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ABSTRACT

In this paper, the bifurcation properties of the vibro-impact systems with an uncertain parameter under the impulse
and harmonic excitations are investigated. Firstly, by means of the orthogonal polynomial approximation (OPA)
method, the nonlinear damping and stiffness are expanded into the linear combination of the state variable. The
condition for the appearance of the vibro-impact phenomenon is to be transformed based on the calculation of
the mean value. Afterwards, the stochastic vibro-impact system can be turned into an equivalent high-dimensional
deterministic non-smooth system. Two different Poincaré sections are chosen to analyze the bifurcation properties
and the impact numbers are identified for the periodic response. Consequently, the numerical results verify
the effectiveness of the approximation method for analyzing the considered nonlinear system. Furthermore, the
bifurcation properties of the system with an uncertain parameter are explored through the high-dimensional
deterministic system. It can be found that the excitation frequency can induce period-doubling bifurcation and
grazing bifurcation. Increasing the random intensity may result in a diffusion-based trajectory and the impact with
the constraint plane, which induces the topological behavior of the non-smooth system to change drastically. It
is also found that grazing bifurcation appears in advance with increasing of the random intensity. The stronger
impulse force can result in the appearance of the diffusion phenomenon.
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1 Introduction

As it is well known, the phenomena of impacts and dry frictions exist widely in a large number
of engineering devices [1–3], which can induce the instability and insecurity of these devices. Thus,
studying the dynamical properties has been an epoch-making field for solving the relative problems of
these non-smooth devices [4–6]. In the last few years, numerous papers have concentrated on the study
of non-smooth systems [4–8], in particular, on vibro-impact systems. This kind of vibro-impact system
appears when a moving mass collides with a barrier and its displacement is greater than a critical value.
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Various complex impact structures and models were designed and developed in the past decade;
the study of these systems was extensively performed. Namely, since the 1960s, the theoretical and
experimental analyses of an impact system under periodic excitation have been performed by Masri
[8,9]. Based on the local Poincaré mapping method, the stabilities of non-smooth systems have been
considered by Nordmark [10], Zhang et al. [11], and Jin et al. [12]. Furthermore, the transition
phenomena between different bifurcation phenomena of an impact oscillator with viscous damping
have been studied by Peterka [13]. Luo et al. [14] have researched the bifurcation characteristic of two-
degree-of-freedom vibro-impact systems with weak and strong resonance. The global dynamics have
been studied in a vibro-impact system with special friction by Gendelman et al. [15]. The chaotic attrac-
tors and the periodic behavior of an inelastic, forced-impact oscillator near subharmonic resonance
conditions have been explored by Rounak et al. [16]. Additionally, random factors are unavoidable
in the operation of dynamical systems [17,18]. By means of the mean Poincaré map, the responses
of a vibro-impact system have been analyzed by Feng et al. [19]. By using the non-smooth variable
transformation in [20], the energy losses induced by the impact and the probability density functions
of the impact systems under stochastic excitation have been considered by Dimentberg et al. [21,22].
An averaging approach to researching the nonlinear dynamics of the vibro-impact system under
the effect of random perturbations has been developed by Namachchivaya et al. [23]. Along with
researching the multi-valued response of a nonlinear vibro-impact system with the existence of random
narrow-band noise [24], Huang et al. have also considered the principal resonances of an elastic
impact oscillator under stochastic excitation [25]. The stochastic dynamics of the contact force models
with elastic impact phenomena under additive noise have been investigated by Kumar et al. [26]. By
using the traditional theoretical analysis, the stochastic dynamical property of a nonlinear vibro-
impact system with Coulomb friction under stochastic noise has been researched by Su et al. [27].
Besides investigating the stochastic response of SDOF vibro-impact oscillators under wide-band noise
excitations, Qian et al. [28] have also studied the response of vibro-impact systems by the RBF neural
network method [29]. Although numerous papers have been published, some stochastic non-smooth
systems cannot be investigated by these theoretical methods due to the limited application.

