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ABSTRACT

In order to improve the seismic performance of adjacent buildings, two types of tuned inerter damper (TID)
damping systems for adjacent buildings are proposed, which are composed of springs, inerter devices and dampers
in serial or in parallel. The dynamic equations of TID adjacent building damping systems were derived, and the H2

norm criterion was used to optimize and adjust them, so that the system had the optimum damping performance
under white noise random excitation. Taking TID frequency ratio and damping ratio as optimization parameters,
the optimum analytical solutions of the displacement frequency response of the undamped structure under white
noise excitation were obtained. The results showed that compared with the classic TMD, TID could obtain a better
damping effect in the adjacent buildings. Comparing the TIDs composed of serial or parallel, it was found that
the parallel TIDs had more significant advantages in controlling the peak displacement frequency response, while
the H2 norm of the displacement frequency response of the damping system under the coupling of serial TID was
smaller. Taking the adjacent building composed of two ten-story frame structures as an example, the displacement
and energy collection time history analysis of the adjacent building coupled with the optimum design parameter
TIDs were carried out. It was found that TID had a better damping effect in the full-time range compared with the
classic TMD. This paper also studied the potential power of TID in adjacent buildings, which can be converted into
available power resources during earthquakes.
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1 Introduction

Since Lee et al. first proposed the method of vibration control for civil structures in 1972 [1], the
theory and method of vibration control have been developed rapidly. In order to deal with structural
vibration problems caused by wind load or earthquake load, a series of control strategies have been
formed, including active control, passive control, hybrid control, and intelligent control [2]. Among
them, passive vibration control is widely used in engineering practice because of its high stability, low
cost, good control effect, and easy realization [3,4]. The design of classic tuned mass damper (TMD)
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consists of a mass block, spring and viscous damper, which is a reliable structural vibration control
device [5]. Kareem et al. took high-rise buildings subjected to wind load as an example, introduced
the application of TMDs in Australia, Canada, China, Japan, and the United States in recent years,
and showed that TMD had superior seismic performance [6]. However, for TMD, to obtain better
and more robust control performance, it is necessary to use a larger auxiliary mass, that is, to increase
the mass ratio of TMD to the controlled structure, which is often restricted by site conditions or costs
[7]. In order to solve the problems encountered in the practical application of TMD, researchers have
developed many new dampers based on the existing TMD research, including electromagnetic inertial
mass damper (EIMD) [8,9], rotational inertial damper (RID) [10,11], rotational inertial double-tuned
mass damper (RIDTMD) [12–14], tuned mass damper inerter (TMDI) [15–17], tuned liquid inerter
system (TLIS) [18], tuned inerter damper (TID) [19–23], tuned mass-inerter damper (TMID) [24],
tuned fluid inerter (TFI) [25,26], clutching inerter damper (CID) [27], etc. These dampers introduced
a promising passive vibration control device, namely inerter device.

Inerter device is a mechanical device with two ends which was first proposed by Smith in 2002 [28].
Its characteristic is that the applied inerter force is proportional to the relative acceleration between the
two ends, and it usually consists of rack and pinion, ball screw and hydraulic mechanism [12,29,30].
Inerter devices have significant mass amplification effect, and the effective mass produced can exceed
100 times of its physical mass [13,31,32]. The principle of the inerter device is that it can transform the
linear motion of both ends of the device into the rotational motion of the flywheel when an earthquake
occurs, resulting in considerable inerter [33–35]. For example, Ikago et al. realized an apparent mass
of 300 kg with a ball screw device with a physical mass of only 2 kg [36], Javidialesaadi et al. designed
and produced a ball screw mechanism with a physical mass of only 2 kg to produce an effective mass
of 350 kg [13]. It can be seen that in order to produce an equivalent effective mass, the actual physical
mass of the inerter device is far less than that of the traditional TMD. In addition, the research also
showed that when the TID is placed at the bottom of the main structure, the performance of the TID
is the best, which is opposite to the TMD that must be placed at the position where the maximum
displacement occurs, that is, the top of the structure [22]. TID can obtain a large inerter mass ratio
without increasing the physical mass, so it is considered that TID can replace the traditional TMD
and be applied in engineering practice. Based on inerter device, Dai et al. explored the optimal design
of Maxwell tuned-mass-damper-inerter (M-TMDI) to mitigate vortex-induced vibration (VIV) of
bridges. Based on a two-DOF system, the optimal parameters of a specific M-TMDI, in which the
end of the inerter is connected to the fixed ground, are analytically given using the inerter location as a
design variable [37]. In addition, Dai et al. aimed at the impact of the location of inerter on the control
performance of tuned mass-damping-inerter (TMDI) in wind-induced vibration mitigation of flexible
structures, discussed the control effect, optimum design parameters, and high-mode damping effects of
the TMDI [38]. Different types of control devices based on inerter devices are also used in base isolated
structures. TIDs are installed at the bottom of the structure to further reduce the displacement of
isolated floors and the inter story displacement of superstructure [35,39,40]. Among them, the inerter
device based on the generator device can collect energy while reducing the displacement of the upper
structure, realizing the trade-off between the two contradictory goals of energy collection and vibration
control [35]. Gonzalez-Buelga et al. proposed a circuit containing both damping and energy collection
effects, and connected it with the electromagnetic transducer to synthesize TID, which also achieved
the dual goals of damping and energy collection [41]. Unlike TMD driven by the absolute motion of
the damper, TID is driven by the relative motion between the two ends of the device, which actually
provides conditions for the corresponding energy collection mode of TID [42].
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In order to achieve the best control effect of the vibration control device, different types of
optimization methods have been proposed, including the most commonly used method, namely H2

norm optimization. The H2 optimization criterion was first proposed by Crandall and Mark in 1963
and applied to the design of dynamic vibration absorbers (DVAs), with the goal of reducing the
total vibration energy of the system at all frequencies [43]. It can be understood that if the vibration
control system is subjected to random excitation, that is, the excitation contains an infinite number of
frequencies, then it is unnecessary to consider only the resonance frequency of the system. Under
this optimization criterion, the area under the frequency response curve of the system (called H2

norm) is the smallest [44]. In the study of vibration control of adjacent buildings based on inerter,
Palacios-Quiñonero et al. proposed a computational strategy to design inerter-based multi-actuation
systems for the seismic protection of adjacent structures based on an H∞ cost-function and used a
constrained global-optimization solver to compute parameter configurations with high-performance
characteristics. The research results fully demonstrate the flexibility and effectiveness of the proposed
design methodology, and clearly show the superior performance and robustness of the TID actuation
systems [45]. Djerouni et al. proposed a new configuration of TMDIs with the goal of studying the
seismic response of two adjacent buildings and the pounding distance between them. The results show
that the proposed method is effective and better than the existing TID configuration, filling a gap
in the research of investigating the effectiveness of TMDI in controlling seismic pounding and the
impact of ground motion variability [46]. Taking adjacent buildings as controlled structures, this paper
investigated the vibration control performance of serial TID and parallel TID in adjacent buildings.
Also, the analytical solutions of the optimum frequency ratio and damping ratio of structural vibration
control under random excitation were obtained by using the H2 norm optimization method. In
addition, for the convenience of analysis, the random excitation used in this paper is white noise
excitation when analyzing the frequency response of the system.

The main contents of this paper are summarized as follows: First, the analytical solutions of the
optimum frequency ratio and the optimum damping ratio of adjacent building structures under the
coupling of serial TID and parallel TID were obtained by using the H2 optimization method. Secondly,
the influence of different structural parameters on the optimum solutions was studied. Then, the
classic TMD was introduced to compare with the two types of TID, and the frequency response of
adjacent building structures under different damper coupling was analyzed. At the same time, the
influence of damper mass was also considered. Then, by changing the optimum frequency ratio and
the optimum damping ratio, the robust performance of vibration of adjacent buildings under TID
coupling was analyzed. Finally, four types of seismic waves were used to analyze the time history of
vibration control of adjacent building structures under two types of TIDs and classic TMD coupling,
and the time history of energy collection of adjacent building structures under two types of TIDs
coupling was analyzed.

2 Mathematical Model
2.1 Simplified Model of Adjacent Buildings

As shown in Fig. 1a is the simplified model of adjacent buildings, where mLi(i = 1, 2, . . . , n),
cLi(i = 1, 2, . . . , n) and kLi(i = 1, 2, . . . , n) are the corresponding mass, damping and stiffness of the i
floor of the left building respectively; mRi(i = 1, 2, . . . , n), cRi(i = 1, 2, . . . , n) and kRi(i = 1, 2, . . . , n)

are the corresponding mass, damping and stiffness of the i floor of the right building respectively;
csj(j = 1, 2, . . . , n) and ksj(j = 1, 2, . . . , n) are the corresponding damping and stiffness of the j floor
of adjacent buildings. Under the excitation of seismic acceleration ẍg, in order to better analyze the
vibration control effect of dampers on adjacent building structures, the left and right buildings are
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simplified into single degree of freedom structures, with their mass, stiffness, and damping values
corresponding to the main modes of the structure [47,48]. The simplified model is shown in Fig. 1b.
After simplification, the mass, damping and stiffness of the left building are m1, c1 and k1, respectively,
and the mass, damping and stiffness of the right building are m2, c2 and k2, respectively. The damping
and stiffness between the two buildings are cs and ks, respectively.

