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ABSTRACT

In this study, we aim to investigate certain triple integral transform and its application to a class of partial differential
equations. We discuss various properties of the new transform including inversion, linearity, existence, scaling and
shifting, etc. Then, we derive several results enfolding partial derivatives and establish a multi-convolution theorem.
Further, we apply the aforementioned transform to some classical functions and many types of partial differential
equations involving heat equations, wave equations, Laplace equations, and Poisson equations as well. Moreover, we
draw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving different
values in their variables.
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1 Introduction

Mathematical modeling is one of the main aspects of mathematics that deals with the real-life
problems involved in various fields of science. Mathematical modeling transforms life problems into
mathematical models and analyzes models mathematically. It is generally used in the computational
theory of the field of natural sciences, computer sciences, engineering and social sciences as well.
Mathematical models are the cornerstone of the modern scientific understanding of sound, heat, dif-
fusion, static electricity, thermodynamics, fluid dynamics, elasticity, quantum mechanics and general
relativity. They can be generated from various mathematical considerations comprising differential
geometry and calculus of variation. Partial differential equations (PDEs) occupy a large sector of
oriented scientific fields in physics and engineering. Various methods have been developed over the
years to find solutions of partial differential equations, some of which reduce partial differential
equations to one or more than one ordinary differential equation (ODE). However, a number of
approaches have been proposed to deal with partial differential equations, such as the method of
group static solutions [1,2], the non-classical method of group static [3], the method of partially
invariant solutions [1] and the general method of variable separation for both linear systems. In the
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non-linear equations we recall the Hamilton-Jacobi equation, residual power series [4], reproducing
kernel reproduction [5,6], Laplace residual power series and others [7–9].

Partial differential equations can also be handled using integral transformations to determine
the exact solution to the target equations without the need for linearization or discretization. The
transformation techniques are powerful and straightforward. Therefore, scientists have put a lot of
efforts into understanding and improving techniques. Many integral transforms have been developed
such as the Laplace transform [10], Novel transform [11], Sumudu transform [12], Elzaki transform
[13], Natural transform [14], ARA transform [15], formable transform [16] and others [17–19].

In the sequel, extensions of double transformations are extensively developed for solving PDEs
and obtaining results by performing solutions based on numerical approaches [20]. Double transforms
such as the double Laplace transform [21–23], double Shehu transform [24], double Kamal transform
[25], double Sumudu transform [26–31], double Elzaki transform [32], double Laplace-Sumudu
transform [33–35] and ARA–Sumudu transform [36,37] have been considered in the literature. The
ARA transform [15] was used for solving ordinary fractional differential equations [38] and some
nonlinear PDEs [39]. The double ARA transform was employed for some kinds of partial and integral
equations in [40–47].

In this work, we extend the idea of the single and double ARA transforms to a triple ARA
transform which can be used in solving larger classes of PDEs. In this context, we define the new
transform and present its main properties. More results regarding the existence, partial derivatives, and
convolution theorems are also presented. However, the novelty of this study fulfills the generalization
of the double ARA transform and its application to wider classes of PDEs.

Motivation in this work emerges from introducing a new approach that solves partial differential
equations of multi-variables. We present characteristics of the transform and compute its values for
some basic functions. Further, we show its applicability to various types of PDEs of great importance
in physics. However, we organize this paper as follows. In Sections 2 and 3, we discuss the single and
double ARA transforms and obtain their main properties. In Section 4, we introduce the triple ARA
transform and prove some basic results on existence, elementary functions, convolutions, and partial
derivatives. In Section 5, we apply the TARAT in solving PDEs and consider some examples and their
3D graphs. In Section 6, we give a conclusion section.

2 Basic Definitions and Preliminary Results

In this section, we recall some definitions and notations from [15] and establish several basic
properties of the ARA transform.

Definition 2.1. The nth order ARA transform of a continuous function ψ is defined over an infinite
interval (0,∞) as

Gn [ψ (x)] (s) = � (n, s) = s
∫ ∞

0

xn−1e−sxψ (x) dx, s > 0, (1)

provided the integral exists. In particular, for n = 1, the ARA integral transform of a continuous
function ψ is given by

G1 [ψ (x)] (s) = � (s) = s
∫ ∞

0

e−sxψ (x) dx, s > 0, (2)

when the integral exists. For simplicity, we make use of the notation G [ψ ] of the ARA transform to
replacce the notation G1 [ψ ].
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The inverse ARA transform is defined by [15]

G−1
x [� (s)] = ψ (x) = 1

2π i

∫ r+i∞

r−i∞

esx

s
� (s) ds. (3)

Following is a result which is very needful in the sequel.

Theorem 2.1. Let the function ψ be piecewise continuous in every finite closed interval 0 ≤ x ≤ α

[15], and satisfies the condition∣∣xn−1ψ (x)
∣∣ ≤ Reαx,

where R is a positive constant. Then, the ARA transform exists for all s > α, α being real constant.

Proof. By employing the definition of the ARA transform we obtain

|� (n, s)| =
∣∣∣∣s

∫ ∞

0

xn−1e−sxψ (x) dx

∣∣∣∣ ,

which reveals

|� (n, s)| ≤ s

∣∣∣∣
∫ ∞

0

xn−1e−sxψ (x) dx

∣∣∣∣ ≤ s
∫ ∞

0

e−sx
∣∣xn−1ψ (x)

∣∣ dx ≤ s
∫ ∞

0

e−sxReαxdx

= sR
∫ ∞

0

e−(s−α)xdx = sR
s − α

e−(s−α), for all s > α.

It is clear from the above equation that the improper integral converges for all s > α. Therefore,
the Gn+1 [ψ ] exists for all s > α, α being a real constant.

This completes the proof of the theorem.