In order to overcome the difficulty of studying dynamical systems with an uncertain parameter,
the orthogonal polynomial approximation (OPA) method has been utilized to study the stochastic
dynamics of some kinds of smooth dynamical systems [30–32] with uncertain parameters. Although
different kinds of orthogonal polynomials can be chosen, the Chebyshev polynomial approximation
[30,31] and the Laguerre polynomial approximation [33] are the main methods in the stochastic
analysis. By using the method based on the derived approximate formula of the Laguerre polynomials,
Wang et al. [33] have investigated the stochastic response of a nonlinear elastic impact system, along
with studying the global dynamic behavior of this kind of system with an uncertain parameter [34].
Utilizing the method of Chebyshev polynomial approximation, Feng et al. [35] have studied the
bifurcation of a stochastic nonlinear system with a one-sided constraint. Li et al. [36] have considered
the bifurcations of the van der Pol system with two-side barriers. Recently, Huang et al. [37] and
Zhang et al. [38] have extended the Chebyshev polynomial approximation method to study nonlinear
harvesters. However, so far there have been only few papers on the non-smooth dynamical systems with
the OPA method. Therefore, in this paper, we mainly concentrate on studying the stochastic responses
of the vibro-impact system with nonlinear stiffness and damping under an uncertain parameter
subjected to periodic impulse excitation and harmonic excitation according to the OPA method.

The remaining part of this paper is organized as follows: the equivalent high-deterministic system
is derived by the OPA method in Section 2; in Section 3 the effectiveness of the OPA method is proved.



CMES, 2024, vol.138, no.1 511

Afterwards, the bifurcation phenomena of the system by means of deterministic numerical methods
are studied, summarizing the conclusions listed in Section 4.

2 Orthogonal Polynomial Approximation

As for stochastic vibro-impact system with nonlinear stiffness and damping under periodic
impulse excitation and harmonic excitation, the non-smooth property is induced by the existence of a
rigid barrier, as shown in Fig. 1, whose non-dimensional differential equation is given as follows:{

ẍ − μ
(
1 − ẋ2

)
ẋ + ax + cx3 = f cos (ωt) + F (t) , x < �,

ẋ+ = −ηẋ−, x = �,
(1)

where f cos(ωt) is the harmonic excitation, a is the coefficient of the linear stiffness and c is the
coefficient of the nonlinear stiffness. η is the restitution coefficient (0 < η ≤ 1). � is the rigid constraint
constant. μ is an uncertain parameter, denoted as μ = μ + σξ in which ξ is a random variable, μ is
the mean value, and σ is the intensity of μ.

Figure 1: The schematic of the nonlinear vibro-impact system

Particularly, F (t) =
∞∑

j=0

δ (t − jT) F0

(
1 + a1 sin

(ω1

n
t
))

, T = 2π/ω1, a1 = 1.0, F0 = 0.1,

ω1 = 1.0. j is an integer. The impulse signal can be obtained by applying the continuous-time signal

F0

(
1 + a1 sin

(ω1

n
t
))

to an electronic switch which closes momentarily every T seconds. When it comes

to n = 2, Eq. (1) is affected by the constant impulse force (Fig. 2) which influences the system at the
time length 2π/ω1. As it can be seen in Fig. 2a, the value of F(t) = 0.0 is at most of the points; only
at certain times, F(t) is a nonzero constant. However, in case of n = 4, the impulse force presents a
different property, which is plotted in Fig. 2b.

When the displacement is x < �, the system (1) is a stochastic smooth nonlinear system as follows:

ẍ − μ
(
1 − ẋ2

)
ẋ + ax + cx3 = f cos (ωt) + F (t) , (2)

When the constraint condition is x < � and the constraint plane is H = {(x, ẋ)| x = �}, the jump
equation is ẋ+ = −ηẋ−, ẋ− is the velocity before the instant of impacts, and ẋ+ is the velocity after the
instant of impacts.



