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ABSTRACT

In clinical practice, the microscopic examination of urine sediment is considered an important in vitro examination
with many broad applications. Measuring the amount of each type of urine sediment allows for screening,
diagnosis and evaluation of kidney and urinary tract disease, providing insight into the specific type and severity.
However, manual urine sediment examination is labor-intensive, time-consuming, and subjective. Traditional
machine learning based object detection methods require hand-crafted features for localization and classification,
which have poor generalization capabilities and are difficult to quickly and accurately detect the number of urine
sediments. Deep learning based object detection methods have the potential to address the challenges mentioned
above, but these methods require access to large urine sediment image datasets. Unfortunately, only a limited
number of publicly available urine sediment datasets are currently available. To alleviate the lack of urine sediment
datasets in medical image analysis, we propose a new dataset named UriSed2K, which contains 2465 high-quality
images annotated with expert guidance. Two main challenges are associated with our dataset: a large number of
small objects and the occlusion between these small objects. Our manuscript focuses on applying deep learning
object detection methods to the urine sediment dataset and addressing the challenges presented by this dataset.
Specifically, our goal is to improve the accuracy and efficiency of the detection algorithm and, in doing so, provide
medical professionals with an automatic detector that saves time and effort. We propose an improved lightweight
one-stage object detection algorithm called Discriminatory-YOLO. The proposed algorithm comprises a local
context attention module and a global background suppression module, which aid the detector in distinguishing
urine sediment features in the image. The local context attention module captures context information beyond the
object region, while the global background suppression module emphasizes objects in uninformative backgrounds.
We comprehensively evaluate our method on the UriSed2K dataset, which includes seven categories of urine
sediments, such as erythrocytes (red blood cells), leukocytes (white blood cells), epithelial cells, crystals, mycetes,
broken erythrocytes, and broken leukocytes, achieving the best average precision (AP) of 95.3% while taking only
10 ms per image. The source code and dataset are available at https://github.com/binghuiwu98/discriminatory-
yolov5.
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1 Introduction

In clinical practice, there are typically two primary methods used to test urine specimens. These
include the urine routine test and the urine sediment examination. Urine routine test indicators
generally include urine red blood cells (RBCs), white blood cells (WBCs), and urine protein. Based
on the indicators of urine routine tests, it is possible to determine whether a patient has the renal
tubular disease, blood disease, glomerular function, liver and gallbladder disease, etc. [1]. For example,
a large number of RBCs, calcium oxalate crystals (CAOXs), and hyaline casts (HYALs) indicate the
presence of urinary tract calculi [2]. However, the accuracy of urine routine tests can be easily affected
by the patient’s metabolic problems and drug use. Consequently, medical professionals are increasingly
turning to urine sediment examination for certain important diagnoses. Urine sediment examination
is one of the most important methods, providing a scientific basis for clinical diagnosis and improving
the accuracy of diagnoses [3]. Manual testing is time-consuming, labor-intensive, and subjective, which
requires highly trained technicians. By detecting the amount of various urine sediment in sampling
images, the amount of urine sediment in a sample can be calculated. Markedly elevated levels of red
blood cells in urine can be indicative of the presence of kidney disease, lower urinary tract disease,
and extrarenal disease. Similarly, a substantial increase in white blood cells may suggest the possibility
of inflammation within the urinary system, while increased epithelial cells may indicate the presence
of inflammation. The presence of an increased amount of crystals in urine may signal the presence of
urinary stones, and high levels of mycetes are typically observed in patients with diabetes. Therefore,
analyzing the urinary sediment content from a urine sample is a valuable and informative method for
evaluating the condition of various organs within the urinary system.

Object detection has made great progress in the field of natural images, remote sensing images and
medical images [4,5]. In the urine sediment examination, object detection automatically and efficiently
locates and classifies particle instances from microscope images, which is precisely the task of object
detection. To detect the images taken by the urine sediment analyzer, combining online and offline
integration with the Internet is a trend that has emerged in recent years [6]. We deploy the model on
the server and then can get the amount of various urine sediment by uploading the urine sediment
images to the server for detection, which certainly helps medical personnel save time and effort. This
application requires fast speed to meet real-time detection needs. Although the machine learning
method [7] is effective in stabilizing features and handling high-dimensional and low-dimensional
data, its detection speed can sometimes be slower than desired. Like Support Vector Machine (SVM)
uses Histogram of Oriented Gradient [8] to extract features, which takes about 1 s, and its detection
performance is limited by intra-class differences.