Note that, the existence condition of the ARA transform fulfils when the function ψ is continuous
and possessing the property.

|ψ (x)| ≤ Reαx, for some real constant R.

Let � (s) = G [ψ ], Q(s) = G [q] and a, b ∈ R. Then, the following are some basic properties of the
ARA transform:

• G [aq (x) + bψ(x)] = aG [q (x)] + bG [ψ(x)] .

• G−1 [aQ (s) + b� (s)] = aG−1 [Q (s)] + bG−1 [� (s)] .

• G [xα] = Γ(α + 1)

sα
, α > 0.

• G [eax] = s
s − a

, a ∈ R.

• G [ψ(n) (x)] = snG [ψ (x)] − ∑n

k=1 sn−k+1ψ(k−1) (0) .

• G [xnψ (x)] = �(1 + n, s), n ∈ N.

3 Double ARA Transform

This section discusses the new double ARA transform DARAT. It provides fundamental proper-
ties and characteristics of the transform including existence conditions, linearity and inversion formula
for the proposed new double transform. Moreover, it provides some important properties and results
and computes the double ARA transform of some elementary functions.
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Definition 3.1. Let ψ be a continuous function of two positive variables x and y. Then, the DARAT
of ψ is defined by

Gx,y [ψ (x, y)] = � (s, p) = sp
∫ ∞

0

∫ ∞

0

e−(sx+py)ψ (x, y) dxdy, s, p > 0, (4)

provided the integral exists. Clearly, the double ARA transform is linear, which can be shown from
the equation

Gx,y [Aq (x, y) + Bψ (x, y)] = sp
∫ ∞

0

∫ ∞

0

e−(sx+py) (Aq (x, y) + Bψ (x, y)) dxdy

= Asp
∫ ∞

0

∫ ∞

0

e−(sx+py)q (x, y) dxdy

+ Bsp
∫ ∞

0

∫ ∞

0

e−(sx+py)ψ (x, y) dxdy = AGx,y [q (x, y)] + BGx,y [ψ (x, y)] ,

provided A and B are constants and, Gx,y [q] and Gx,y [ψ ] exist. The inverse DARAT is defined by

G−1
x,y [� (s, p)] = G−1

x

[
G−1

y [� (s, p)]
] =

(
1

2π i

) ∫ c+i∞

c−i∞

esx

s
ds

(
1

2π i

) ∫ r+i∞

r−i∞

epy

p
� (s, p) dp = ψ (x, y) .

Now, we state without proof the following theorems [40,41].

Theorem 3.1 [40] Let ψ be a continuous function of exponential orders α and β, defined on the
region [0, X) × [0, Y). Then � (s, p) exists for s and p, provided Re(s) > α and Re(p) > β.

Theorem 3.2 (Periodic Function) [40] Let Gx,y [ψ ] exist, where ψ is a periodic function of periods
α > 0 and β > 0, and ψ (x + α, y + β) = ψ (x, y) , ∀x, y. Then,

Gx,y [ψ (x, y)] = 1
(1 − e−(sα+pβ))

(
sp

∫ α

0

∫ β

0

e−(sx+py) (ψ (x, y)) dxdy
)

.

Theorem 3.3 (Heaviside Function) [40] Let Gx,y [ψ(x, y)] = � (s, p) be exist. Then, we have

Gx,y [ψ (x − δ, y − ε) H (x − δ, y − ε)] = e−sδ−pε� (s, p) ,

where H(x − δ, y − ε) is the Heaviside function defined by

H (x − δ, y − ε) =
{

1, x > δ, y > ε,
0, otherwise.

Theorem 3.4 (Convolution Theorem). [40] Let Gx,y [q] and Gx,y [ψ ] be given such that Gx,y [q(x, y)] =
Q(s, p) and Gx,y [ψ (x, y)] = �(s, p). Then, we have

Gx,y [q (x, y) ∗ ∗ψ (x, y)] = 1
sp

Q (s, p)� (s, p) , (5)

where q(x, y) ∗ ∗ψ(x, y) = ∫ x

0

∫ y

0
q(x − δ, y − ε)ψ(δ, ε) dδdε and the symbol ∗∗ denotes the double

convolution with respect to x and y.

In the following, we present Table 1 to illustrate the values of the double ARA transform of some
elementary functions and give main properties of the transform.
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Table 1: DARAT of some basic functions and its main properties

ψ (x, y) Gx,y [ψ (x, y)] = � (s, p)

w (x) u (y) , x, y > 0 Gx [w (x)]Gy [u (y)]
1 1

xαyβ
Γ (α + 1)Γ (β + 1)

sαpβ
, Re (α) > −1, Re (β) > −1

eαx+βy
sp

(s − α) (p − β)

sin (αx + βy)
sp (sβ + pα)

(s2 + α2) (p2 + β2)

cos (αx + βy)
sp (sp − αβ)

(s2 + α2) (p2 + β2)

sinh (αx + βy)
sp (sβ + pα)

(s2 − α2) (p2 − β2)

cosh (αx + βy)
sp (sp + αβ)

(s2 − α2) (p2 − β2)

eαx+βyψ (x, y)
sp

(s − α) (p − β)
� (s − α, p − β)

∂ψ (x, y)

∂y
p� (s, p) − pG [ψ (x, 0)]

∂ψ (x, y)

∂x
s� (s, p) − sG [ψ (0, y)]

∂2ψ (x, y)

∂y2
p2� (s, p) − p2G [ψ (x, 0)] − pG

[
∂ψ (x, 0)

∂y

]
∂2ψ (x, y)

∂x2
s2� (s, p) − s2G [ψ (0, y)] − sG

[
∂ψ (0, y)

∂x

]
∂2ψ (x, y)

∂x∂y
sp� (s, p) − spG [ψ (x, 0)] − spG [ψ (0, y)] + spψ (0, 0)

4 The Triple ARA Transform

In this section, we introduce a new triple transform, called the triple ARA transform (TARAT),
and derive some basic properties and establish certain results involving partial derivatives.