512 CMES, 2024, vol.138, no.1

(a) (b)

Figure 2: The periodic impulse force F(t) vs. t for F0 = 0.1. (a) n = 2; (b) n = 4

According to the OPA method, the responses of the system (1) without the effect of impact can
be expanded into the following sequence:

x (t, ξ) =
N∑

i=0

xi (t) Hi (ξ) (3)

where Hi(ξ) is the ith orthogonal polynomial, herein, the Chebyshev orthogonal polynomials are used
[39,40]; N = 0, 1, 2, . . . is the largest number of the expanded terms: xi(t) = ∫ 1

−1
p(ξ)x(t, ξ)Hi(ξ)dξ and

p (ξ) =
⎧⎨
⎩

(
2
π

) √
1 − ξ 2, |ξ | ≤ 1,

0, |ξ | > 1.

The orthogonality of the polynomials is:∫ 1

−1

2
π

√
1 − ξ 2Hj (ξ) Hi (ξ) dξ =

{
1, i = j,
0, i �= j.

(4)

Based on the property of the Chebyshev orthogonal polynomials, the recurrent formula among
them is:

ξHi (ξ) = 1
2

(Hi+1 (ξ) + Hi−1 (ξ)) (5)

As for the case without any constraints, when substituting Eq. (3) into Eq. (2), it has:(
d2

dt2
− μ

d
dt

+ a
) N∑

i=0

xi (t) Hi (ξ) − σξ
d
dt

(
N∑

i=0

xi (t) Hi (ξ)

)
+ (μ + σξ)

(
d
dt

(
N∑

i=0

xi (t) Hi (ξ)

))3

+ c

(
N∑

i=0

xi (t) Hi (ξ)

)3

= f cos (ωt) + F (t) . (6)
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By Eq. (5), the cubic terms of Eq. (6) can be expanded into a linear combination of the related
single polynomials. The coefficient of Hi(ξ) in the linear combination is denoted as Xi(t) and Yi(t), (i =
0, 1, 2, . . .); thus, the nonlinear terms on the left side of Eq. (6) can be expanded into:(

N∑
i=0

xi (t) Hi (ξ)

)3

=
3N∑
i=0

Xi (t) Hi (ξ) , (7)

(
d
dt

(
N∑

i=0

xi (t) Hi (ξ)

))3

=
3N∑
i=0

Yi (t) Hi (ξ) . (8)

The expressions of Xi(t) and Yi(t)(i = 0, 1, 2, . . .) can be derived using software or manual
calculation.

Substituting Eqs. (5), (7) and (8) into Eq. (6), the following can be derived:(
d2

dt2
− μ

d
dt

+ a
) N∑

i=0

xi (t) Hi (ξ) − σ

2
d
dt

(
N∑

i=0

(xi−1 (t) + xi+1 (t)) Hi (ξ)

)
+ μ

(
3N∑
i=0

Yi (t) Hi (ξ)

)

+ σ

2

(
3N∑
i=0

(Yi−1 (t) + Yi+1 (t)) Hi (ξ)

)
+ c

(
3N∑
i=0

Xi (t) Hi (ξ)

)
= f cos (ωt) + F (t) . (9)

In order to simplify Eq. (9), both sides of Eq. (9) are multiplied by Hi(ξ) and then taken the
expectation about ξ by means of the orthogonality of the Chebyshev polynomials, the equivalent
deterministic equation without any constraints can be derived:(

d2

dt2
− μ

d
dt

+ a
)

x0 (t) − σ

2
d
dt

(x−1 (t) + x1 (t)) + μY0 (t) + σ

2
(Y−1 (t) + Y1 (t)) + cX0 (t)

= f cos(ωt) + F(t), (10)(
d2

dt2
− μ

d
dt

+ a
)

x1 (t) − σ

2
d
dt

(x0 (t) + x2 (t)) + μY1 (t) + σ

2
(Y0 (t) + Y2 (t)) + cX1 (t) = 0, (11)

(
d2

dt2
− μ

d
dt

+ a
)

x2 (t) − σ

2
d
dt

(x1 (t) + x3 (t)) + μY2 (t) + σ

2
(Y1 (t) + Y3 (t)) + cX2 (t) = 0, (12)