Figure 1: Simplified schematic graph of adjacent building structures

2.2 Inerter Device Concept
Adding ball screw mechanism (including shell and linear guide rail), flywheel and rotary generator

inside the damper can transform the relative linear motion between the structure and the ground
into rotation when an earthquake occurs, and drive the flywheel and generator to collect energy [35].
The rotating generator and flywheel drive the inerter mass to rotate, and generate resistance to the
driving structure. The damper is elastically installed with the structure, which is equivalent to a spring.
Fig. 2a shows a simplified model of the inerter device. It is characterized in that the generated force
is proportional to the difference of acceleration at both ends [22]. The mechanical equation can be
expressed as:

F = b (ẍl − ẍr) (1)

where xl, xr are the displacement of the left and right ends of the inerter device, the symbol “..” denotes
the calculation of the second derivative, and b denotes the effective mass.

Figure 2: Inerter device and two types of inerter-based damper models: (a) Inerter device; (b) Serial
TID; (c) Parallel TID
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2.3 Damping System
According to Section 2.2, considering different connection modes, two damper models with

different configurations based on inerter are formed. According to the different positions of md and
kd, serial connection of md and cd is called serial TID, and parallel connection of md and cd is called
parallel TID. The two TID models are shown in Figs. 2b and 2c, where md is the effective mass of
TID, cd and kd is the damping and stiffness of TID, respectively. Couple the different types of TIDs
mentioned above with the simplified adjacent buildings, and the formed models are shown in Fig. 3,
where x1, x2 and xd are the displacement of left building, right building and TID under earthquake
excitation, respectively.

Figure 3: The damping system of adjacent buildings coupled with TID: (a) Serial TID damping system;
(b) Parallel TID damping system

3 Parameter Optimization Based on H2 Norm Criterion
3.1 Equation Establishment

According to the coupled damping system in Fig. 3, the dynamic balance equation of the system
can be listed. We stipulate that the structure on the left which connected to TID is the left structure,
and the structure on the right of adjacent buildings is the right structure, and they will be distinguished
by left structure and right structure in subsequent expressions.

3.1.1 Serial TID

According to the balance principle of force, the dynamic balance equation can be obtained as
follows:⎧⎪⎨
⎪⎩

m1ẍ1 + mdẍd + c1ẋ1 + cs (ẋ1 − ẋ2) + k1x1 + ks(x1 − x2) = −m1ẍg

m2ẍ2 + c2ẋ2 + cs (ẋ2 − ẋ1) + k2x2 + ks(x2 − x1) = −m2ẍg

mdẍd + cd (ẋd − ẋ1) + kd(xd − x1) = 0
(2)

After dimensionless transformation by Laplace transform, the following results are obtained:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X1 (iω)
2 + md

m1

Xd (iω)
2 + c1

m1

X1 (iω) + cs

m1

(X1 − X2) (iω) + k1

m1

X1 + ks

m1

(X1 − X2) = −Ẍg

m2

m1

X2 (iω)
2 + c2

m1

X2 (iω) + cs

m1

(X2 − X1) (iω) + k2

m1

X2 + ks

m1

(X2 − X1) = −m2

m1

Ẍg

md

m1

Xd (iω)
2 + cd

m1

(Xd − X1) (iω) + kd

m1

(Xd − X1) = 0

(3)
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Define some new parameters for the next transformation. The defined parameters are shown in
Table 1. After substituting them into Eq. (3), there are:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X1 (iα)
2 + βdXd (iα)

2 + 2ξ1X1 (iα) + 2μsξ1 (X1 − X2) (iα) + X1 + λs(X1 − X2) = − Ẍg

ω2
1

β2X2 (iα)
2 + 2μ2ξ1X2 (iα) + 2μsξ1 (X2 − X1) (iα) + λ2X2 + λs(X2 − X1) = −β2Ẍg

ω2
1

βdXd (iα)
2 + 2βdξdfd (Xd − X1) (iα) + λd(Xd − X1) = 0

(4)

Table 1: Parameters and their definitions during derivation

Parameters Definition Description

β2 β2 = m2/m1 Ratio of right structure mass to left structure mass
βd βd = md/m1 Ratio of inerter mass to left structure mass
u2 u2 = c2/c1 Ratio of right structure damping to left structure damping
us us = cs/c1 Ratio of TID damping to left structure damping
ξ1 ξ1 = c1/2

√
k1m1 Damping ratio of left structure

ξd ξd = cd/2
√

kdmd Nominal damping ratio of TID
λ2 λ2 = k2/k1 Ratio of right structure stiffness to left structure stiffness
λs λs = ks/k1 Ratio of stiffness between adjacent buildings to stiffness of

left structure
λd λd = kd/k1 Ratio of stiffness of TID to stiffness of left structure
ω1 ω1 = √

k1/m1 Natural frequency of left structure
ωd ωd = √

kd/md Nominal frequency of TID
ω — External excitation frequency
fd fd = ωd/ω1 Ratio of TID nominal frequency to left structure frequency
α α = ω/ω1 Normalized frequency
i — Imaginary unit
X1, X2, Xd — The form of x1, x2 and xd after Laplace transformation

3.1.2 Parallel TID

According to the balance principle of force, the dynamic balance equation can be obtained as
follows:⎧⎪⎨
⎪⎩

m1ẍ1 + c1ẋ1 + cs (ẋ1 − ẋ2) + k1x1 + ks (x1 − x2) + kdxd = −m1ẍg

m2ẍ2 + c2ẋ2 + cs (ẋ2 − ẋ1) + k2x2 + ks(x2 − x1) = −m2ẍg

md (ẍ1 − ẍd) + cd (ẋ1 − ẋd) − kdxd = −mdẍg

(5)
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Similar to the serial TID, it can be obtained from Table 1 and Eq. (5) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1 (iα)
2 + 2ξ1X1 (iα) + 2μsξ1 (X1 − X2) (iα) + X1 + λs (X1 − X2) + λdXd = − Ẍg

ω2
1

β2X2 (iα)
2 + 2μ2ξ1X2 (iα) + 2μsξ1 (X2 − X1) (iα) + λ2X2 + λs(X2 − X1) = −β2Ẍg

ω2
1

βd (X1 − Xd) (iα)
2 + 2βdξdfd (X1 − Xd) (iα) − λdXd = −βdẌg

ω2
1

(6)

3.2 Solution of the Transfer Function
Before H2 optimization, it is necessary to obtain the normalized displacement transfer functions

of the left structure and the right structure under different connection modes of TID. Solve Eqs. (4)
and (6) to obtain the following results.

3.2.1 Serial TID

(1) Left structure

X s
1 = X1 (iα)

Ẍg(iα)/ω2
1

= − Bs
4(iα)4 + Bs

3(iα)3 + Bs
2(iα)2 + Bs

1(iα) + Bs
0

As
6(iα)6 + As

5(iα)5 + As
4(iα)4 + As

3(iα)3 + As
2(iα)2 + As

1(iα) + As
0

(7)

where the superscript “s” denotes serial connection, and the subscript “1” denotes the left structure,
and its numerator and denominator coefficients are shown in Appendix A.

(2) Right structure

X s
2 = X2 (iα)

Ẍg(iα)/ω2
1

= − Cs
4(jα)4 + Cs

3(jα)3 + Cs
2(jα)2 + Cs

1(jα) + Cs
0

As
6(iα)6 + As

5(iα)5 + As
4(iα)4 + As

3(iα)3 + As
2(iα)2 + As

1(iα) + As
0

(8)

where the superscript “s” denotes serial connection, the subscript “2” denotes the right structure, the
denominator coefficient is the same as the left structure, and the numerator coefficient is shown in
Appendix B.

3.2.2 Parallel TID

(1) Left structure

X p
1 = X1 (iα)

Ẍg(iα)/ω2
1

= − Bp
4(iα)4 + Bp

3(iα)3 + Bp
2(iα)2 + Bp

1(iα) + Bp
0

Ap
6(iα)6 + Ap

5(iα)5 + Ap
4(iα)4 + Ap

3(iα)3 + Ap
2(iα)2 + Ap

1(iα) + Ap
0

(9)

where the superscript “p” denotes parallel connection, the subscript “1” denotes the left structure, and
its numerator and denominator coefficients are shown in Appendix C.