Definition 4.1. Let ψ be a continuous function. Then, the triple ARA transform of ψ is defined by

Gx,y,t [ψ(x, y, t)] = Ψ(s, p, k) = Gx{Gy{Gt{ψ(x, y, t); t → k}; y → p}; x → s}

= spk
∫ ∞

0

∫ ∞

0

∫ ∞

0

e−sx−py−ktψ(x, y, t)dxdydt,

where x, y, t > 0 and, s, p and k are complex variables of the transform. The inverse triple ARA
transform is given by
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ψ (x, y, t) = G−1
x,y,t [Ψ (s, p, k)] = 1

2π

∫ a+i∞

a−i∞

esx

s
× 1

2π i

∫ b+i∞

b−i∞

epy

p
× 1

2π i

∫ c+i∞

c−i∞

ekt

k
Ψ (s, p, k) dk dp ds.

Note that, the triple ARA transform is a linear transform, due to the fact that if ψ and q are two
continuous functions, then

Gx,y,t [αψ (x, y, t) + βq (x, y, t)] = spk
∫ ∞

0

∫ ∞

0

∫ ∞

0

[αψ (x, y, t) + βq (x, y, t)] dxdydt

= αspk
∫ ∞

0

∫ ∞

0

∫ ∞

0

ψ (x, y, t) dxdydt + βspk
∫ ∞

0

∫ ∞

0

∫ ∞

0

q (x, y, t) dxdydt

= αΨ (s, p, k) + βQ (s, p, k) .

To simplify the application of the triple ARA transform, we need to recall the following notations:

Gx [ψ (x, y, t)] = Ψ(s, y, t) is the single ARA transform of the function ψ with respect to x, and

Gxy [ψ (x, y, t)] = Ψ(s, p, t) is the double ARA transform of the function ψ with respect to x and y.

By a similarity in the variables x, y and t, we may consider the following notations:

Gy [ψ (x, y, t)] = Ψ(x, p, t),Gt [ψ (x, y, t)] = Ψ (x, y, k) ,Gx,t [ψ (x, y, t)] = Ψ(s, y, k),

Gyt [ψ (x, y, t)] = Ψ (x, p, k) .

The existence conditions of the triple ARA transform are presented in the following theorem.

Theorem 4.1. Let ψ be a continuous function on I 3, where I = [0, ∞), and satisfy the following
condition

|ψ (x, y, t)| ≤ Meαx+βy+γ t,

where α, β, γ and M > 0. Then, the triple ARA transform exists for all Re (s) > α, Re (p) > β and
Re (k) > γ . In addition, the triple ARA transform is unique, i.e., if Ψ = Q, then ψ = q.

Proof. Assume that α, β, γ > 0 such that Re(s) > α, Re(p) > β and Re(k) > γ . Then, we have

‖Ψ (s, p, k)‖ = ∥∥Gx,y,t [ψ (x, y, t) , (s, p, k)]
∥∥ ≤ |spk|

∫ ∞

0

∫ ∞

0

∫ ∞

0

|ψ (x, y, t)| e−Re(s)x−Re(p)y−Re(k)tdxdydt

≤ M
|s|

α − Re (s)
× |p|

β − Re (p)
× |k|

γ − Re (k)
.

Also, the inverse triple ARA transform implies that

ψ(x, y, t) = 1
2π i

∫ a+i∞

a−i∞

esx

s
× 1

2π i

∫ b+i∞

b−i∞

epy

p
× 1

2π i

∫ c+i∞

c−i∞

ekt

k
Ψ (s, p, k) dk dp ds

= 1
2π i

∫ a+i∞

a−i∞

esx

s
× 1

2π i

∫ b+i∞

b−i∞

epy

p
× 1

2π i

∫ c+i∞

c−i∞

ekt

k
Q (s, p, k) dk dp ds = q (x, y, t) .

This finishes the proof of the theorem.

In Table 2, we provide some values of the triple ARA transform for some basic functions.
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Table 2: TARAT of some basic functions

ψ (x, y, t) Gxyt [ψ (x, y, t)] = Ψ (s, p, k)

C ∈ R C

xαyβtγ
Γ(α + 1)

sα

Γ(β + 1)

pβ

Γ(γ + 1)

kγ
, for all α, β, γ > −1

cos (ax + by + ct) spk
(sp − ab) k − (ap + bs) c

(s2 + a2) (p2 + b2) (k2 + c2)

sin (ax + by + ct) spk
(sp − ab) c + (ap + bs) k

(s2 + a2) (p2 + b2) (k2 + c2)

cosh (ax + by + ct)
spk
2

(
1

(s − a) (p − b) (k − c)
+ 1

(s + a) (p + b) (k + c)

)

sinh (ax + by + ct)
spk
2

(
1

(s − a) (p − b) (k − c)
− 1

(s + a) (p + b) (k + c)

)

Now, we introduce some properties of the new approach.

Property 4.1. (Change of scale property) Let ψ be a continuous function on which the triple ARA
transform exists. Then, we have

Gx,y,t [ψ (ax, by, ct)] = Ψ

(
s
a

,
p
b

,
k
c

)
, (6)

where a, b and c are real constants.

Proof. Based on the definition of the triple ARA transform, we have

Gx,y,t [ψ (ax, by, ct)] = spk
∫ ∞

0

∫ ∞

0

∫ ∞

0

e−sx−py−kt.ψ(ax, by, ct) dxdydt. (7)

Putting ax = u, by = v and ct = w ensures that Eq. (7) becomes

Gx,y,t [ψ (ax, by, ct)] = spk
∫ ∞

0

∫ ∞

0

∫ ∞

0

e− s
a u− p

b v− k
c wψ (u, v, w)

du
a

dv
b

dw
c

= s
a

p
b

k
c

∫ ∞

0

∫ ∞

0

∫ ∞

0

e− s
a u− p

b v− k
c wψ (u, v, w) du dv dw = Ψ

(
s
a

,
p
b

,
k
c

)
.