. . . . . .(
d2

dt2
− μ

d
dt

+ a
)

xN (t) − σ

2
d
dt

(xN−1 (t) + xN+1 (t)) + μYN (t) + σ

2
(YN−1 (t) + YN+1 (t))

+ cXN(t) = 0, (13)

where x−1, xN+1, Y−1 and YN+1 are supposed to be zero due to the approximation in Eq. (3). When

N → ∞ in Eq. (3),
N∑

i=0

xi (t) Hi (ξ) is strictly equivalent to x(t, ξ); however, in the real calculation, N

is finite and it is also enough to satisfy the basic requirement of the approximation. In the numerical
analysis, N = 4 will be taken. The expressions of Xi(t), i = 0, 1, 2, 3, 4, 5, which may be used in the
discussion, can be found in [37]. Additionally, if the derivative ẋN is denoted as yN, the expressions of
Yi(t), i = 0, 1, 2, 3, 4, 5 are given as follows:

Y0(t) = 3y0y2
1 + 3y0y2

2 + 3y0y2
3 + 3y0y4

2 + 3y2y2
3 + y3

0 + y3
2 + y3

4

+ 3y2y2
4 + 3y2y2

1 + 3y4y2
2 + 3y4y2

3 + 6y1y2y3 + 6y1y3y4

(14)
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Y1(t) = 6y3y2
2 + 6y1y2

3 + 3y3y2
1 + 6y1y2

2 + 6y3y2
4 + 2y3

1 + 2y3
3 + 3y1y2

0

+ 6y1y4
2 + 12y2y3y4 + 6y0y1y2 + 6y0y2y3 + 6y0y3y4 + 6y1y2y4

(15)

Y2(t) = 3y3
2 + 3y3

4 + 3y0y2
1 + 3y4y2

1 + 3y2y2
0 + 3y0y2

2 + 6y0y1y3 + 9y4y3
2 + 3y0y2

3 + 3y0y2
4

+ 6y4y2
2 + 6y0y2y4 + 6y2y1

2 + 12y1y2y3 + 12y1y3y4 + 9y2y4
2 + 9y2y2

3

(16)

Y3(t) = y3
1 + 4y3

3 + 3y3y2
0 + 6y1y2

3 + 6y1y2
2 + 6y1y2

4 + 9y3y2
2 + 12y1y2y4

+ 6y0y1y4 + 6y0y1y2 + 6y0y3y4 + 6y0y2y3 + 18y2y3y4

(17)

Y4(t) = 2y3
2 + 5y3

4 + 3y2y2
1 + 3y0y2

2 + 3y0y2
3 + 3y0y2

4 + 12y1y2y3 + 12y1y3y4

+ 3y4y2
0 + 6y0y2y4 + 6y0y1y3 + 6y4y1

2 + 9y2y2
3 + 9y4y2

2 + 9y2y2
4 + 12y4y2

3

(18)

Y5(t) = 3y3
3 + 3y1y2

2 + 3y3y2
1 + 6y1y2

4 + 6y1y2
3 + 12y3y2

4 + 12y1y2y4

+ 6y3y2
2 + 6y0y2y3 + 6y0y3y4 + 6y0y1y4 + 18y2y3y4

(19)

Since ξ is a random variable, when a group of sample {ξi} is taken between −1 and 1, each sample
ξi corresponds to a deterministic sample system (2); thus, it is necessary to take the mean value to
the sample system. The ensemble mean response (EMR) of the stochastic vibro-impact system can be
derived by Eq. (3):

E [x (t, ξ)] =
N∑

i=0

xi (t) E [Hi (ξ)] = x0. (20)

By means of Eq. (20), the following relations can be defined:

the mean constraint condition

E[x(t, ξ)] = x0 = �, (21)

the mean constraint plane

H0 = {(x, ẋ) |E [x (t, ξ)] = x0 = �} , (22)

and the mean jump condition

E [ẋ+ (t, ξ)] = −ηE [ẋ− (t, ξ)] ⇔ ẋ0+ = −ηẋ0−. (23)