(2) Right structure

X p
2 = X2 (iα)

Ẍg(iα)/ω2
1

= − Cs
4(iα)4 + Cp

3(iα)3 + Cp
2(iα)2 + Cp

1(iα) + Cp
0

Ap
6(iα)6 + Ap

5(iα)5 + Ap
4(iα)4 + Ap

3(iα)3 + Ap
2(iα)2 + Ap

1(iα) + Ap
0

(10)

where the superscript “p” denotes parallel connection, the subscript “2” denotes the right structure,
the denominator coefficient is the same as the left structure, and the numerator coefficient is shown in
Appendix D.
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3.3 Parameters Optimization
In order to verify the damping effect of different types of TID coupled with adjacent buildings, H2

optimization method is used to optimize the parameters of vibration control system, and the external
excitation used in this paper is white noise excitation. If the evaluation index is defined as PI , the H2

optimization problem can be expressed as the optimization of the corresponding variance. The form
of evaluation index PI is:

PI = 1
2π

∫ ∞

−∞

∣∣∣∣ X (iα)

Ẍg(iα)/ω2

∣∣∣∣ dα (11)

where
X (iα)

Ẍg(iα)/ω2
is the normalized transfer function.

To simplify the analysis, take the damping between the left structure and the right structure as
0, that is, from Table 1: ξ1 = 0, μ2 = 0, μs = 0. After solving the normalized transfer function, the
parameters of the left structure and the right structure can be optimized for adjacent buildings with
different types of TID coupling.

3.3.1 Optimization Process

(1) Serial TID

After substituting Eqs. (7) and (8) into the evaluation index PI of Eq. (11), using the formula in
Appendix E, the evaluation index PI are calculated as follows:

PIs
1 = 1

fdξd

(
Qs

1

Ps
1

λ2
d − Qs

2

Ps
2

λd + Qs
3

Ps
3

)
+ fdξdQs

4

Ps
4

(12)

PIs
2 = 1

fdξd

(
Ns

1

Ms
1

λ2
d − Ns

2

Ms
2

λd + Ns
3

Ms
3

)
+ fdξdNs

4

Ms
4

(13)

where the superscript “s” denotes serial connection, the subscripts “1, 2” denote the left structure and
the right structure, respectively. Ps

n (n = 1,2,3,4), Qs
n (n = 1,2,3,4), Ms

n (n = 1,2,3,4) and Ns
n (n = 1,2,3,4)

are polynomials composed of βd, β2, λ2 and λs, respectively, see Appendix F and Appendix G for the
specific form.

(2) Parallel TID

After substituting Eqs. (9) and (10) into the evaluation index PI of Eq. (11), using the formula in
Appendix E, the evaluation index PI are calculated as follows:

PIp
1 = fdξdQp

1

λ2
d

+ 1
fdξd

(
Qp

2

4λd

+ Qp
3

4λ2
d

+ Qp
4

Pp
1

)
(14)

PIp
2 = fdξd

(
Np

1

λ2
dMp

1

+ Np
2

λdMp
2

+ Np
3

Mp
2

)
+ 1

fdξd

(
Np

4

λ2
dMp

3

+ Np
5

λdMp
4

+ Np
6

Mp
5

)
(15)

where the superscript “p” denotes parallel connection, the subscripts “1, 2” denote the left structure
and the right structure, respectively. Pp

1, Qp
n (n = 1,2,3,4), MP

n (n = 1,2,3,4,5) and Np
n (n = 1,2,3,4,5,6)

are polynomials composed of βd, β2, λ2 and λs, respectively, see Appendix H and Appendix I for the
specific form.
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3.3.2 Optimization Results

In order to obtain the optimum solutions, the evaluation index PI is used to calculate the partial
derivatives of the optimization parameters respectively, and make them equal to 0. The following
results are obtained:

(1) Serial TID

∂PIs
1

∂fd

= 0,
∂PIs

1

∂ξd

= 0,
∂PIs

1

∂λd

= 0 (16)

∂PIs
2

∂fd

= 0,
∂PIs

2

∂ξd

= 0,
∂PIs

2

∂λd

= 0 (17)

By solving Eqs. (16) and (17), respectively, we can get the optimization results (Eq. (18) represents
the left structure, and Eq. (19) represents the right structure):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ s
dopt1 =

√
Ps

4(4(Ps
2)

2Qs
1Qs

3 − Ps
1Ps

3(Qs
2)

2)

2Ps
2

√
Ps

3Qs
1Qs

4

√
λs

dopt1/βd

λs
dopt1 = Ps

1Q
s
2

2Ps
2Qs

1

(18)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ s
dopt2 =

√
Ms

4(4(Ms
2)

2Ns
1Ns

3 − Ms
1Ms

3(Ns
2)

2)

2Ms
2

√
Ms

3Ns
1Ns

4

√
λs

dopt2/βd

λs
dopt2 = Ms

1N
s
2

2Ms
2Ns

1

(19)

Here, it is necessary to point out:

fd =
√

λd

βd

(20)

(2) Parallel TID

∂PIp
1

∂fd

= 0,
∂PIp

1

∂ξd

= 0,
∂PIp

1

∂λd

= 0 (21)

∂PIp
2

∂fd

= 0,
∂PIp

2

∂ξd

= 0,
∂PIp

2

∂λd

= 0 (22)

By solving Eq. (21) and by Eq. (20), we can get the optimization results of the left structure under
the parallel TID coupling are:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ
p
dopt1 =

√
3Pp

1Q
p
1(Q

p
2)

2 − √
Pp

1(Q
p
1)

2(Qp
2)

2(9Pp
1(Q

p
2)

2 − 128Qp
3Q

p
4) − 32Qp

1Q
p
3Q

p
4

128(Qp
1)

2Qp
4(λ

p
dopt1/βd)

λ
p
dopt1 =

√
Pp

1(Q
p
1)

2(Qp
2)

2(9Pp
1(Q

p
2)

2 − 128Qp
3Q

p
4)

16Qp
1Q

p
2Q

p
4

− 3Pp
1Q

p
2

16Qp
4

(23)
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When solving Eq. (22), this equation group is converted into the solution of Eq. (24), which
includes:{

ψd

(
R1λ

2
d + R2λd + R3

) − R4λ
2
d − R5λd − R6 = 0

ψd (R7λd − R8) − R9λd − R10 = 0
(24)

where

ψd = (fdξd)
2 (25)

see Appendix J for the specific form of Rn (n = 1, 2, . . . , 10).

By solving Eq. (24), and with Eq. (20), the optimization results of the right structure under parallel
TID coupling are obtained as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ
p
dopt2 =

√
R9λ

p
dopt2 + R10

(R7λ
p
dopt2 − R8)(λ

p
dopt2/βd)

λ
p
dopt2 = 1

U1

(
U2 + 3

√
2

(
1 + i

√
3
) (

U3 + √
U4

) 1
3 − 2i 3

√
2
(

i + √
3
)

U5

(
U3 + √

U4

)− 1
3

) (26)

where Un (n = 1,2,3,4) is a polynomial composed of Rn (n = 1, 2, . . . , 10). See Appendix K for the
specific form.

4 Parameters Analysis
4.1 Parameters Determination

Before parameters analysis, it is necessary to give specific values of parameters that have not been
optimized. In order to facilitate the optimization analysis, the mass, damping and stiffness of the left
structure and the right structure are determined to be consistent in this section, that is, Table 1 shows:
β2 = 1.0, λ2 = 1.0. In the following analysis, we first determine the mass ratio βd and the stiffness ratio
λs, and then conduct relevant parameters analysis.

4.1.1 Determination of βd

In Section 3.3.2, the process and results of parameter optimization are given. However, many of
the optimization results have root signs. According to the mathematical knowledge, all values under
the root sign should be greater than or equal to 0. After considering all the optimization results, it is
found that the conditions affecting the value of βd are shown in Eq. (27):

9Pp
1(Q

p
2)

2 − 128Qp
3Q

p
4 ≥ 0 (27)

To determine the value of βd, let the left side of inequality (27) be 0, that is, there is Eq. (28):

γ = 9Pp
1(Q

p
2)

2 − 128Qp
3Q

p
4 = 0 (28)

Combining Eqs. (H1) and (H2), the image of Eq. (28) is drawn as shown in Fig. 4. It can be seen
from the figure that if γ ≥ 0, the value of βd should be between 0 and 0.244. Considering that the value
of βd is often small in real life, we can temporarily take the mass ratio βd = 0.1 for the next analysis.
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Figure 4: Analysis of the value of mass ratio βd

4.1.2 Determination of λs

It was found during parameter optimization that if λs is the parameter to be optimized, the
equation set could not be solved. So, the determination of λs in advance is a key problem, and it is
also a different point and difficulty in dealing with the vibration control of adjacent buildings. In
the actual project, ks is generally less than the stiffness of the left structure k1. Therefore, it can be
determined in advance that the value range of λs is 0.1∼0.7. The determination of βd has been given
in Section 4.1.1, and the value is 0.1. According to the above conditions, we can get the function of
normalized displacement, which only contains normalized frequency α and stiffness ratio λs. The two
parameters, then, can draw a three-dimensional graph for analysis, and then determine the value of
λs. Fig. 5 shows a three-dimensional graph of normalized displacement under different conditions,
considering different values of λs. In Fig. 5, α is between 0 and 2, and λs is between 0.1 and 0.7.