This finishes the proof of our result.

Property 4.2. (First shifting property) Let ψ be a continuous function on which the triple ARA
transform exists. Then, we have

Gx,y,t

[
eax+by+ctψ (x, y, t)

] = spk
(s − a) (p − b) (k − c)

Ψ (s − a, p − b, k − c) ,

where a, b and c are real constants.

Proof. Based on the definition of the triple ARA transform, we obtain

Gx,y,t

[
eax+by+ctψ (x, y, t)

] = spk
∫ ∞

0

∫ ∞

0

∫ ∞

0

eax+by+ct.e−sx−py−kt.ψ (x, y, t) dxdydt
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= spk
∫ ∞

0

∫ ∞

0

∫ ∞

0

e−(s−a)x.e−(p−b)ye−(k−c)t.ψ (x, y, t) dxdydt

= spk. (s − a) (p − b) (k − c)
(s − a) (p − b) (k − c)

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−(s−a)x.e−(p−b)ye−(k−c)t.ψ (x, y, t) dx dy dt

= spk
(s − a) (p − b) (k − c)

Ψ (s − a, p − b, k − c) .

This finishes the proof of our result.

The following result is very useful in solving some kinds of partial differential equations.

Theorem 4.2. If Gx,y,t [ψ (x, y, t)] = Ψ (s, p, k) be given. Then, we have

Gx,y,t [xnymtrψ (x, y, t)] = (−1)
n+m+r × spk

∂n+m+r

∂sn∂pm∂kr

(
Ψ (s, p, k)

spk

)
, (8)

where n, m and r ∈ N.

Proof: The definition of the triple ARA transform implies

Gx,y,t [xnymtrψ (x, y, t)] = spk
∫ ∞

0

∫ ∞

0

∫ ∞

0

e−sx−py−ktxnymtrψ (x, y, t) dx dy dt

= pk
∫ ∞

0

∫ ∞

0

e−py−ktymtr

(
s
∫ ∞

0

e−sxxnψ (x, y, t) dx
)

dy dt.

From the properties of the single ARA, we get

Gx,y,t [xnymtrψ (x, y, t)] = pk
∫ ∞

0

∫ ∞

0

ymtre−py−kts (−1)
n ∂n

∂sn

[Gx [ψ (x, y, t)]
s

]
dy dt.

Again, using some properties of the ARA transform to both variables y and t leads to write

Gx,y,t [xnymtrψ (x, y, t)] = (−1)
n
(−1)

m
(−1)

r spk
∂n+m+r

∂sn∂pm∂kr

(Gx,y,t [ψ (x, y, t)]
spk

)
.

This finishes the proof of the theorem.

The application of triple ARA on partial derivatives of different types is illustrated on the
following theorem.

Theorem 4.3. Let Ψ be the triple ARA transform of the function ψ . Then, the following hold true:

i) Gx,y,t

[
∂ψ (x, y, t)

∂x

]
= sΨ (s, p, k) − sΨ (0, p, k) .

ii) Gx,y,t

[
∂2ψ (x, y, t)

∂x2

]
= s2Ψ (s, p, k) − s2Ψ (0, p, k) − s

∂Ψ (0, p, k)

∂x
.

iii) Gx,y,t

[
∂3ψ (x, y, t)

∂x3

]
= s3Ψ (s, p, k) − s3Ψ (0, p, k) − s2

∂Ψ (0, p, k)

∂x
− s

∂2Ψ (0, p, k)

∂x2
.

iv) Gx,y,t

[
∂3ψ (x, y, t)

∂x∂y∂t

]
= spkΨ (s, p, k) − spkΨ (0, p, k) − spkΨ (s, 0, k) − spkΨ (s, p, 0) +

spkΨ (s, 0, 0) + spkΨ (0, p, 0) + spkΨ (0, 0, k) − spkψ (0, 0, 0) .
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Proof (i). From the definition of the triple ARA transform, we write

Gx,y,t

[
∂ψ (x, y, t)

∂x

]
= spk

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−sx−py−kt ∂ψ (x, y, t)
∂x

dx dy dt

= pk
∫ ∞

0

e−ktdt
∫ ∞

0

e−pydy
(

s
∫ ∞

0

e−sx ∂ψ (x, y, t)
∂x

dx
)

.

To solve the integration inside the brackets, we use the idea of integration by parts with the
assumptions that

u = e−sx and dv = ∂ψ (x, y, t)
∂x

to get

Gx,y,t

[
∂ψ (x, y, t)

∂x

]
= pk

∫ ∞

0

e−ktdt
∫ ∞

0

e−pydt
(

−sψ (0, y, t) + s2

∫ ∞

0

ψ (x, y, t) dx
)

= sΨ (s, p, k) − sΨ (0, p, k) .

(ii). By using part (i) of the theorem, it follows that:

Gx,y,t

[
∂2ψ (x, y, t)

∂x2

]
= Gx,y,t

[
∂

∂x

(
∂ψ (x, y, t)

∂x

)]
= sGx,y,t

[
∂ψ (x, y, t)

∂x

]
− s

∂Ψ (0, p, k)

∂x

= s2Ψ (s, p, k) − s2Ψ (0, p, k) − s
∂Ψ (0, p, k)

∂x
,

where,

∂Ψ (0, p, k)

∂x
= Gx,y,t

[
∂ψ (0, y, t)

∂x

]
.

Similarly, one can follow the proof of (iii) and (iv).

This proves the theorem.