Substituting Eqs. (9)–(13) and (21)–(23) into the system (1), the stochastic nonlinear vibro-impact
system can be simplified as follows: in case of x < �,(

d2

dt2
− μ

d
dt

+ a
)

x0 (t) − σ

2
d
dt

x1 (t) + μY0 (t) + σ

2
Y1 (t) + cX0 (t) = f cos (ωt) + F (t) , (24)(

d2

dt2
− μ

d
dt

+ a
)

x1 (t) − σ

2
d
dt

(x0 (t) + x2 (t)) + μY1 (t) + σ

2
(Y0 (t) + Y2 (t)) + cX1 (t) = 0, (25)(

d2

dt2
− μ

d
dt

+ a
)

x2 (t) − σ

2
d
dt

(x1 (t) + x3 (t)) + μY2 (t) + σ

2
(Y1 (t) + Y3 (t)) + cX2 (t) = 0, (26)

. . .(
d2

dt2
− μ

d
dt

+ a
)

xN (t) − σ

2
d
dt

xN−1 (t) + μYN (t) + σ

2
YN−1 (t) + cXN (t) = 0. (27)
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and in case of x = �, the relationship is given as follows:

ẋ0+ = −ηẋ0−. (28)

Eqs. (24)–(28) are the equivalent high-dimensional deterministic systems derived by the mean
jump equation, the mean constraint condition, and the Chebyshev polynomial approximation. Conse-
quently, the numerical results of the system with an uncertain parameter can be obtained by effective
numerical methods.

3 Bifurcation Analysis
3.1 Deterministic Response

Naturally, in the deterministic case the parameters σ = 0.0 or ξ = 0.0 are satisfied; hence, the
original system can be reduced to a deterministic one-side constraint system as follows:{

ẍ − μ
(
1 − ẋ2

)
ẋ + ax + cx3 = f cos (ωt) + F (t) , x < �,

ẋ+ = −ηẋ−, x = �.
(29)

Due to the deterministic property of Eq. (29), the response can be named the deterministic
response (DMR). Therefore, for the equivalent system in Eqs. (24)–(28), by setting the parameter
σ = 0.0, the deterministic response of the high-dimensional system can be derived and denoted by
EMR0. Correspondingly, the stochastic response of the equivalent system is denoted as EMR. Thus,
the validity of the polynomial approximation for this kind of vibro-impact system with nonlinear
stiffness and damping can be verified by comparing EMR0 with DMR. The differences between EMR
and DMR can show the effect of the uncertain parameter on the responses.

In order to calculate the response, the initial condition of Eq. (29) is chosen as x(0) = −1.0, ẋ (0) =
0.0. In addition, the initial condition of Eqs. (24)–(28) could be obtained as x(0) = [−1.0, 0.0, 0.0, 0.0],
ẋ (0) = [0.0, 0.0, 0.0, 0.0]. The parameters of the system are given as follows: f = 2.0, ω = 2.8, a = 1.0,
μ = 0.8, η = 0.8, � = 0.0, n = 2.

Here, two different Poincaré sections (the phase plane and the constraint plane) are taken, while
the value of c varies between 0.01 and 0.1. The bifurcation diagrams are plotted in Fig. 3. It depicts
that the properties are the same in Figs. 3a and 3b, having been derived based on different Poincaré
sections. In order to verify the response results in Fig. 3, the phase portraits, the time histories, and the
Poincaré sections are exhibited in Fig. 4. As Fig. 4 displays, when c increases from 0.035 to 0.05, the 4/4
periodic response of the system converts into the 2/2 response with the asterisk presenting the points of
the Poincaré sections. It is also verified the bifurcation properties shown in Fig. 3, which are depicted
by the points (A1A2A3A4, C1C2C3C4, B1B2, D1D2). In the symbol z = n/p, p is the number of impacts
and n is the number of the periods of the excitation force with the period T = 2π/ω. Furthermore, the
DMR and EMR0 also present very well the consistent base on the phase portraits in Fig. 4, showing
the availability of the approximation method in Section 2.
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Figure 3: Bifurcation diagrams of DMR and EMR0 vs. c, (a) the phase plane as Poincaré section, (b)
the constraint plane as Poincaré section