The deep learning method is significant because of its high speed and accuracy in urine sediment
detection. CNN-based (Convolutional Neural Network) algorithms combine with traditional feature
processing methods are not efficient. Ji et al. [9] added branches to identify and classify small objects
separately, such as erythrocytes and leukocytes. The branches classify particles based on edge features
in the segmented region. However, it is not easily generalizable to other categories, as each branch needs
to be trained independently for a specific category. The CNN-based algorithms combined with the
graphical neural network [10] can establish the relationship between features to improve classification
accuracy. At present, convolution neural networks are getting deeper and deeper, and GCN is difficult
to adapt. One-stage target detection algorithms like YOLOs [11,12] predict directly on the feature
maps and take less time during inference. Introducing the attention mechanism into the deep learning
model has proven to be an effective approach for enhancing the detection performance of small urine
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sediments [13]. This method only utilizes the spatial information of the current layer’s feature map,
without interacting with the feature maps of other layers.

Datasets are the foundation of the computer vision on which the proposed methods are evaluated.
Many natural image datasets have been proposed in recent years, facilitating the development of deep
learning algorithms. In medical images, a few urine sediment datasets are publicly available, and only a
few contain comprehensive annotation and classification. This manuscript annotates a urine sediment
dataset to facilitate the application of deep learning in medical images. The challenge for the urine
sediment dataset is that most particles are small-scale in the dataset. What’s more, there are locally
dense cases in urine images which means particles overlap each other. Dense object detection is also
a big challenge for detectors. Generic object detection algorithms contain [14] a large number of
parameters, which tend to overfit the algorithm if trained on a dataset with a small number of samples,
and these algorithms have poor detection performance for small objects.

Based on the above observations, we propose the lightweight detector discriminatory-YOLOv5s
based on [12], which takes advantage of high speed and outstanding detection performance. YOLOv5
is convenient for adjusting the model size by changing hyperparameters. What’s more, it is easy
to be deployed to the chip due to the reproducibility of the structure. This detector achieves
better performance than normal object detectors with the proposed local context attention (LCA)
module and global background suppression (GBS) module. These two modules improve the models’
discriminatory ability. The LCA module makes the model pay more attention to context information
around the particles to distinguish dense particles. The GBS module is designed to reduce the impact
of background by fusing different level features. The feature fusion highlights the low-level features
for better classification and localization. Our contributions are as follows:

• We present a new urine sediment dataset called UriSed2K containing 2465 images with 7
categories. This dataset contains 29450 annotated labels.

• We design a novel intelligent automatic system, which contains a detector called discriminatory-
YOLOv5s with LCA module and GBS module for object detection on urine sediment images.
The LCA module is designed to distinguish dense particles. This module helps the model find
correlated features around the particles by capturing context information. The GBS module
is proposed to suppress background information by learning the importance weight of feature
maps. It makes the model focus on non-background information and improves the detection
performance of small particles.

• Our proposed method achieves better performance than the mainstream object detection
methods in two urine sediment datasets, while our model includes fewer parameters.

The following content of this manuscript is summarized as follows. We briefly review the
research related to our work in Section 2. We describe in detail the specifics of our annotated dataset
in Section 3. Then, the specifics of LCA module and GBS module are given in Section 4. The
experimental results are presented in Section 5. Finally, Section 6 summarizes our results and provides
some ideas for future work.

2 Related Work
2.1 Urine Sediment Image Dataset

In recent years, the size of image datasets has shown an increasing trend, from VOC [15] to
ImageNet [16], MS-COCO [17]. The Pascal VOC dataset contains 21,500 images in 20 classes. The
MS-COCO dataset contains over 300,000 images in 80 classes, 200,000 annotated, and more than
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2 million instances in the entire dataset. The ImageNet dataset has more than 14 million images across
more than 20,000 categories. More than 1 million of these images have clear category annotations and
bounding boxes for the location of objects in the image.