In view of the similarity between x, y and t, one can conclude the rest of derivative rules which can
enlisted as follows.

The following property is a basic result from Theorem 4.3, and the proof can be obtained by
similar arguments to the above theorem.

Corollary 4.1. Let Ψ (s, p, k) = Gx,y,t [ψ (x, y, t)]. Then, we have the following results hold:

• Gx,y,t

[
∂ψ (x, y, t)

∂y

]
= pΨ (s, p, k) − pΨ (s, 0, k) .

• Gx,y,t

[
∂ψ (x, y, t)

∂t

]
= kΨ (s, p, k) − kΨ (s, p, 0) .

• Gx,y,t

[
∂2ψ (x, y, t)

∂x∂y

]
= spΨ (s, p, k) − spΨ (s, 0, k) − spΨ (0, p, k) + spΨ (0, 0, k) .

• Gx,y,t

[
∂2ψ (x, y, t)

∂x∂t

]
= skΨ (s, p, k) − skΨ (s, p, 0) − skΨ (0, p, k) + skΨ (0, p, 0) .

• Gx,y,t

[
∂2ψ(x, y, t)

∂y∂t

]
= pkΨ (s, p, k) − pkΨ (s, 0, k) − pkΨ (s, p, 0) + pkΨ (s, 0, 0).
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The following corollary presents a new application of the triple ARA transform, that is useful in
solving some kinds of integral equations.

Corollary 4.2. If Gx,y,t [ψ (x, y, t)] = �(s, p, k), then we have

Gx,y,t

[∫ t

0

∫ y

0

∫ x

0

ψ (u, v, w) du dv dw
]

= Ψ (s, p, k)

spk
, s, p, k > 0.

Proof. Suppose that

g (x, y, t) =
∫ t

0

∫ y

0

∫ x

0

ψ (u, v, w) du dv dw,

and g (0, 0, 0) = 0. Now, consider
∂3g(x, y, t)

∂x∂y∂t
= ψ (x, y, t) . (9)

Applying the triple ARA transform to both sides of Eq. (4), and using Theorem 4.3 suggest to
write

Gx,y,t

[
∂3g (x, y, t)

∂x∂y∂t

]
= Gx,y,t [ψ (x, y, t)] = Ψ (s, p, k) .

Thus, we write

Ψ (s, p, k) = Gx,y,t

[
∂3g (x, y, t)

∂x∂y∂t

]

= spk G (s, p, k) − spk G (s, p, 0) − spk G (S, 0, K) − spk G (0, p, k) + psk G (0, p, 0)

+ ksp G (0, 0, k) + spk G (s, 0, 0) − spk g (0, 0, 0) , = spk G (s, p, k) ,

which implies that

G (s, p, k) = 1
spk

Ψ (s, p, k) .

This ends the proof of our corollary.

Now we study the effect of the triple ARA on the Heaviside function.

Theorem 4.4. Let Gx,y,t [ψ (x, y, t)] = �(s, p, k). Then, we have

Gx,y,t [ψ (x − δ, y − ε, t − σ) H (x − δ, y − ε, t − σ)] = e−δs−εp−σk� (s, p, k) ,

where H(x, y, t) denotes the Heaviside function defined by

H (x − δ, y − ε, t − σ) =
{

1, x > δ, y > ε, t > σ

0, otherwise.

Proof. From the definition of the triple ARA transform, we have

Gx,y,t [ψ (x − δ, y − ε, t − σ) H (x − δ, y − ε, t − σ)]

= spk
∫ ∞

0

∫ ∞

0

∫ ∞

0

e−sx−py−kt [ψ (x − δ, y − ε, t − σ) H (x − δ, y − ε, t − σ)] dxdydt

= spk
∫ ∞

σ

∫ ∞

ε

∫ ∞

δ

e−sx−py−kt [ψ (x − δ, y − ε, t − σ)] dxdydt.
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Putting x − δ = ρ, y − ε = β and t − σ = λ in Eq. (32), we obtain

Gx,y,t [ψ (x − δ, y − ε, t − σ) H (x − δ, y − ε, t − σ)]

= spk
∫ ∞

0

∫ ∞

0

∫ ∞

0

e−s(ρ+δ)−p(β+ε)−k(λ+σ) [ψ (ρ, β, λ)] dρdβdλ.

Thus, we infer

Gx,y,t [ψ (x − δ, y − ε, t − σ) H (x − δ, y − ε, t − σ)]

= e−δs−εp−σk

(
spk

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−sρ−pβ−σλ [ψ (ρ, β, λ)] dρdβdλ

)

= e−δs−εp−σkΨ (s, p, k) .

This ends the proof of our theorem.

The following theorem presents the application of the triple ARA on the multi convolution
property.

Theorem 4.5. (Convolution Theorem) If Gx,y,t [ψ ] = Ψ and Gx,y,t [q] = Q, then we have

Gx,y,t [(ψ ∗ ∗ ∗ q) (x, y, t)] = 1
spk

Ψ (s, p, k) Q (s, p, k) ,

where

(ψ ∗ ∗ ∗ q) (x, y, t) =
∫ x

0

∫ y

0

∫ t

0

ψ (x − δ, y − ε, t − σ) q (δ, ε, σ) dδdεdσ .

Proof. Following the definition of the triple ARA transform, we write

Gx,y,t [(ψ ∗ ∗ ∗ q) (x, y, t)]

= spk
∫ ∞

0

∫ ∞

0

∫ ∞

0

e−sx−py−kt

(∫ x

0

∫ y

0

∫ t

0

ψ (x − δ, y − ε, t − σ) q (δ, ε, σ) dδdεdσ

)
dxdydt.