Figure 4: (a) The phase portraits and Poincaré sections for c = 0.05, (b) the time histories for c = 0.05,
the periodic 2/2 motion, (c) the phase portraits and Poincaré sections for c = 0.035, (d) the time
histories for c = 0.035, the periodic 4/4 motion

3.2 Effects of an Uncertain Parameter on Period-Doubling Bifurcation
In order to consider the effects of an uncertain parameter on period-doubling bifurcation, the

following system parameters are chosen: a = 0.5, c = 0.05, F0 = 0.1, f = 1.5, u = 0.8, η = 0.8,
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� = 0.0, and n = 2. When the excitation frequency ω changes between 3.98 and 4.2, two examples
of numerical results are obtained as displayed in Fig. 5 for σ = 0.0. Taking the value of ω = 3.98,
the response characteristics of DMR and EMR0 are obtained as shown in Fig. 5a. Moreover, with
increasing ω, DMR and EMR0 from the periodic 6/2 motion turn to the approximate 3/1 motion.
As for Poincaré section, the mark “�” presents the corresponding Poincaré section, and the periodic
properties also can be observed clearly from Poincaré section.

Figure 5: The phase portraits (a) ω = 3.98, the periodic 6/2 motion, (b) ω = 4.2, the periodic 3/1
motion

As for ω = 3.98, when the random intensity σ increases to 0.01, the phase portrait can be seen as
plotted in Fig. 6a. Even though, the trajectory of the system has certain diffusion, it does not change
the property of the motion, the period is still 6T . With the further increase of σ , EMR in Fig. 6b greatly
differs from DMR in Fig. 5a; actually, it is no longer the periodic motion under the strict sense. For
the case of ω = 4.2, it also appears to be the same phenomenon, which is plotted in Figs. 6c and 6d for
σ = 0.02 and σ = 0.03, respectively. Evidently, the strong diffusion phenomenon results in the change
of the topological property of the response in Fig. 6d.

As a conclusion, under the effect of the uncertain parameter with the decreasing frequency ω

from 4.2 to 3.98, the nonlinear vibro-impact system, just like the deterministic system, experiences a
period-doubling bifurcation from 3T to 6T . However, if random intensity continues to increase, the
dynamical behavior of the system will experience the essential change. The random factors result in
the essential change of the dynamical behavior, the reason of this change is that the trajectories of the
system are much closer to the constraint plane; thus, under the random disturbance the trajectories
induce diffusion and just impact the constraint plane.

3.3 Existence of Grazing Bifurcation
In this section, to investigate the grazing bifurcation which is typical for the system with impact

phenomenon, the same parameters are taken as in Section 3.1, except for a = 3.5, f = 3.5.

When the frequency is ω = 4.00495, as presented in Fig. 7, one trajectory of the system is tangent
to the constraint plane with zero speed, and grazing bifurcation occurs which generally exists only
in non-smooth systems. However, in this case with increasing the random intensity σ , the phase
portraits undergoes a few changes; as shown in Fig. 7. Actually, at some critical points the non-
smooth dynamical response becomes insensitive around the grazing point. Even with relatively large
disturbance, the system can also keep the original motion state quiet well (Fig. 7b).
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Figure 6: EMR for different values of σ as (a) ω = 3.98, σ = 0.01, (b) ω = 3.98, σ = 0.014, (c)
ω = 4.2, σ = 0.02, (d) ω = 4.2, σ = 0.03

Figure 7: EMR for different values of σ as ω = 4.00495, (a) σ = 0.1; (b) σ = 0.2

At the same time, in case of ω = 3.98, the phenomenon of grazing bifurcation also occurs, as
shown in Fig. 8, but it differs from the case of ω = 4.00495 in Fig. 7. When σ = 0.1, the trajectories
of the system experience certain diffusion in Fig. 8a, and then there is a serious diffusion for bigger σ