Compared to the vast natural image datasets, medical image datasets are relatively small in scale
[18]. We found a few existing works on urine sediment datasets for recognition or detection: the dataset
in [19] contains 1671 images, which is used for recognition by using deep learning. The urine sediment
dataset USE [20–22] contains 5376 useful urinary microscopical images after filtering, resulting in
43000 meaningful instances. Undoubtedly, it takes a lot of time to remove images that only include
noise. The research [9] collects 650 images for 10 categories and gets 300000 segments from these
images. UMID (Urine Microscopic Image Dataset) [23] comprises 367 annotated microscopic images
of urine sediment of dimensions (1280,720). The UMID contains 3 types of cells, RBCs, WBCs and
epithelial cells. What’s more, annotating labels requires relevant medical expertise. Since urine sediment
images are difficult to obtain and labeling them is labor intensive, urine sediment datasets are valuable,
and most are not publicly available.

2.2 Object Detection of Urine Sediment Images
There are many proven network models in the field of object detection. Object detection models

are similar in extracting features. These features are extracted bottom-up from the image by convo-
lution. Two-stage models such as Faster R-CNN [14] select regions that may contain objects, so they
need to generate a large number of proposals which takes more time to process. Two-stage models take
advantage of high precision. One-stage models such as YOLOs [11,12], FCOS [24], make predictions
directly for each region of the image without the process of generating proposals. Their inference speeds
are fast at the expense of precision, but the expense of precision is tolerable in practical application
scenarios.

These network models are originally designed for natural image datasets such as VOC, COCO,
which have complex backgrounds and different categories. These models contain many parameters,
and the models require sufficient data for adequate training. Urine sediment datasets are usually
small in size, and these models may be overfitted when trained directly on these datasets. In practice,
lightweight models containing fewer parameters should be used, which are also easy to implement.
The distinctive characteristic of the urine sediment dataset is the small objects. Most of the particles
take up less than 1% area of the image. In the field of medical images, feature fusion can use its
own feature information to improve detection performance significantly [25]. The Feature Pyramid
Network (FPN) [26] fuses feature maps of various scales from top to bottom, transmitting semantic
information from deep feature maps to shallow ones, which improves the detection performance of
small objects. The FPN combined with DenseNet [22], alleviates the problem of category confusion
in the urine sediment images and performs well in an image with dozens of small particles. B-PesNet
enriches semantic information in shallow layers so that the deep convolution layers can leverage more
information when concatenating feature maps [27]. Reference [21] exchanged context information
between multi-scale features in the FPN and then fuse these features by element-wise addition. The
Path Aggregation Network (PAN) [28] followed behind FPN and transmits low-level information from
the bottom up to the high level.

CNNs are able to capture local features due to the nature of convolution. However, CNNs are
limited by the receptive field and are less capable of modeling regions outside the receptive field. In
order to interact between feature map pixels, it is becoming increasingly common to use self-attention
architecture for CNN models to obtain global modeling capabilities [29].



CMES, 2024, vol.138, no.1 415

3 UriSed2K Dataset

We collect 2465 unstained images that are captured by an automatic urine sediment detector. The
automatic urine sediment detector can automatically detect the position of the sample, aspirate it, mix
it, and allow it to settle. It then captures an image of the sample through a microscope in the catheter.
The resolution of the urine sediment microscopy images is 800 by 600 pixels. Fig. 1 displays the seven
major categories present in our urine sediment dataset, which include leukocyte, erythrocyte, broken
leukocyte, broken erythrocyte, mycete, crystal, and epithelial cell.

Figure 1: The samples of seven categories of particles in the UriSed2K

We annotate the images using rectangular boxes with labels in the VOC format. Each box includes
the category value and the coordinates of the upper left and lower right corners, which are c, x1, y1,
x2, y2. To enable a wider range of algorithms to be trained on this dataset, we have developed scripts
to convert the dataset from the VOC format to either YOLO or COCO format. The YOLO format
annotations include the center coordinates of the bounding box and its width and height relative to
the original image. The COCO format annotations are similar to VOC format and are saved in a single
JSON file for all images. According to the labels we annotated, we draw two figures: Fig. 2 shows the
number of seven particles in our dataset, Fig. 3 shows the distribution of rectangular boxes’ ratio of
width and height. There are three main challenges in the urine sediment dataset:

Small-scale object: Fig. 3 shows the distribution of rectangular anchor boxes’ size. In our dataset,
the area of the largest object is no more than 14% of the whole image. Over 80% of the particles take
up less than 1% area of the image. About 50% of the particles are smaller than 0.5% of the image area.
This strongly suggests that the urine sediment dataset can be regarded as a small-scale object detection
dataset.