As can be seen from Fig. 5, when λs takes different values, the normalized displacement graph
of the left structure coupled with two connection modes TID is similar (Figs. 5a and 5c), and the
normalized displacement graph of the right structure is also similar (Figs. 5b and 5d). The peak value
of the normalized displacement (for the convenience of description, the peak value of the displacement
transfer function graph is called the wave peak) shows that for the left structure, the value of λs does
not affect the number of wave peaks. But for the right structure, when λs ≤ 0.3 or so, the number of
wave peaks will degenerate into two. It can also be seen from Fig. 5 that when λs ≤ 0.2, the normalized
displacement will increase sharply, while when λs is between 0.2 and 0.7, the displacement image tends
to be stable and at a low level. In order to facilitate the next research, and considering the better
damping performance of the system when λs is large and the constraints of the actual engineering
structure, it is decided to set λs as 0.5.
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Figure 5: Three-dimensional graphs of normalized displacement when the stiffness ratio λs take
different values: (a) The left structure under serial TID coupling; (b) The right structure under serial
TID coupling; (c) The left structure under parallel TID coupling; (d) The right structure under parallel
TID coupling

4.1.3 Verification of Optimization Results

After the values of two key parameters βd and λs are determined, they can be substituted into the
optimization result equations under different conditions, and the values of the optimum solutions λdopt

and ξdopt can be obtained. At the same time, according to the evaluation index PI (Eqs. (12)–(15)) given
earlier, a three-dimensional graph of PI (Fig. 6) can be drawn, and the accuracy of the optimization
results can be verified.

It can be seen from Figs. 6a and 6b that the evaluation indexes PI of the left structure and the right
structure under the serial TID coupling are similar, the lowest point appears near λd = 0.09∼0.11 and
ξd = 0.10∼0.14. For the three-dimensional graph of evaluation index PI of left structure and right
structure under the coupling of parallel TID, it can be seen from Figs. 6c and 6d that when λd ≥ 0.28
and ξd ≥ 0.3, the value of PIp

1 in three-dimensional graph is relatively stable and the minimum value
of PI cannot be obtained within this range, but when λd = 0.10∼0.11 and ξd = 0.11∼0.15, PIp

1 can get
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the minimum value. Similarly, when λd = 0.11∼0.13 and ξd = 0.10∼0.13, PIp
2 can get the minimum

value. In order to further determine the values of λd and ξd, the contour graphs are drawn in detail as
shown in Fig. 7.

Figure 6: Three-dimensional graphs of evaluation index PI by H2 optimization method (λd is the ratio
of stiffness of TID to stiffness of left structure, ξd is the nominal damping ratio of TID): (a) The left
structure under serial TID coupling; (b) The right structure under serial TID coupling; (c) The left
structure under parallel TID coupling; (d) The right structure under parallel TID coupling

From the closure of the contour graphs in Figs. 6 and 7, we can roughly judge the coordinates
when PI = 0, and the results are listed in Table 2. As mentioned above, the calculated value of the
optimum solutions can be obtained by substituting the previously determined parameters: β2 = 1.0,
λ2 = 1.0, λs = 0.5 and βd = 0.1 into Eqs. (18), (19), (23) and (26), and the results are shown in
Table 2. As can be seen from Table 2, compared with the calculated value of the optimum solutions,
the error of the predicted optimum solutions from Fig. 7 is small, and the maximum error is only
3.31%. Therefore, the optimization results obtained by the process in Section 3 are accurate. Due to
the error in the estimated value obtained through figure judgment, the calculated values are used for
the optimum solution during subsequent analysis.
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Figure 7: The contour graphs of evaluation index PI of H2 optimization method (a, b, c and d
correspond to Fig. 6). The blue pentagram marks the point where PI = 0, and its corresponding
λd and ξd are the optimum solutions λdopt and ξdopt

Table 2: Comparison between the estimated values and the calculated values of the optimum solutions

Connection modes Structure types Estimated values Calculated values Error rate (%)

λdopt
e

ξdopt
e

λdopt ξdopt Δλ Δξ

Serial TID Left structure 0.094 0.110 0.093 0.111 1.08 0.90
Right structure 0.102 0.135 0.101 0.134 0.99 0.75

Parallel TID Left structure 0.103 0.125 0.103 0.121 0.00 3.31
Right structure 0.118 0.123 0.116 0.120 1.72 2.50
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4.2 Influence of Parameters on Optimum Solutions
In 1998, Rana et al. put forward that the frequency ratio is an important index that affects

the damping performance when designing TMD through the fixed-points theory [49]. Consid-
ering the impact of actual engineering on the optimum solution results is conducive to further
understanding the laws of TID for vibration control of adjacent building structures. The influence
of different parameters on the optimum solution is analyzed as follows:

4.2.1 Influence of Mass Ratios βd and β2

Figs. 8 and 9 are three-dimensional graphs of optimum solutions fdopt and ξdopt of left structure and
right structure under the coupling of serial TID and parallel TID, respectively. Figs. 10 and 11 are
two-dimensional graphs corresponding to Figs. 8 and 9, respectively.

Figure 8: Three-dimensional graphs of optimum solutions fdopt and ξdopt under serial TID coupling (λ2 =
1.0, λs = 0.5). In the figure, (a1) and (a2) correspond to the left structure, and (b1) and (b2) correspond
to the right structure
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Figure 9: Three-dimensional graphs of optimum solutions fdopt and ξdopt under parallel TID coupling
(λ2 = 1.0, λs = 0.5). In the figure, (c1) and (c2) correspond to the left structure, and (d1) and (d2)
correspond to the right structure

In Figs. 8(a1) and 8(a2), the optimum frequency ratio fdopt of the left structure under serial TID
coupling decreases with the increase of mass ratio βd, while the optimum damping ratio ξdopt increases
with the increase of mass ratio βd. It can be seen from Fig. 10(a1) that when β2 is small, fdopt decreases
rapidly, and with the increase of β2, fdopt decreases more and more slowly. In Fig. 10(a2), the value of
β2 has little effect on the rising speed of ξdopt. In Figs. 8(b1), and 8(b2), for the right structure coupled
by serial TID, β2 has obvious influence on fdopt and ξdopt. When β2 is small, both fdopt and ξdopt decrease
with the increase of mass ratio βd; While when β2 is larger, both fdopt and ξdopt increase with the increase
of βd. The above results show that the mass ratio β2 has a great influence on the right structure in the
adjacent building structures coupled by serial TID. In order to achieve the best control effect, with
the increase of βd, the required spring stiffness kd decreases and the damping cd increases for the left
structure. However, for the right structure, when the mass ratio β2 is small, with the increase of β2,
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the required spring stiffness kd and damping cd become smaller and smaller. When the mass ratio β2 is
large, with the increase of β2, the required spring stiffness kd and damping cd become larger and larger.

Figure 10: The curves of the optimum solutions (fdopt, ξdopt) of the left structure and the right structure
under the coupling of serial TID when βd takes different values (a and b correspond to Figs. 8a and 8b)

Under parallel TID coupling, it can be seen from Fig. 9 that the fdopt and ξdopt of the left structure
and the right structure both increase with the increase of βd. According to the observation in Fig. 11,
when β2 is small, fdopt and ξdopt increase rapidly, while when β2 is large, the increasing trend of fdopt and
ξdopt slows down. Therefore, the mass ratio β2 has obvious influence on both the left structure and the
right structure, and the influence trends are the same. For the left structure and the right structure,
in order to achieve the best control effect, with the increase of βd, the required spring stiffness kd and
damping cd become larger and larger, and the larger β2 is, the slower the increase speed is.