The definition of the Heaviside function implies

Gx,y,t [(ψ ∗ ∗ ∗ q) (x, y, t)]

= spk
∫ ∞

0

∫ ∞

0

∫ ∞

0

e−sx−py−kt

(∫ ∞

0

∫ ∞

0

∫ ∞

0

ψ (x − δ, y − ε, t − σ) H (x − δ, y − ε, t − σ)

×q (δ, ε, σ) dδdεdσ

)
dxdydt. (10)

Thus, we get

Gx,y,t [(ψ∗ ∗ ∗q) (x, y, t)]

=
∫ ∞

0

∫ ∞

0

∫ ∞

0

q (δ, ε, σ) dδdεdσ

(
spk

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−sx−py−ktψ (x − δ, y − ε, t − σ)

× H (x − δ, y − ε, t − σ)

)
dxdydt.
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Using Theorem 4.4 reveals

Gx,y,t [(ψ ∗ ∗ ∗ q) (x, y, t)] =
∫ ∞

0

∫ ∞

0

∫ ∞

0
q (δ, ε, σ) dδdεdσe−δs−εp−σkΨ (s, p, k)

= Ψ (s, p, k)

∫ ∞

0

∫ ∞

0

∫ ∞

0
e−δs−εp−σkq (δ, ε, σ) dδdεdσ = 1

spk
Ψ (s, p, k) Q (s, p, k) .

This completes the proof of the theorem.

5 Algorithm and Applications

In this section, we present an algorithm for using the triple ARA transform in solving partial
differential equations and provide solutions of some examples including partial differential equations.

5.1 Algorithm of the TARAT Method
To illustrate the method of using the triple ARA transform in solving partial differential equations,

let us consider the following partial differential equation:

L (ψ (x, y, t)) + A (ψ (x, y, t)) = g (x, y, t) , (11)

where L is any linear differential operator, with respect to x, y or t, A is any constant, ψ is the unknown
function and g is the source term. To apply the triple ARA transform method, we operate the TARAT
on both sides of Eq. (7) to get

Gx,y,t

[
L (ψ (x, y, t)) + Gx,y,t [Aψ (x, y, t)]

] = Gx,y,t [g (x, y, t)] ,

which yields

Gx,y,t [L (ψ (x, y, t))] + AΨ (s, p, k) = G (s, p, k) , (12)

where Ψ = Gx,y,t [ψ ] and G = Gx,y,t [g] . Now, since L and Gx,y,t are linear operators, then by running
the triple ARA transform on the operator L and doing some algebraic simplifications lead to the
following form

Ψ (s, p, k) H1 (s, p, k) + H2 (s, p, k) + AΨ (s, p, k) = G (s, p, k) , (13)

where H1 and H2 are functions depending on the discussed equation to be determined. Simplifying
Eq. (13) suggests to have

Ψ (s, p, k) = G (s, p, k) − H2 (s, p, k)

H1 (s, p, k) + A
. (14)

To obtain the solution in the original space, we apply the inverse triple ARA transform to Eq. (14)
to have

ψ (x, y, t) = G−1
x,y,t

[
G (s, p, k) − H2 (s, p, k)

H1 (s, p, k) + A

]
.

Hence, the desired result is therefore established.

5.2 Applications
In this section, we apply the triple ARA transform operator to solve the wave equation, heat

equation, Poisson equation and some few others.
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Example 1: Consider the following wave equation

2
∂2ψ (x, y, t)

∂t2
− ∂2ψ (x, y, t)

∂x2
− ∂2ψ (x, y, t)

∂y2
= 24t2 + 4y, (15)

where x, y ε R and t > 0 subject to the conditions:

ψ (0, y, t) = t4 + yt2, ψ (x, 0, t) = t4, ψ (x, y, 0) = 0,

∂ψ (0, y, t)
∂x

= sin y sin t,
∂ψ (x, 0, t)

∂y
= t2 + sin x sin t,

∂ψ (x, y, 0)

∂t
= sin x sin y. (16)

Solution: Operating the triple ARA transform to both sides of Eq. (5) yields

2Gx,y,t

[
∂2ψ (x, y, t)

∂t2

]
− Gx,y,t

[
∂2ψ (x, y, t)

∂x2

]
− Gx,y,t

[
∂2ψ (x, y, t)

∂y2

]

= Gx,y,t

[
24t2 + 4y

]
.

Hence, using the derivative properties implies

2

(
k2Ψ (s, p, k) −k2Ψ (s, p, 0) − k

∂Ψ (s, p, 0)

∂t

)

−
(

s2Ψ (s, p, k) − s2Ψ (0, p, k) − s
∂Ψ (0, p, k)

∂x

)

−
(

p2Ψ (s, p, k) − p2Ψ (s, 0, k) − p
∂Ψ (s, 0, k)

∂y

)
= 48

k2
+ 4

p
. (17)

To simplify Eq. (17), we find the transformed values of the conditions (16) as follows:

Ψ (0, p, k) = Gy,t [ψ (0, y, t)] = Gy,t

[
t4 + yt2

] = 24
k4

+ 2
pk2

,

Ψ (s, 0, k) = Gx,t [ψ (x, 0, t)] = Gx,t

[
t4
] = 24

k4
,

Ψ (s, p, 0) = Gx,y [ψ (x, y, 0)] = Gx,y [0] = 0,

∂Ψ (0, p, k)

∂x
= Gy,t

[
∂ψ (0, y, t)

∂x

]
= Gy,t [sin y sin t] = pk

(p2 + 1) (k2 + 1)
,

∂Ψ (s, 0, k)

∂y
= Gx,t

[
∂ψ (x, 0, t)

∂y

]
= Gx,t

[
t2 + sin x sin t

] = 2
k2

+ k
(s2 + 1) (k2 + 1)

,

∂Ψ (s, p, 0)

∂t
= Gx,y

[
∂ψ (x, y, 0)

∂t

]
= Gx,y [sin x sin y] = sp

(s2 + 1) (p2 + 1)
.