Intra-class variation: Fig. 1 shows the various shapes of the same particles. The shapes of mycete
are determined by its reproduction. The shapes of crystals depend on the formation conditions.
Additionally, the appearance of particles can be affected by various shooting conditions, including
the intensity of the light source and the magnification level.
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Figure 2: The number of particles. The numbers of various particles from left to right are 4322, 18335,
2723, 1148, 1083, 894, and 945, respectively. The letter ‘b’ stands for ‘broken’

Figure 3: The distribution of rectangular anchor boxes’ size. The value on the coordinate axis indicates
the ratio of the width and height of the anchor box to the width and height of the image. The darker
the color of the pixel point, the more anchor boxes are on that scale

Locally dense distribution: The distribution of particles in the urine images is globally sparse.
Notably, even after dilution, some particles continue to cluster together. It is challenging to detect
these aggregated particles one by one.

4 Methods

In view of the characteristics of the urine sediment dataset, we propose two modules to improve the
detection performance in detecting small objects by stronger discrimination. Fig. 4 shows our network
model with two modules.
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Figure 4: The network of the discriminatory-YOLOv5s. The backbone extracts feature maps at
different levels. The local context attention (LCA) module captures long-range information and con-
catenates feature maps. The global background suppression (GBS) module suppresses the background
through feature fusion. The prediction head is responsible for predicting three scale feature maps. The
variable C represents the number of classes in the dataset. The value of 5 + C contains information
about the predicted bounding box, including the center coordinates, height, width, objectness score,
and probabilities of C categories

4.1 Local Context Attention Module
Determined by the properties of convolutional neural networks, the low-level feature maps contain

more detailed features, which are effective for the model in detecting and predicting small particles.
However, in the urine sediment dataset, particles tend to aggregate and block each other, making it
difficult for models relying solely on low-level features to locate and classify individual particles. To
distinguish these aggregated particles, we introduce self-attention mechanism to make the model focus
on regions outside the receptive field. We propose the Local Context Attention (LCA) module based
on FPN [26] incorporating the self-attentive mechanism. The module transfers high-level semantic
information after attention to low-level features. Inspired by [29] and [30], we design several multi-head
self-attention (MHSA) layers with relative position encoding to the FPN, overcoming the limitation
of the receptive field by the convolutional kernel size. The improved model can increase the interaction
between information from distant locations in the feature map.

To capture the correlation between two positions in the feature map, the MHSA layer attends to
the features at those positions and computes a weighted sum of them. We then concatenate the resulting
high-level feature maps with low-level feature maps to increase the model’s attention on dense areas
in the low-level feature maps. As shown in Fig. 4, we add the MHSA layers to different scale feature
maps. To fit these feature maps, we design the length of the position encoding to adapt to the input
feature map’s scale. Adjusting the length of the position encoding to the input feature map’s scale is
necessary to ensure that the relative positions of features are accurately captured across all feature map
scales. The position encoding is used to represent the spatial relationships between features in the input
feature map, and its length needs to be adjusted according to the scale of the feature map to account
for variations in the relative distances between features at different scales.
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In the MHSA layer, the input feature map is divided into multiple heads equally to allow for better
capturing of the spatial relationships between pixels. Specifically, we divide the feature map into four
heads based on the channel dimension in our module. Fig. 5 shows the architecture of the MHSA
layer with position encoding. For each head, we compute query, key, and value projections by 1 × 1
convolutions. These projections are used to compute attention scores between each pair of positions
in the feature map. To account for the relative positions of features, we use two learnable vectors for
each head. These position encodings are added to the query and key projections before the attention
scores are computed. The context information content_context is computed by q, k.

content_context = qT ⊗ k (1)

where T represents transpose, and ⊗ is the matrix multiplication. The content_context contains
correlation information between two pixels, which represents the importance of each location in the
input feature map relative to q. In order to consider location information in space, we introduce relative
position encoding to the feature maps.

r = (Rh ⊕ Rw) (2)

where r is the relative position distance encodings, Rh and Rw are the learnable vectors to represent the
relative position distances along the height and width dimensions, respectively, and ⊕ is the element-
wise sum. The position of each pixel point can be represented according to the offset in the height and
width dimensions.

content_position = rT ⊗ q (3)

where content_position is the position information, it is obtained by matrix multiplication between the
transposed position encoding rT and the query projection.

Attention = softmax(content_context ⊕ content_position) (4)

where Attention is the attention map which is the summary of content_context and content_position
after softmax. The value in the attention map is ∈ (0, 1), which represents the relative importance of
different positions in the input feature map.