4.2.2 Influence of Stiffness Ratios λs and λ2

Figs. 12 and 13 are three-dimensional graphs of optimum solutions fdopt and ξdopt of left structure
and right structure under the coupling of serial TID and parallel TID, respectively. Figs. 14 and 15 are
two-dimensional graphs corresponding to Figs. 12 and 13, respectively.
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Figure 11: The curves of the optimum solutions (fdopt, ξdopt) of the left structure and the right structure
under the coupling of parallel TID when βd takes different values (c and d correspond to Figs. 9c
and 9d)

Figure 12: (Continued)
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Figure 12: Three-dimensional graphs of the optimum solutions fdopt and ξdopt under serial TID coupling
(βd = 0.1, β2 = 1.0). In the figure, (a1) and (a2) correspond to the left structure, and (b1) and (b2)
correspond to the right structure

Figure 13: Three-dimensional graphs of the optimum solutions fdopt and ξdopt under parallel TID
coupling (βd = 0.1, β2 = 1.0). In the figure, (c1) and (c2) correspond to the left structure, and (d1) and
(d2) correspond to the right structure
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Figure 14: The curves of the optimum solutions (fdopt, ξdopt) of the left structure and the right structure
under the coupling of serial TID when λs takes different values (a and b correspond to Figs. 12a
and 12b)

Figure 15: The curves of the optimum solutions (fdopt, ξdopt) of the left structure and the right structure
under the coupling of parallel TID when λs takes different values (c and d correspond to Figs. 13c
and 13d)
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For the adjacent buildings coupled by serial TID, it can be seen from Figs. 12, 14(a1) and 14(a2)
that the optimum frequency ratio fdopt of the left structure increases with the increase of stiffness ratio
λ2, and it is not obviously affected by stiffness ratio λs. The optimum damping ratio ξdopt is obviously
affected by the stiffness ratio λs. When λs is small, ξdopt first decreases and then increases with the
increase of λ2, while when λs is large, ξdopt always increases with the increase of λ2. The above results
show that, in order to achieve the best control effect, with the increase of stiffness ratio λs and λ2, the
required stiffness provided by TID will be larger for the left structure coupled with serial TID. As for
damping, when λs is small, with the increase of λ2, the damping provided by TID decreases first and
then increases; when λs is large, with the increase of λs, the damping required by TID is larger. It can
be seen from Figs. 12, 14(b1) and 14(b2) that the optimum frequency ratio fdopt and the best damping
ratio ξdopt of the right structure are significantly affected by the stiffness ratio λs. When λs is small
(λs ≤ 0.3), fdopt increases first and then decreases and then increases with the increase of stiffness ratio
λ2, and ξdopt increases first and then decreases with the increase of stiffness ratio λ2. When λs is larger
(0.3 < λs ≤ 0.7), both fdopt and ξdopt increase with the increase of stiffness ratio λ2, and the increasing
speed is relatively slow. The above results show that, in order to achieve the best control effect, when
λs is small, with the increase of λ2, the stiffness provided by TID increases first and then decreases
and then increases, and the required damping increases first and then decreases. When λs is larger, the
larger λ2 is, the greater the stiffness and damping that TID needs to provide.

For adjacent buildings with parallel TID coupling, it can be seen from Figs. 13, 15(c1) and 15(c2)
that the optimum frequency ratio fdopt of the left structure is obviously affected by the stiffness ratio
λs. When λs is small, fdopt first decreases and then increases with the increase of λ2, while when λs is
larger, fdopt always increases with the increase of λ2. ξdopt is not obviously affected by the stiffness ratio
λs. Under the same stiffness ratio λs, ξdopt decreases with the increase of λ2. The above results show
that, in order to achieve the best control effect, when λs is small, with the increase of λ2, the stiffness
provided by TID decreases first and then increases, and the required damping also decreases first and
then increases; when λs is larger, with the increase of λ2, the stiffness required by TID is larger, and
the required damping also decreases first and then increases. For the right structure, it can be seen
from Figs. 13, 15(d1) and 15(d2) that the optimum frequency ratio fdopt and the optimum damping
ratio ξdopt are significantly affected by the stiffness ratio λs, similar to the serial TID. When λs is small
(λs ≤ 0.3), fdopt increases first and then decreases and then increases with the increase of stiffness ratio
λ2, and ξdopt increases first and then decreases with the increase of stiffness ratio λ2. When λs is larger
(0.3 < λs ≤ 0.7), both fdopt and ξdopt increase with the increase of stiffness ratio λ2, and the increasing
speed is relatively slow. This shows that, in order to achieve the best control effect, with the change
of stiffness ratio λs and λ2, the change trend of required stiffness and damping of the right structure
coupled with parallel TID is similar to that of the right structure coupled with serial TID.

5 Frequency Response Analysis

After parameter analysis, we introduce classic tuned mass damper (TMD) into the earthquake
resistance of adjacent building structures, and analyze its vibration control performance. Under the
condition that all the conditions of the specified structure are unchanged, the vibration control
performance of two types of TID and TMD are compared.
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5.1 Classic TMD System
5.1.1 Classic TMD Equations

Fig. 16 shows the damping model of adjacent buildings coupled with TMD, which is the same as
the definition in Section 3.1. It is defined that the structure on the left side is the left structure and the
structure on the right side is the right structure. The mass, damping and stiffness of TMD are mt, ct

and kt, respectively. m1, m2 are the mass of the left structure and the right structure, respectively, c1, c2

and cs are the damping of the left structure, the right structure and the damping between the left and
right structures, respectively, k1, k2 and ks are the stiffness of the left structure, the right structure and
the stiffness between the left and right structures, respectively. ẍg is the acceleration of seismic waves,
and x1, x2 and xt are the displacement of the left structure, right structure and TMD, respectively.

Figure 16: The damping system of adjacent buildings coupled with classic TMD

According to the principle of force balance, the dynamic equilibrium equations are:⎧⎪⎨
⎪⎩

m1ẍ1 + c1ẋ1 + cs (ẋ1 − ẋ2) + ct (ẋ1 − ẋt) + k1x1 + ks (x1 − x2) + kt (x1 − xt) = −m1ẍg

m2ẍ2 + c2ẋ2 + cs (ẋ2 − ẋ1) + k2x2 + ks(x2 − x1) = −m2ẍg

mtẍt + ct (ẋt − ẋ1) + kt(xt − x1) = −mtẍg

(29)

Using Laplace transform to make dimensionless, and after finishing, get:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

X1 (iα)
2 + 2ξ1X1 (iα) + 2μsξ1 (X1 − X2) (iα) + 2βtξtft (X1 − Xt) (iα) + X1 + λs (X1 − X2)

+ λt (X1 − Xt) = − Ẍg

ω2
1

β2X2 (iα)
2 + 2μ2ξ1X2 (iα) + 2μsξ1 (X2 − X1) (iα) + λ2X2 + λs(X2 − X1) = −β2Ẍg

ω2
1

βtXt (iα)
2 + 2βtξtft (Xt − X1) (iα) + λt(Xt − X1) = 0

(30)

where βt = mt/m1 is the ratio of the classic TMD mass to the left structure mass, ξt = ct/2
√

ktmt is the
nominal damping ratio of classic TMD, λt = kt/k1 is the ratio of classic TMD stiffness to left structural
stiffness, ft = ωt/ω1 is the ratio of the nominal frequency of the classic TMD to the frequency of the
left structure, Xt is the form of xt after Laplace transformation. The definitions of other parameters
are the same as those in Section 3.1.1, see Table 1.

5.1.2 Optimization Results

Same as the steps in Section 3, the optimization results obtained by H2 optimization method are
as follows:

(1) Left structure
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξtopt1 =
√

P4(4(P2)2Q1Q3 − P1P3(Q2)2)

2P2

√
P3Q1Q4

√
λtopt1/βt

λtopt1 = P1Q2

2P2Q1

(31)

where Pn (n = 1,2,3,4) and Qn (n = 1,2,3,4) are polynomials composed of βt, β2, λ2 and λs, respectively,
see Appendix L for the specific form.

Similarly, for the classic TMD, there are:

ft =
√

λt

βt

(32)

(2) Right structure⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξtopt2 =
√

M4(4(M2)2N1N3 − M1M3(N2)2)

2M2

√
M3N1N4

√
λtopt2/βt

λtopt2 = − M1N2

2M2N1

(33)

where Mn (n = 1,2,3,4) and Nn (n = 1,2,3,4) are polynomials composed of βt, β2, λ2 and λs, respectively,
see Appendix M for the specific form.

In order to compare the damping performance of two types of TID and classic TMD, this section
adopts the parameters determined in Section 4.1, namely β2 = 1.0, λ2 = 1.0, λs = 0.5. When analyzing
the parameters of TID, we take the mass ratio βd = 0.1, so when analyzing the damping effect of
adjacent buildings under the classic TMD coupling, we also take the mass ratio βt = 0.1, and then
make the next comparative analysis.

5.2 Comparison of Vibration Control Effect
In the previous analysis, the values of relevant parameters have been determined as follows: β2 =

1.0, λ2 = 1.0, λs = 0.5, the βd of adjacent buildings under TID coupling is 0.1, and the βt of adjacent
buildings under classic TMD coupling is also 0.1. The normalized displacement figure under different
conditions is shown in Fig. 17.