(as shown in Fig. 8b for σ = 0.18). This shows that at this grazing bifurcation point, the effect of the
uncertain parameter on the response occurs in the same phenomena with period-doubling bifurcation.
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Figure 8: EMR for different values of σ as ω = 3.98, (a) σ = 0.1, (b) σ = 0.18

In order to present the effect of an uncertain parameter on bifurcation, for different values of
intensity σ , the bifurcation diagrams of EMR with the variation of ω are plotted in Figs. 9a–9d,
respectively. The reasons for the diffusion of the system trajectories are that, on the one hand, the
trajectories of the system are much closer to the constraint plane; thus, under the random disturbance
the trajectories experience diffusion and then impact the constraint plane. On the other hand, with
increasing random intensity σ , the grazing bifurcation appears in advance, which can be seen in Fig. 9.

Figure 9: The bifurcation diagrams of EMR vs. ω for different values of σ , (a) σ = 0.0; (b) σ = 0.1;
(c) σ = 0.16; (d) σ = 0.18
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3.4 Influence of the Impulse Force
When it comes to the influence of the impulse signal on the bifurcation properties the following

ideas are considered: the stronger impulse signals are chosen with F0 = 10.0; the cases n = 2 and
n = 4 are also considered, respectively; and the fact that the different numbers of n lead to different
appearance time and values of impulse. Having compared the bifurcation diagrams plotted in Figs. 2
and 10, the following conclusions can be drawn. As it can be seen, at most of the points, the topological
properties have not changed, but the diffusion phenomenon apparently has a stronger impulse force,
and under larger values of n the diffusion phenomenon is more obvious.

Figure 10: The bifurcation diagrams of EMR0 vs. c with stronger impulse force, (a) the phase plane
as Poincaré section with n = 2, (b) the constraint plane as Poincaré section with n = 2, (c) the phase
plane as Poincaré section with n = 4, (d) the constraint plane as Poincaré section with n = 4

The phase portraits in Fig. 11 also verify the results. As illustrated, under smaller impulse force,
different values of n under the influence of the response are not obvious. With larger value of impulse
force and under smaller value of n, the diffusion phenomenon can be noticed; however, larger value
of n can induce a serious diffusion phenomenon.
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Figure 11: The phase portraits for c = 0.0356, (a) F0 = 0.1, n = 2; (b) F0 = 0.1, n = 4; (c) F0 = 10.0,
n = 2; (d) F0 = 10.0, n = 4

4 Conclusions

In this paper, the OPA method is applied in the vibro-impact system with an uncertain parameter
under periodic impulse excitation and harmonic excitation, and the damping coefficient is considered
as an uncertain parameter. In order to study the dynamical response, the ensemble mean response of
an equivalent high-dimensional system is introduced and the impact conditions are also transformed
by means of the mean value; then, the deterministic high-dimensional equivalent vibro-impact
system is derived. Afterward, the constraint plane and the phase plane are chosen as the Poincaré
section, respectively, with the response properties being consistent in the bifurcation diagrams. By
combining the analysis of the phase portraits, it is evident that the approximation method is effective
in this kind of vibro-impact system. Furthermore, it has been proved that besides period-doubling
bifurcation, certain grazing bifurcation exists also in the stochastic nonlinear vibro-impact system.
Under the influence of the uncertain parameter, the system responds not only with the characteristic
of the smooth system which can make trajectories of the systems’ diffusion, but also with a special
characteristic of a non-smooth system. At a critical point of bifurcation, the random factors with
certain intensity make the dynamical behavior of the system change drastically. Furthermore, grazing
bifurcation appears in advance with increasing random intensity. The existence of the stronger impulse
force can induce the appearance of a diffusion phenomenon. An appropriate choice of impulse force
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can control the vibration and improve the response performance. Overall, the bifurcation analysis is
helpful for further investigating of stochastic dynamics.
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