SA(q, k, v, Rh, Rw) = v ⊗ AttentionT (5)

where v is the value projection. SA is the reweighted feature map that reflects the relation between two
pixels of the feature map.

Headi = SA (qi, ki, vi, Rhi Rwi) (6)

where i ∈ [1, n], n is the preset number of head.

Out = Concat(Head1, Head2, . . . , Headn) (7)

where Out is concatenated by all heads, the parameters in each head are independent. After the above
operations, we utilize MHSA to enhance the position of feature maps with high similarity in each
feature map before fusion. The LCA module overcomes the limitation of the receptive field and
interacts with the detailed information of each position, such as texture, color, shape, etc., improving
the representative ability of the model.

4.2 Global Background Suppression Module
From Section 3, we learn that the distribution of particles in urine images is globally sparse, which

means that the background takes up most of the image and provides little information. When we
humans look at images, we actively ignore the background to focus on the objects we are interested
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in. To enable our model to do the same, we have designed the GBS module, which assigns low weights
to the background and allows the model to ignore it. The GBS module is inspired by [31] and fuses
different levels of features by learning the importance weights of spatial information adaptively. This
means that low-level features such as edges, corners, colors, and shapes are given more importance for
localization. After adding the GBS module, the model pays much less attention to the background,
just as our human visual system does.

Figure 5: The architecture of one of the heads in a multi-head self-attention layer. C, H and W
demonstrate the channel number, height and width of the given feature map. WQ, WK , and WV are
three different 1×1 convolution layers, Rh and Rw are learnable vectors, and their lengths are initialized
based on the input feature map, ⊕ is the element-wise sum, ⊗ is the matrix multiplication. The head
focuses on the important positions of the given feature map, which is determined by the generated
attention map

Fig. 6 shows the feature fusion of level 2 in the GBS module. For each level, the process of fusing
the futures at the corresponding level l is as follows:

Fl = αl
ij · op(f )

1→l
ij + β l

ij · op(f )
2→l
ij + γ l

ij · op(f )
3→l
ij (8)

where Fl refers to the target level feature, and l, n are both integers in the set {1, 2, 3}. f n→l represents
the feature map that has been resized from level n to match the size of level l. αl, β l, γ l represent the
spatial importance weights of level l, which are shared across all channels. i and j denote the position
of the feature map. The weights of each point are obtained by the softmax function, αl

ij + β l
ij + γ l

ij = 1
and αl

ij, β
l
ij, γ

l
ij ∈ (0, 1). For example, getting the weight of αl as follows:

αl
ij = e

λ
f 1→l
ij

e
λ

f 1→l
ij + e

λ
f 2→l
ij + e

λ
f 3→l
ij

(9)
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where λf n→l
ij

are control parameters, which are obtained by convolution. The channel of resized feature
maps is compressed by two 1 × 1 convolution layers.

op =
⎧⎨
⎩

�|l−n|, if Cn > Cl,
�|l−n|, if Cn < Cl,
None, otherwise.

(10)

where op is the resizing operation, � and � represent the up-sampling and down-sampling, respec-
tively. In the LCA module, the size of the feature map becomes larger and the number of channels
decreases. Therefore, the resizing operation can be determined by the number of channels. For up-
sampling, we use a 1×1 convolution layer to compress dimension to the same level l. Then the feature
map is enlarged by nearest interpolation, where the multiplier for spatial size is equal to 2 × |l − n|.
For down-sampling, if |l − n| = 1, we use a 3 × 3 convolution layer with stride 2, similar to the down-
sampling in the YOLOv3 backbone. It is different when |l − n| = 2, a 3 × 3 kernel size max pool layer
with stride 2 added before the convolution layer.

Figure 6: The details of level 2 in the GBS module. �, �, �, ⊕ represent up-sampling, down-sampling,
element-wise multiplication and element-wise sum, respectively. α, β, γ are the spatial importance
weights. f 1, f 2, f 3 are the feature maps. f 1→2, f 2→2, f 3→3 are the feature maps after resizing. The CA is a
channel attention mechanism

αl, β l, γ l are learned from the spatial information and are shared across each channel. From the
perspective of channel importance, we add channel attention to enhance cross-channel interaction.
Inspired by [32], we add simple channel attention to Fl. This channel attention first compresses the
spatial information of each feature map using global average pooling and then learns the importance
of each channel using one-dimensional convolution across channels, which can consider both local
channel information and global channel information with low computational complexity. The last
output is defined as follows:

Fl
out = Fl � (CONV(GAP(f l))) (11)

where CONV represents the 1 dimensional convolution with kernel size 5, � represents the element-
wise multiplication. GAP represents the global average pooling, and f l is the feature of level l before
operation. The fusion parameters in this module are obtained through convolution and are able to
participate in standard back-propagation for learning. Through training, these parameters can be
effectively adjusted to reweight the feature maps and reduce the weight of background regions, leading
to an improvement in the model’s detection performance.
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4.3 Loss Function
Same as normal object detection algorithms, the loss consists of three components:

Lall = λclsLcls + λboxLbox + λobjLobj (12)

where Lcls, Lbox and Lobj indicate the classification loss, the box regression loss and the objectness score
loss. λcls, λbox, λobj are the coefficients, they are preset as 0.5, 0.05, 1, respectively. The classification loss
Lcls is defined as follows:

Lcls =
S2∑ B∑

BCE(ĉ, c) (13)

where S2, B are feature map size, and number of candidate boxes, respectively, BCE is binary cross
entropy function, ĉ is the ground truth, and c is the predicted class. The Lbox is defined as follows:

Lbox =
S2∑ B∑

(1 − DIoU) (14)

The intersection over union (IoU) is DIoU [33], better reflecting the overlap between the predicted
box and ground truth. The objectness score loss is defined as follows:

Lobj =
S2∑ B∑

BCE(ô, o) (15)

where ô is 0 or 1, representing whether it is an object. o is the objectness score of the box.

5 Experiments
5.1 Implementation

Dataset partition. Before training, we partitioned the urine sediment dataset. The dataset was
randomly divided into training set, validation set, test set. The ratio of images in the three parts is 3:1:1.
In order to verify the robustness of the proposed method, we performed three divisions to obtain three
different divided datasets. Then we trained on the three datasets separately and got three models.

Training. Our network model is trained end-to-end on a computer with 2 2080Ti GPUs. We use
small YOLOv5 [12] as baseline whose network depth is 1/3 and the number of channels is 1/2 of
YOLOv5. This network model contains fewer parameters. The input image size is 640 × 640, which is
close to the real image. The main data augmentation trick is Mosaic, which randomly selects 4 images
from a batch, then cuts and combines them. What’s more, images are randomly flipped vertically and
horizontally according to a preset probability. The network is trained with stochastic gradient descent
(SGD) by 50 epochs, in which the batch size, the weight decay and momentum are set to 16, 5 × 10−4,
0.937. In the first 3 epochs, the warm learning rate increases from 0.01 to 0.1 and then decreases the
learning rate by cosine annealing to 0.002.

Inference. Our anchor boxes have 3 aspect ratios for each level [0.5, 1, 2]. For every pixel at each
level, every anchor box matches the most similar shape object and then conducts classification and
box regression. The number of objects in the images is much less than the generated anchor boxes. It
is indispensable to remove abundant prediction boxes of the same class. Interaction over union (IoU)
is the overlap rate of two boxes. If the IoU of two prediction boxes exceeds the threshold, this means
that they are most likely the same object. Non-maximum suppression (NMS) [34] with the threshold
at 0.6 is applied to each class separately.
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5.2 Comparison with Other Object Detection Algorithms
Our method is compared to classical object detection algorithms such as Faster R-CNN [14],

YOLOv3 [11], FCOS [24], PAN [28], BCPNet [21]. Faster R-CNN is the representative algorithm of the
two-stage algorithms, and PAN adds a PANet after FPN on the basis of the Faster R-CNN. The PANet
YOLOv3 and FCOS are one-stage algorithms, where YOLOv3 is the anchor-based algorithm and
FCOS is the anchor-free algorithm. The backbone of YOLOv3 is DarkNet53, the others’ backbones
are the same, all are ResNet50. Despite their different names, both backbone networks are used
to extract different scale features of images and both have residual structures. These networks are
trained on the MMdetection framework [35] with 2 NVIDIA 2080Ti GPUs. Since our dataset is small
compared to the natural image dataset, these networks are trained 1 schedule (12 epochs).