As can be seen from Fig. 17, the similarity of normalized displacement curves under different
conditions is high, and there are three peaks. According to the observation of Fig. 17a, compared
with the highest point of the whole curve, the parallel TID value is the smallest; according to the
observation of Fig. 17b, compared with the highest point of the whole curve, the classic TMD value is
the smallest. The above results show that when damping adjacent buildings, the best control effect can
be achieved by selecting parallel TID for the left structure and classic TMD for the right structure. For
further comparison, the relevant data of Figs. 17a and 17b are summarized in Table 3. It can be seen
from the table that compared with the highest point of displacement curve, the left structure is smaller
than the right structure for the adjacent buildings coupled by serial and parallel TIDs, which indicates
that TID has better vibration control effect for the left structure. However, for the adjacent buildings
coupled with classic TMD, the highest point of the displacement curve of the left structure is larger
than that of the right structure, which indicates that the classic TMD has a better damping effect on
the right structure. From the results given in Table 3, it can be seen that if the size of the area S (i.e.,
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H2 norm) enclosed by the displacement curve and the coordinate axis in the normalized frequency
range of 0∼2.0 is taken as the basis (hereinafter referred to as area S for convenience of analysis), the
serial TID has a better vibration control effect for the left structure, and the classic TMD has a better
vibration control effect for the right structure.

Figure 17: Normalized displacement graphs of the left structure and right structure of adjacent
buildings with different types of dampers (β2 = 1.0, λ2 = 1.0, λs = 0.5, βd = 0.1, βt = 0.1)

Table 3: Normalized displacement correlation coefficients of adjacent buildings under different
damper coupling

Damper types Structure types Peak Corresponding α S

Wave
peak 1

Wave
peak 2

Wave
peak 3

Wave
peak 1

Wave
peak 2

Wave
peak 3

Serial TID Left structure 7.007 6.863 1.644 0.880 1.069 1.452 3.907
Right structure 7.365 5.890 2.109 0.906 1.080 1.430 4.074

Parallel TID Left structure 6.501 6.668 3.199 0.907 1.086 1.453 4.018
Right structure 7.323 5.890 2.188 0.926 1.118 1.456 4.108

Classic TMD Left structure 6.919 7.647 1.127 0.867 1.059 1.454 4.109
Right structure 7.150 6.431 1.541 0.894 1.072 1.428 4.071

Note: In the table, “S” is the area of the graph enclosed by the normalized displacement curve and coordinate axis (i.e., H2 norm), and the
normalized frequency is α = 0∼2.0.

As far as the damping effect of TID is concerned, only the specific case of mass ratio βd = 0.1
has been analyzed above, which is obviously not well considered. Fig. 18 is a three-dimensional graph
of the normalized displacement of the left structure and the right structure under the coupling of
serial TID and parallel TID. From this graph, it can be found that the normalized displacement will
gradually decrease with the increase of the mass ratio βd. For better comparison, the peak value and
area S of the displacement curve when βd takes different values are calculated and summarized in
Fig. 19.
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Figure 18: Three-dimensional graphs of normalized displacement when the mass ratio βd takes
different values: (a) The left structure under serial TID coupling; (b) The right structure under serial
TID coupling; (c) The left structure under parallel TID coupling; (d) The right structure under parallel
TID coupling (β2 = 1.0, λ2 = 1.0, λs = 0.5)

It can be seen from Fig. 19a that increasing the mass ratio βd can obviously enhance the damping
effect. From the peak value of displacement, when βd ≤ 0.1, increasing βd will obviously reduce the
peak value of displacement. However, when βd > 0.1, the peak value of displacement will decrease
more and more slowly. By observing the change of the area S in the bar graph, the height difference
between the two bar graphs is also slowly decreasing. According to the line graph and bar graph,
it can be found that parallel TID has obvious advantages in controlling the peak displacement, and
this advantage becomes greater with the increase of βd. Comparing the size of area S, it can be seen
that serial TID has a significant advantage in controlling the overall vibration control effect, and this
advantage increases with the increase of βd. It can be seen from the line graph and curve graph in
Fig. 19b that the value of βd has the same effect on the peak displacement and area S of the right
structure and the left structure. At the same time, for the right structure, the serial TID has a significant
advantage in controlling the overall vibration control effect, and this advantage increases with the
increase of βd. However, compared with the peak value of the displacement of the right structure, the
serial TID and the parallel TID are similar in size, and the influence of βd is not obvious.
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Figure 19: Considering the different values of mass ratio βd, the related calculation results of
normalized displacement graphs of left structure and right structure under the coupling of serial
TID and parallel TID (In the figure, the line graph represents the maximum value of the normalized
displacement, and the column graph represents the area S enclosed by the displacement curve and the
coordinate axis, that is, the H2 norm)

The above analysis results show that when the mass of the damper is small compared with that of
the left structure (βd ≤ 0.1), increasing the mass of the damper can really enhance the damping effect.
However, when the mass of the damper increases gradually compared with that of the left structure
(βd > 0.1), the constraints of actual cost and site conditions should be considered, and the damping
effect of the damper with large mass compared with the left structure is not obviously improved.
In addition, when controlling the peak displacement of adjacent buildings under earthquake, parallel
TID should be given priority. If H2 norm is taken into account, it is better to choose serial TID.

5.3 Robustness Performance Analysis
Optimization parameters in practical engineering often change. In order to make adjacent

buildings achieve more robust vibration control effect, it is necessary to analyze their robustness.
Fig. 20 is the robustness analysis curve of the left structure and the right structure under the coupling
of serial TID and parallel TID. The optimum frequency ratio fdopt and the optimum damping ratio ξdopt

are the influencing factors.

As shown in Fig. 20, slightly change the damping ratio the value of ξdopt has little influence on the
vibration control effect of adjacent buildings under serial and parallel TID coupling, and only causes
slight changes at the peak position, which indicates that the normalized displacement is not sensitive
to the change of damping ratio. However, if the frequency ratio fdopt is slightly changed, it can be seen
from Fig. 20 that the normalized displacement change is significant. In addition, it can be seen from
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the Fig. 20d that there is a special case, that is, when the frequency ratio fdopt of the right structure
under parallel TID coupling decreases, the amplitude of change is so large that the change of wave
peak height cannot be accurately seen.

Figure 20: Robustness performance analysis curves of left structure and right structure of adjacent
buildings under the coupling of serial TID and parallel TID: (a) Serial TID is coupled with the left
structure; (b) Serial TID is coupled with the right structure; (c) Parallel TID is coupled with the left
structure; (d) Parallel TID is coupled with the right structure (β2 = 1.0, βd = 0.1, λ2 = 1.0, λs = 0.5)

To further determine the size of the change, the detailed drawing of Fig. 20d is shown in Fig. 21. It
can be seen from the figure that the right structure in adjacent buildings under the coupling of parallel
TIDs is extremely sensitive to the reduction of frequency ratio fdopt, and the displacement after the
change is very large, and the vibration control effect decreases obviously. The above results show that,
in the actual engineering structure design, in order to achieve more robust vibration control effect of
adjacent building structures, the change of stiffness is more worthy of attention than the change of
damping of TID.
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Figure 21: Robust performance analysis curve of the right structure of adjacent buildings under the
coupling of parallel TID

6 Time Domain Simulation
6.1 Vibration Control Performance

In the foregoing analysis, we assume that the external excitation is white noise excitation with
evenly distributed energy at all frequencies, but the ground motion caused by earthquake is actually
not ideal white noise [35]. Therefore, it is necessary to simulate and verify the seismic performance
of adjacent buildings under the coupling of serial TID and parallel TID. Taking two ten-story frame
structures as an example, the relevant parameters of the adjacent building structures are: m1 = m2 =
5.897 × 104 kg, c1 = c2 = 67.4 × 103 N · s/m, cs = 33.7 × 103 N · s/m, k1 = k2 = 4.81 × 107 N/m,
ks = 2.405 × 107 N/m [50], βd = 0.1, βt = 0.1 and relevant parameters of dampers are determined
in Table 4. The external excitation is four commonly used seismic waves, namely: El Centro (May 18,
1940), Taft (July 21, 1952), Loma Prieta (October 17, 1989) and Chi-Chi (September 21, 1999) [2,35].
Fig. 22 shows the acceleration time history of four types of seismic waves. Under the excitation of
four types of seismic waves, the displacement time history curves of adjacent buildings coupled with
different dampers are shown in Figs. 23 and 24.

