(
ϕs1 + ϕs2

) + 2kf − (
ks1ϕs1 + ks2ϕs2

)+ kf

(
ϕs1 + ϕs2

))
⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦

νhnf =
μf

[(1 − ϕs1)(1 − ϕs2)]
2.5

[(1 − ϕs2){(1 − ϕs1)ρ f + ϕs1ρs1} + ϕs2ρs2

νhnf

νnf

=
[
(1 − ϕ)ρ f + ϕρ f

]
(1 − ϕ)

2.5

[(1 − ϕs1)(1 − ϕs2)]
2.5 [

(1 − ϕs2)
{
(1 − ϕs1)ρf + ϕs1ρs1

}+ ϕs2ρs2

αhnf

αf

=

[(
ks1

kf

− 2
)

− 2ϕs1

(
1 − ks1

kf

)][(
ks2

kf

− 2
)

− 2ϕs2

(
1 − ks2

kf

)]
[(

ks1

kf

+ 2
)

− 2ϕs1

(
1 − ks2

kf

)][(
ks2

kf

+ 2
)

+ 2ϕs2

(
1 − ks2

kf

)]
×
[
(1 − ϕs2)

{
(1 − ϕs1) + ϕs1

(ρCp)s1

(ρCp)f

}
+ ϕs2(ρCp)s2

(ρCp)f

]

σhnf

σf

=

(
σs1ϕs1 + σs2ϕs2

(ϕs1 + ϕs2)
+ 2σf + 2 (σs1ϕs1 + σs2ϕs2) − 2σf (ϕs1 + ϕs2)

)
(

σs1ϕs1 + σs2ϕs2

(ϕs1 + ϕs2)
+ 2σf − 2 (σs1ϕs1 + σs2ϕs2) + σf (ϕs1 + ϕs2)

)

Table 2: Thermo-physical characteristics of nano-materials and water of [22]

Thermal physical properties Fluid phase (water) Copper (Cu) Silver (Ag)

Cp

(
J

kgK

)
4179 385 235

(Continued)
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Table 2 (continued)

Thermal physical properties Fluid phase (water) Copper (Cu) Silver (Ag)

ρ

(
kg
m3

)
997.1 8933 10500

k
(

W
mK

)
0.613 400 429

β ∗ 105 21 1.67 1.89
σ 0.05 5.96 ×107 6.3 × 107

Table 3: Comparative values of f ′′(y) when M = 0.5

β f ′′(y)

Present results Hayat et al. [22]

0.1 0.4154 0.4045
0.4 0.7321 0.7106
0.7 0.8751 0.8530

Table 4: We calculated this through maple

M Hartmann
number

β Casson
parameter

λ lubrication
parameter

N index of
lubrication

Pr Prandtl
number

Cf θ ′(η)

.4 2 .2 6.2 1.7546

.5 6.2 1.6747

.6 1.5851
.5 1.7546
.66 1.6986
.8 1.5970

.6 1.9141

.5 2.0375

.8 1.750
.5 0.5 1.77646 .91152
.6 0.2 1.74056 .78914
.7 0.1 1.82999 .69193

5 Concluding Remarks

In the present investigation, water served as the acting base fluid, and we explored the MHD
oblique-stagnation flow of a hybrid nanofluid into an oscillatory surface containing metal nanoparti-
cles (Cu and Ag). Temperature T and the influence of the velocity distribution are additionally taken
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into account. Numerical solutions of the governing equations are carried out utilising BVP [mid-
rich] in Maple. After recognising the problem category (BVP) by itself. The velocity and temperature
distributions of nanofluids are tested against various variables. Table 4 presents numerical data for
skin friction and heat transfer efficiency. The significant results from our inquiry have been outlined
below:

• Hartman number M is discussed in the graphs.

• g′(η), θ ′(η) increases when Hartmann number M increases.

• Skin friction will decrease when it increases M.

The index of the parameter n will increase when we increase it M.
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