Table 1 compares the detection performance of other mainstream detectors with ours in terms of
AP (average precision). It demonstrates that our model outperforms other detectors in three different
splits, while also having far fewer parameters. AP is the classical evaluation metric used to measure
the performance of a detector. Typically, AP is defined as the average of the ratios of true positives to
all positives for all recall values. 0.5 is the IoU threshold of true positive. mAP@0.5:0.95 represents
the mean value of 10 APs calculated with different IoU thresholds, evenly distributed between 0.5 and
0.95.

Table 1: The comparison of detection performance on the UriSed2k dataset

Split1 mAP@0.5:0.95 AP@0.5 Size

Faster R-CNN ([14]) 64.8 92.4 330 MB
YOLOv3 ([11]) 64.1 92.5 492 MB
FCOS ([24]) 63.1 92.0 256 MB
PAN ([28]) 64.7 92.3 358 MB
BCPNet ([21]) 63.8 91.5 162 MB
Improved-YOLOX ([13]) 65.0 92.1 72 MB
YOLOv5 ([12]) 61.5 88.5 15 MB
Ours 65.3 92.4 23.5 MB

Split2 mAP@0.5:0.95 AP@0.5 Size

Faster R-CNN ([14]) 65.1 91.4 330 MB
YOLOv3 ([11]) 65.2 91.8 492 MB
FCOS ([24]) 60.3 89.6 256 MB
PAN ([28]) 62.8 91.5 358 MB
BCPNet ([21]) 63.4 91.3 162 MB
Improved-YOLOX ([13]) 64.5 91.6 72 MB
YOLOv5 ([12]) 62.2 90.0 15 MB
Ours 65.2 91.8 23.5 MB

Split3 mAP@0.5:0.95 AP@0.5 Size

Faster R-CNN ([14]) 67.0 93.2 330 MB
YOLOv3 ([11]) 64.8 94.1 492 MB
FCOS ([24]) 63.9 93.0 256 MB
PAN ([28]) 67.1 94.0 358 MB

(Continued)
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Table 1 (continued)

BCPNet ([21]) 66.8 94.5 162 MB
Improved-YOLOX ([13]) 68.1 94.8 72 MB
YOLOv5 ([12]) 67.6 93.6 15 MB
Ours 68.5 95.3 23.5 MB

Table 2 compares the detection performance on the UMID dataset [23]. The UMID dataset
labels three types of urine sediment, RBCs, WBCs, and epithelial cells. Besides, there are many urine
sediments in the images that are not labeled. Despite these situations, we can see from the table that
our method performs better on this dataset compared to other methods.

Table 2: The comparison of detection performance on the UMID

Method mAP@0.5:0.95 AP@0.5

Faster RCNN ([14]) 31.1 66.1
YOLOv3 ([11]) 18.1 39.0
FCOS ([24]) 11.5 30.1
PAN ([28]) 26.8 66.0
BCPNet ([21]) 31.5 67.4
Improved-YOLOX ([13]) 31.7 67.8
YOLOv5 ([12]) 30.0 67.0
Ours 32.0 68.0

Fig. 7 shows some samples to demonstrate the effectiveness of our approach. We visualize the
ground truth and the prediction boxes of each method overlaid onto the original images. When urine
sediments are sparsely distributed and not occluded, our method performs almost as well as commonly
used object detection methods. In addition, in the case of dense local occlusion, our method is able to
more effectively distinguish these particles from the whole part.

5.3 Ablation Study
To validate the effectiveness of each component in our proposed method, we conducted ablation

experiments on the UriSed2K dataset. The baseline model used was a small YOLOv5 object detector
without the local context attention (LCA) module and the global background suppression (GBS)
module. Table 3 shows two overall metrics and the precision of the seven classes of urine sediment
particles at the IoU of 0.5. Our results demonstrate that the addition of the LCA and GBS modules
significantly improves the precision of the seven types of particles. Overall, our results show that our
proposed method effectively works on the urine sediment dataset.
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Figure 7: The ground truth and prediction of each method

Table 3: Ablation experimental performance on the UriSed2K dataset

Split1 AP@0.5 mAP@0.5:0.95 leuko eryth b_leuko b_eryth mycete cryst epith

Baseline 88.5 61.2 89.0 96.8 89.6 91.8 94.5 89.8 77.9
Baseline+LCA 91.4 64.7 90.9 96.9 94.2 85.3 93.2 91.7 87.4
Baseline+GBS 91.1 65.1 92.5 97.0 92.3 87.4 93.0 90.7 85.0
Baseline+LCA+GBS (ours) 92.4 65.3 92.7 97.4 93.0 87.0 95.8 92.9 87.8