Table 4: Relevant parameters of damper

Damper types Structure types Optimum solutions

Optimum frequency ratio fdopt Optimum damping ratio ξdopt

Serial TID Left structure 0.964 0.111
Right structure 1.006 0.134

Parallel TID Left structure 1.017 0.121
Right structure 1.078 0.120

Classic TMD Left structure 0.938 0.115
Right structure 0.982 0.126
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Figure 22: Acceleration time history curves of four types of seismic waves

Figure 23: Displacement time history graphs of the left structure under four types of seismic waves
excitation
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Figure 24: Displacement time history graphs of the right structure under four types of seismic waves
excitation

It can be seen from Fig. 23 that under the excitation of different types of seismic waves, compared
with the displacement of the left structure in the uncontrolled state, the three dampers have good
damping effects in the whole range. Comparing the displacement of three dampers, it is found that
the displacement of classical TMD is slightly larger than that of serial or parallel TID. In order to
make a more accurate comparison, the peak and root mean square values of the displacement of the
left structure coupled with three different types of dampers are summarized, as shown in Table 5. It
can be seen from Table 5 that, compared with the peak displacement in uncontrolled state, the peak
control effect of the serial TID is at least 10.1% and at most 47.8%; the peak control effect of parallel
TID is at least 9.5% and at most 45.9%; the peak control effect of classic TMD is at least 2.8% and at
most 42.3%. As for the control effect of RMS, the control effect of serial TID is at least 21.6% and at
most 53.2%; the control effect of parallel TID is at least 18.6% and at most 51.3%, the control effect
of classical TMD is at least 14.7% and at most 49.4%. It can be found that under the vibration control
of the above model, the root mean square control effect is often greater than the peak damping ratio.
The above results show that for the left structure coupled with three types of dampers, all of them can
achieve good damping effect, among which the serial TID has the best damping effect, the parallel
TID is the second, and the classic TMD is the last.
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Table 5: Peak values and root mean square values of displacement time history under different seismic
waves excitation

Seismic wave
types

Structure
types

Peak (mm) RMS (mm)

UC Serial
TID

Parallel
TID

TMD UC Serial
TID

Parallel
TID

TMD

El Centro LS 9.22 8.29 8.34 8.96 2.14 1.32 1.33 1.42
RS 9.22 8.06 8.17 8.49 2.14 1.31 1.32 1.35

Taft LS 8.06 4.21 4.36 4.65 1.58 0.74 0.77 0.80
RS 8.06 3.94 3.97 4.19 1.58 0.76 0.78 0.77

Loma Prieta LS 7.41 5.45 5.58 6.11 1.02 0.67 0.71 0.73
RS 7.41 5.27 5.19 5.55 1.02 0.67 0.68 0.69

Chi-Chi LS 5.68 3.87 4.08 4.53 1.02 0.80 0.83 0.87
RS 5.68 3.89 3.94 4.03 1.02 0.79 0.80 0.81

Note: In the table, (1) “LS” means the left structure; (2) “RS” means the right structure; (3) “UC” means the uncontrolled state of adjacent
buildings.

It can be seen from Fig. 24 that, similar to the left structure, under the excitation of different types
of seismic waves, compared with the displacement of the right structure in the uncontrolled state, the
three dampers have good damping effects in the whole range. Comparing the displacement of three
dampers, it is found that the displacement of classic TMD is slightly larger than that of serial or parallel
TID. It can be seen from Table 5 that, for the right structure, compared with the peak displacement
in uncontrolled state, the peak control effect of the serial TID is at least 12.6% and at most 51.1%;
the peak control effect of parallel TID is at least 11.4% and at most 50.7%; the peak control effect of
classic TMD is at least 7.9% and at most 48.0%. As for the control effect of RMS, the control effect
of serial TID is at least 22.6% and at most 51.9%; the control effect of parallel TID is at least 21.6%
and at most 50.6%, the control effect of classical TMD is at least 20.6% and at most 51.3%. The above
results show that for the right structure coupled with three types of dampers, all of them can achieve
good damping effect, among which the serial TID has the best damping effect, the parallel TID is
the second, and the classic TMD is the last. In addition, it can be found that the right structure can
achieve better damping effect than the left structure when the adjacent buildings are coupled with the
same damper.

6.2 Energy Collection
As mentioned in Section 2.2, installing the roller generator inside the inerter device can collect

part of the vibration energy during the earthquake and make use of it. Therefore, in this paper, we
connect the left structure with the TID to collect the vibration energy of the building structure. Based
on the fact that the power consumption of the external resistor is basically equivalent to that of the
TID buffer element, the power calculation formula can be expressed as P = c1ẋ2

1. Fig. 25 shows the
energy collection graph of the left structure under the excitation of four types of seismic waves, coupled
with serial TID and parallel TID. It can be seen from Fig. 25 that the energy power value of the left
structure under the excitation of El Centro seismic waves is larger than that of the other three types of
seismic waves, showing the best energy collection effect, and the energy collection effects of the other
three types of seismic waves are similar. For more accurate comparison, the peak and average values
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of power in Fig. 25 are summarized in Table 6. As can be seen from Table 6, under the excitation of
the same type of seismic wave, in most cases, the peak value and average value of the collected power
of the left structure with parallel TID coupling are higher than those of the left structure with serial
TID, this shows that, on the premise of similar vibration control effect, the parallel TID should be
preferred for the energy collection of the left structure of adjacent buildings.

Figure 25: Energy collection graphs of the left structure under four types of seismic waves excitation

Table 6: Energy collection under different seismic waves excitation

Seismic wave types Peak (W ) Average (W )

Serial TID Parallel TID Serial TID Parallel TID

El Centro 2246.25 2525.56 38.47 44.66
Taft 455.94 542.11 15.15 12.42
Loma Prieta 330.81 373.09 6.45 7.79
Chi-Chi 423.10 488.76 9.23 10.85
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It can be seen from Table 6 that the left structure under the excitation of El Centro seismic wave
has a remarkable energy collection effect, with its power peak value reaching 2525.56 W and power
root mean square value reaching 44.66 W . According to the calculation, the energy collected in the
whole period of El Centro seismic wave is 1.44 × 105 J. Compared with the classical TMD, it is known
from the analysis results in Section 5.2 that the vibration reduction effect of TID is better than that of
the classic TMD. At the same time, TID has the advantage of collecting energy, when an earthquake
occurs, it can store part of the energy for the structure itself, and use it according to the actual situation.
Therefore, in real life, when the economic cost is similar, compared with the classic TMD, TID should
be preferred to achieve the dual effects of structural vibration control and energy collection.

7 Conclusions

In this paper, two types of tuned inerter damper (TID) adjacent building damping systems
composed of springs, inerters and dampers in serial or in parallel were proposed. H2 norm criterion
was adopted to optimize and adjust the damping system of adjacent buildings, so that the system had
the best damping performance under the random excitation of white noise. The parameter analysis,
frequency response analysis, robustness analysis, time history response analysis and energy collection
analysis of the system were carried out successively. Through the above analysis, the following
conclusions are drawn:

(1) As for the H2 norm optimization results of adjacent buildings, when considering the value of
mass ratios β2 and βd, only the change trend of fdopt and ξdopt of the right structure under the coupling
of serial TID was fluctuating, and the rest changed smoothly. When considering the values of stiffness
ratio λ2 and λs, the change trend of fdopt and ξdopt of the right structure under the coupling of serial TID
and parallel TID were fluctuating, while the rest changed smoothly. For the left structure, the ξdopt of
serial TID and the fdopt of parallel TID were fluctuating, and the rest of the situation changed smoothly.

(2) When studying the displacement frequency response of adjacent buildings, it was found that
when βd = 0.1, based on the peak displacement, compared with the classic TMD, the parallel TID had
a better damping effect on the left structure, but the improvement effect of TID on the right structure
was not obvious. Based on the H2 norm in the normalized frequency range of 0∼2.0, compared with the
classic TMD, the serial TID had a better control effect on the left structure, but the improvement effect
of TID on the right structure was not obvious. Changing the mass ratio, when βd ≤ 0.1, increasing
the damper mass could obviously enhance the damping effect, but when βd > 0.1, the enhancement
effect was not obvious. In addition, parallel TID had obvious advantages in controlling the peak
displacement of the left structure, and the larger βd is, the more obvious it is, but it had no obvious
superiority for the right structure. Serial TID had obvious advantages in controlling H2 norm of the
left structure and the right structure, and the larger βd is, the more obvious it is.

(3) As for the seismic robustness of adjacent building structures under TID coupling, the
normalized displacement was less affected by the optimum damping ratio ξdopt, but significantly
affected by the optimum frequency ratio fdopt, especially for the right structure under parallel TID
coupling. In actual engineering, when facing the vibration problem of adjacent buildings under white
noise excitation, if we want to achieve more robust control, the first thing we need to pay attention to
was the stiffness of the damper, followed by the damping.