By substituting the above values and using simple calculations, we can derive

Ψ (s, p, k) = 24
k4

+ 2
pk2

+ spk
(s2 + 1)(p2 + 1)(k2 + 1)

. (18)
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Applying the inverse triple ARA transform G−1
x,y,t to Eq. (18), we obtain a solution to Example 1 in

the form

ψ (x, y, t) = t4 + yt2 + sin x sin y sin t.

The following Fig. 1 illustrates the contours 3D plot of the exact solution to Example 1, with
different values of the variables as follows.

Figure 1: Contour 3D plot of the solution to Example 1, ψ (x, y, t) with the values x ∈ [−2, 2] , y ∈
[−2, 2] and three values of t in (a) t ∈ [1, 2], (b) t = 1, 2, 3, (c) t = 1, 2, 3
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Example 2: Consider the heat partial differential equation
∂ψ (x, y, t)

∂t
= ∂2ψ (x, y, t)

∂x2
+ ∂2ψ (x, y, t)

∂y2
+ 2 cos (x + y) , (19)

where x, y ε R and t > 0 subject to the conditions:

ψ (0, y, t) = e−2t sin y + cos y, ψ (x, 0, t) = e−2t sin x + cos x,

ψ (x, y, 0) = sin (x + y) + cos (x + y) ,
∂ψ (0, y, t)

∂x
= e−2t cos y − sin y,

∂ψ (x, 0, t)
∂y

= e−2t cos x − sin x. (20)

Solution: Operating the triple ARA transform to both sides of Eq. (19) gives rise to

Gx,y,t

[
∂ψ (x, y, t)

∂t

]
= Gx,y,t

[
∂2ψ (x, y, t)

∂x2

]
+ Gx,y,t

[
∂2ψ (x, y, t)

∂y2

]
. + Gx,y,t [2 cos (x + y)] . (21)

Employing properties of the derivative infer

kΨ(s, p, k) − kΨ(s, p, 0)

= s2Ψ(s, p, k) − s2Ψ(0, p, k) − s
∂Ψ(0, p, k)

∂x
+ p2Ψ

(
s, p, k) − p2Ψ(s, 0, k

)

− pΨ(s, 0, k) + sp(sp − 1)

s2 + 1
. (22)

To simplify Eq. (22), we compute the transformed values of the conditions as follows:

Ψ (0, p, k) = Gy,t

[
e−2t sin y + cos y

] = pk
(p2 + 1) (k + 2)

+ p2

p2 + 1
,

Ψ (s, 0, k) = Gx,t

[
e−2t sin x + cos x

] = sk
(s2 + 1) (k + 2)

+ s2

s2 + 1
,

Ψ (s, p, 0) = Gx,y [sin (x + y) + cos (x + y)] = sp (s + p)

p2 + 1
+ sp (sp − 1)

s2 + 1
,

∂Ψ (0, p, k)

∂x
= Gy,t

[
e−2t cos y − sin y

] = p2k
(p2 + 1) (k + 2)

− p
p2 + 1

,

∂Ψ (s, 0, k)

∂y
= Gx,t

[
e−2t cos x − sin x

] = s2k
(s2 + 1) (k + 2)

− s
s2 + 1

.

Substituting the above values included in Eq. (22) and applying some calculations we reach the
conclusion

Ψ (s, p, k) = ksp(s + p)

(k + 2)(p2 + 1)
+ sp(sp − 1)

s2 + 1
. (23)

Applying the inverse G−1
x,y,t to Eq. (23), we get a solution in the original space as

ψ (x, y, t) = e−2t sin (x + y) + cos (x + y) .

Our example has, therefore, been solved.
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The following Fig. 2 illustrates the contours 3D plot of the exact solution to Example 2, with
different values of the variables as follows.

Figure 2: Contour the 3D plot of the solution to Example 2, ψ (x, y, t) with the values x ∈ [−2, 2] , y ∈
[−2, 2] and three values of t in (a) t ∈ [1, 2], (b) t = 1, 2, 3, (c) t = 1, 2, 3
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Example 3: Consider the following Poisson partial differential equation:
∂2ψ (x, y, t)

∂x2
+ ∂2ψ (x, y, t)

∂y2
+ ∂2ψ (x, y, t)

∂t2
= 2 sin x cos y sinh 2t, (24)

where x, y and t are positive real numbers subject to the initial conditions:

ψ (0, y, t) = 0, ψ (x, 0, t) = sin x sinh 2t, ψ (x, y, 0) = 0,

∂ψ (0, y, t)
∂x

= cos y sinh 2t,
∂ψ (x, 0, t)

∂y
= 0,

∂ψ (x, y, 0)

∂t
= 2 sin x cos y. (25)

Solution: By arguments alike to those employed for Examples 1 and 2, we apply the TARAT to
Eq. (24) and compute the transformed values of the initial conditions to infer

Ψ (0, p, k) = Gy,t [0] = 0,

Ψ (s, 0, k) = Gx,t [sin x sinh 2t] = sk
(s2 + 1) (k2 − 1)

,

Ψ (s, p, 0) = Gx,y [0] = 0,

∂Ψ (0, p, k)

∂x
= Gy,t [cos y − sinh 2t] = 2p2k

(p2 + 1) (k2 − 1)
,

∂Ψ (s, 0, k)

∂y
= Gx,t [0] = 0,

∂Ψ (s, p, 0)

∂t
= Gx,y [2sin x cosy] = 2sp2

(s2 + 1) (p2 + 1)
.

Thus, we have the solution, in the triple ARA space, as

Ψ (s, p, k) = 2sp2k
(s2 + 1)(p2 + 1)(k2 − 4)

. (26)

Now, we reach the solution to Example 3 in the original space, by applying the inverse TARAT
G−1

x,y,t to Eq. (26) to have

ψ (x, y, t) = G−1
x,y,t

[
2sp2k

(p2 + 1) (s2 + 1) (k2 − 4)

]
= sin x cos y sinh 2t.