Split2 AP@0.5 mAP@0.5:0.95 leuko eryth b_leuko b_eryth mycete cryst epith

Baseline 90.0 62.2 88.7 96.6 93.1 84.2 93.0 91.4 82.8
Baseline+LCA 90.7 64.6 90.6 96.8 94.5 85.6 92.9 92.4 82.3
Baseline+GBS 90.6 64.2 89.1 96.3 93.1 85.2 93.4 92.4 81.3
Baseline+LCA+GBS (ours) 91.8 65.2 91.0 97.6 94.7 86.8 94.7 93.5 84.6
Split3 AP@0.5 mAP@0.5:0.95 leuko eryth b_leuko b_eryth mycete cryst epith

Baseline 93.6 67.6 91.8 97.1 94.9 94.5 93.7 96.0 88.5
Baseline+LCA 95.2 67.8 92.4 97.2 97.6 95.4 96.1 95.2 92.1
Baseline+GBS 94.9 67.9 91.8 97.2 96.1 95.1 97.1 95.2 92.2
Baseline+LCA+ GBS (ours) 95.3 68.5 92.8 97.7 97.5 95.2 95.1 97.2 93.0

Fig. 8 shows the heat maps detected by four network models, reflecting where the network focuses.
Each heat map is generated based on the convolutional output of the last layer of the network.
Specifically, the calculation method is to normalize the predicted objectness scores for each position
to between 0 and 1, then map them onto a heat map of the same size as the input image. This allows us
to judge the degree of network attention to different areas based on the color of each position. These
heat maps have a gradient of colors from blue to red, with darker red areas indicating more attention
from the network.

The heat maps in the third column demonstrate the effectiveness of our LCA module in capturing
context information. This enables the model to increase its perception of information surrounding
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particles, thus effectively separating locally dense particles. However, we also notice that the LCA
module can overly focus on the background, which is redundant. This is where the GBS module comes
in, as it suppresses the model’s attention to the background. The heat maps in the fourth column show
how the GBS module helps the model focus less on the background. Overall, the LCA and GBS
modules work together to help the model deal with local density and global sparsity in urine sediment
detection. In Fig. 9, we can clearly see which categories the objects were predicted to belong to. Our
improved method has significantly improved the detection recall rate compared to the baseline, and
the accuracy of most categories has also improved.

Figure 8: We show three examples of local densities highlighted by red boxes. The heat maps are
visualized to origin images by four network modules. The baseline is small YOLOv5 [12]. The local
context attention (LCA) module and global background suppression (GBS) module are our proposed
methods. From the detection results, we see that the objects in the red boxes are well separately detected

Figure 9: The confusion matrix. The values in each cell of the confusion matrix are normalized to a
range between 0 and 1. The values on the diagonal represent the recall rate of the predicted category.
The accuracy of the prediction can be calculated by dividing the value on the diagonal by the sum of
the corresponding row
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6 Conclusion

This manuscript presented a urine sediment dataset called UriSed2K containing 2465 images with
a total of 29450 instances. We proposed the improved method of discriminatory-YOLOv5s. It was a
lightweight network model with two effective modules, the local context attention (LCA) module and
the ground background suppression (GBS) module, for object detection on urine sediment images. The
LCA module enhanced the model’s perception ability by capturing context information around the
targets. The GBS module suppressed the model’s attention to the background, therefore enabling
the model to concentrate on the locations with features. These two modules, proposed for the main
challenges of the urine sediment dataset, obviously improved the detector’s performance in small
objects and got the best average precision of 95.3% at IoU = 0.5. Our dataset will contribute to object
detection and recognition in urine sediment images. The UriSed2K dataset enables the development
of automated urinalysis techniques, which reduces the time and labor costs associated with manual
analysis and improves the accuracy and efficiency of analyses. Analyzing urine sediment datasets can
provide insights into changes in urine sediments in different diseases or pathological states, and can
offer valuable data support for related medical research. Our method can be combined with automatic
urine sediment analyzers to obtain real-time counts of various urine sediment particles in images.
This allows medical professionals to save time and analyze samples more efficiently, ultimately aiding
in the diagnosis of medical conditions. Our method still requires many images to obtain detection
performance, and there are many different forms of urine sediment in the images, which are difficult
to label. There is great potential to apply this dataset in few-shot detection to reduce annotation efforts.
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