Our example has been solved.

The following Fig. 3 illustrates the contours 3D plot of the exact solution to Example 3, with
different values of the variables as follows.
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Figure 3: Contour 3D plot of the solution to Example 3, ψ (x, y, t) with the values x ∈ [−2, 2] , y ∈
[−2, 2] and three values of t in (a) t ∈ [1, 2], (b) t = 1, 2, 3, (c) t = 1, 2, 3

Example 4: Consider the following Laplace partial differential equation:
∂2ψ (x, y, t)

∂x2
+ ∂2ψ (x, y, t)

∂y2
+ ∂2ψ (x, y, t)

∂t2
= 0, (27)
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where x, y and t are positive real numbers subject to the conditions:

ψ (0, y, t) = 0, ψ (x, 0, t) = 0, ψ (x, y, 0) = 0,

∂ψ (0, y, t)
∂x

= siny sinh
√

2t,
∂ψ (x, 0, t)

∂y
= sinx sinh

√
2t,

∂ψ (x, y, 0)

∂t
= √

2 sin x sin y. (28)

Solution: Following steps alike to those used in the previous examples, then by applying the
TARAT to the conditions in (28) and operating the triple ARA transform to Eq. (27) we establish that

Ψ (0, p, k) = Ψ (s, 0, k) = Ψ (s, p, 0) = 0,

∂Ψ (0, p, k)

∂x
=

√
2pk

(p2 + 1) (k2 − 2)
,

∂Ψ (s, 0, k)

∂y
=

√
2 sk

(s2 + 1) (k2 − 2)
,

∂Ψ (s, p, 0)

∂t
=

√
2 sp

(s2 + 1) (p2 + 1)
.

Thus, we get the solution in the triple ARA space in the form

Ψ (s, p, k) =
√

2 spk
(s2 + 1)(p2 + 1)(k2 − 2)

. (29)

Following that, we get a solution to Example 4 in the original space after applying the inverse
triple ARA transform G−1

x,y,t to Eq. (29) as

ψ (x, y, t) = G−1
x,y,t

[ √
2 spk

(s2 + 1) (p2 + 1) (k2 − 2)

]
= sin x sin y sinh

(√
2t

)
.

Our example has been solved.

The following Fig. 4 illustrates the contours 3D plot of the exact solution to Example 4, with
different values of the variables as follows.

Example 5: Consider the following partial differential equation
∂3ψ (x, y, t)

∂x∂y∂t
+ ψ (x, y, t) = cos x cos y cos t − sin x sin y sin t, (30)

where x, y and t are positive real numbers subject to the initial conditions

ψ (x, y, 0) = cos x cos y, ψ (x, 0, t) = cos x cos t, ψ (0, y, t) = cos y cos t,

ψ (x, 0, 0) = cos x, ψ (0, y, 0) = cos y,

ψ (0, 0, t) = cos t, ψ (0, 0, 0) = 1. (31)
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Figure 4: Contour 3D plot of the solution to Example 4, ψ (x, y, t) with the values x ∈ [−2, 2] , y ∈
[−2, 2] and three values of t in (a) t ∈ [1, 2], (b) t = 1, 2, 3, (c) t = 1, 2, 3

Solution: Applying the triple ARA transform to the condition (31) infers

Ψ (s, p, 0) = Gx,y [cos x cos y] = s2p2

(s2 + 1) (p2 + 1)
.

Ψ (s, 0, k) = Gx,t [cos x cos t] = s2k2

(s2 + 1) (k2 + 1)
.
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Ψ (0, p, k) = Gy,t [cos y cos t] = p2k2

(p2 + 1) (k2 + 1)
.

Ψ (s, 0, 0) = Gx [cos x] = s2

s2 + 1
.

Ψ (0, p, 0) = Gy [cos y] = p2

p2 + 1
.

Ψ (0, 0, k) = Gt [cos t] = k2

k2 + 1
.

Now, allowing the triple ARA transform to act on both sides of Eq. (31) and using the transformed
values of the conditions with simple calculations reveal

Gx,y,t

[
∂ψ (x, y, t)
∂x ∂y ∂t

]
+ Gx,y,t [ψ (x, y, t)] = Gx,y,t [cos x cos y cos t − sin x sin y sin t] .

This indeed implies

Ψ (s, p, k) = s2p2k2

(s2 + 1)(p2 + 1)(k2 + 1)
. (32)

Operating the inverse TARAT G−1
x,y,t to Eq. (32) gives

ψ (x, y, t) = G−1
x,y,t

[
s2p2k2

(s2 + 1) (p2 + 1) (k2 + 1)

]
= cos x cos y cos t.

Our example has then been solved.

The following Fig. 5 illustrates the contours 3D plot of the exact solution to Example 5, with
different values of the variables as follows.

Figure 5: (Continued)
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Figure 5: Contour 3D plot of the solution to Example 4, ψ (x, y, t) with the values x ∈ [−2, 2] , y ∈
[−2, 2] and three values of t in (a) t ∈ [1, 2], (b) t = 1, 2, 3, (c) t = 1, 2, 3

6 Conclusion

In this paper, a new triple transform called the triple ARA transform is presented and several
properties and theorems including linearity, existence, partial derivatives, and the multiple convolution
theorem are introduced. Tables that summarize the new results are established to illustrate the new
approach. The methodology of using the triple ARA transform in solving partial differential equations
is given and further examples of several types of partial differential equations involving heat, wave,
and Poisson equations are discussed. The outcomes have shown the simplicity of using the proposed
transform in different aspects. In future work, we aim to solve integral equations and nonlinear partial
differential equations based on the triple ARA transform.
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