(4) The time history analysis results of adjacent buildings excited by four types of seismic waves
showed that all three types of dampers could achieve a good damping effect, among which the serial
TID was the best, the parallel TID was the second, and the classic TMD was the last. In addition,
for adjacent buildings coupled with the same damper, the right structure could often achieve a better
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damping effect than the left structure. According to the time history analysis of energy collection of
adjacent buildings excited by four types of seismic waves, it was found that the left structure excited
by El Centro seismic waves had the best energy collection effect, with its instantaneous peak power
reaching 2525.56 W and the root mean square power reaching 44.66 W in the whole period. According
to the calculation, the energy collected in the whole period of El Centro seismic wave was 1.44 × 105 J.
In addition, when collecting the vibration energy of adjacent building structures under earthquake
excitation, it was found that parallel TID should be given priority.

Based on the above analysis results, in general, the proposed TIDs with different connection
modes had significant effects on the vibration control of adjacent buildings, and their performance
was superior to that of classic TMDs. In addition, this type of TID also had the function of energy
collection, which further expands its application range. The research results of this article could
provide some reference significance for the vibration control research of adjacent buildings, however,
the application of TIDs proposed in this paper in practical engineering needs further research and
demonstration to achieve better vibration control effects.

Acknowledgement: The authors are very grateful to the editors and all anonymous reviewers for their
insightful comments.

Funding Statement: This research was funded by the Natural Science Research Project of Higher
Education Institutions in Anhui Province (Grant No. 2022AH040045), the Anhui Provincial Natural
Science Foundation (Grant No. 2008085QE245), the Project of Science and Technology Plan of
Department of Housing and Urban-Rural Development of Anhui Province (Grant No. 2021-YF22).

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Xiaofang Kang and Jian Wu; data collection: Jian Wu and Xinqi Wang; analysis and
interpretation of results: Jian Wu and Shancheng Lei; draft manuscript preparation: Xiaofang Kang
and Jian Wu. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: No new data and materials were created or analyzed in this study.
Data and material sharing are not applicable for this article.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Lee, C. H., Chen, Y. C., Wang, F. C. (2015). Earthquake suppression for a scale building model employing

inclined inerter. IEEE/SICE International Symposium on System Integration (SII), pp. 828–833. Nagoya,
Japan.

2. Luo, Y. (2017). Study on parameter optimization of structure vibration control with electromagnetic energy
collecting tuned mass damper. Hunan University of Science and Technology, China.

3. Housner, G. W., Bergman, L. A., Caughey, T. K., Chassiakos, A. G., Claus, R. O. et al. (1997). Structural
control: Past, present, and future. Journal of Engineering Mechanics, 123, 897–971.

4. Soong, T., Spencer, B. F. (2002). Supplemental energy dissipation: State-of-the-art and state-of-the-practice.
Engineering Structures, 24(3), 243–259.

5. Frahm, H. (1911). Device for damping vibrations of bodies. US989958, USA.
6. Kareem, A., Kijewski, T., Tamura, Y. (1999). Mitigation of motions of tall buildings with specific examples

of recent applications. Wind and Structures, 2(3), 201–251.



CMES, 2024, vol.138, no.1 585

7. Zuo, H., Bi, K., Hao, H., Ma, R. (2021). Influences of ground motion parameters and structural damping
on the optimum design of inerter-based tuned mass dampers. Engineering Structures, 227, 111422.

8. Zhu, H., Li, Y., Shen, W., Zhu, S. (2019). Mechanical and energy-harvesting model for electromagnetic
inertial mass dampers. Mechanical Systems and Signal Processing, 120, 203–220.

9. Nakamura, Y., Fukukita, A., Tamura, K., Yamazaki, I., Matsuoka, T. et al. (2014). Seismic response control
using electromagnetic inertial mass dampers. Earthquake Engineering & Structural Dynamics, 43, 507–527.

10. Ma, R., Bi, K., Hao, H. (2019). A novel rotational inertia damper for heave motion suppression of
semisubmersible platform in the shallow sea. Structural Control & Health Monitoring, 26(7), e2368.

11. Ma, R., Bi, K., Hao, H. (2020). Using inerter-based control device to mitigate heave and pitch motions of
semi-submersible platform in the shallow sea. Engineering Structures, 207, 110248.

12. Garrido, H., Curadelli, O., Ambrosini, D. (2013). Improvement of tuned mass damper by using rotational
inertia through tuned viscous mass damper. Engineering Structures, 56, 2149–2153.

13. Javidialesaadi, A., Wierschem, N. E. (2018). Optimal design of rotational inertial double tuned mass
dampers under random excitation. Engineering Structures, 165, 412–421.

14. Li, Y., Li, S., Chen, Z. (2020). Optimization and wind-induced vibration suppression of rotational inertia
double tuned mass damper. Journal of Vibration Engineering, 33(2), 295–303.

15. Marian, L., Giaralis, A. (2014). Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibra-
tion control configuration for stochastically support-excited structural systems. Probabilistic Engineering
Mechanics, 38, 156–164.

16. Cao, L., Li, C. (2019). Tuned tandem mass dampers-inerters with broadband high effectiveness for
structures under white noise base excitations. Structural Control & Health Monitoring, 26(4), e2319.

17. Zhao, X., Li, C., Cao, L. (2022). Control performance of structure-NFVD-TTMDI. Journal of Vibration
Engineering, 35(1), 55–63.

18. Zhao, Z., Zhang, R., Jiang, Y., Pan, C. (2019). A tuned liquid inerter system for vibration control.
International Journal of Mechanical Sciences, 164, 105171.

19. Lazar, I., Neild, S., Wagg, D. (2014). Using an inerter-based device for structural vibration suppression.
Earthquake Engineering & Structural Dynamics, 43(8), 1129–1147.

20. Lazar, I., Neild, S., Wagg, D. (2016). Vibration suppression of cables using tuned inerter dampers.
Engineering Structures, 122, 62–71.

21. Sun, L., Hong, D., Chen, L. (2017). Cables interconnected with tuned inerter damper for vibration
mitigation. Engineering Structures, 151, 57–67.

22. Deastra, P., Wagg, D., Sims, N., Akbar, M. (2020). Tuned inerter dampers with linear hysteretic damping.
Earthquake Engineering & Structural Dynamics, 49(12), 1216–1235.

23. Shi, B., Yang, J., Jiang, J. Z. (2022). Tuning methods for tuned inerter dampers coupled to nonlinear primary
systems. Nonlinear Dynamics, 107, 1663–1685.

24. Bin, T., Wang, X., Fang, H., Wang, W. (2020). Analysis of mitigating performance of tuned inerter mass
dampers. Noise and Vibration Control, 40(4), 223–226.

25. De Domenico, D., Ricciardi, G., Zhang, R. (2020). Optimal design and seismic performance of tuned fluid
inerter applied to structures with friction pendulum isolators. Soil Dynamics and Earthquake Engineering,
132, 106099.

26. de Domenico, D., Deastra, P., Ricciardi, G., Sims, N. D., Wagg, D. J. (2019). Novel fluid inerter based tuned
mass dampers for optimised structural control of base-isolated buildings. Journal of the Franklin Institute-
Engineering and Applied Mathematics, 356(14), 7626–7649.

27. Liang, Q., Li, L. (2020). Optimal design for a novel inerter-based clutching tuned mass damper system.
Journal of Vibration and Control, 26(21–22), 2050–2059.

28. Smith, M. C. (2002). Synthesis of mechanical networks: The inerter. IEEE Transactions on Automatic
Control, 47, 1648–1662.



586 CMES, 2024, vol.138, no.1

29. Hwang, J. S., Kim, J., Kim, Y. M. (2007). Rotational inertia dampers with toggle bracing for vibration
control of a building structure. Engineering Structures, 29(6), 1201–1208.

30. Swift, S. J., Smith, M. C., Glover, A. R., Papageorgiou, C., Gartner, B. et al. (2013). Design and modelling
of a fluid inerter. International Journal of Control, 86(11), 2035–2051.

31. De Domenico, D., Ricciardi, G. (2018). An enhanced base isolation system equipped with optimal tuned
mass damper inerter (TMDI). Earthquake Engineering & Structural Dynamics, 47(5), 1169–1192.

32. Javidialesaadi, A., Wierschem, N. E. (2018). Three-element vibration absorber-inerter for passive control of
single-degree-of-freedom structures. Journal of Vibration and Acoustics-Transactions of the ASME, 140(6),
061007.

33. Chen, M. Z. Q., Papageorgiou, C., Scheibe, F., Wang, F. C., Smith, M. C. (2009). The missing mechanical
circuit element. IEEE Circuits and Systems Magazine, 9, 10–26.

34. Papageorgiou, C., Houghton, N. E., Smith, M. C. (2009). Experimental testing and analysis of inerter
devices. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, 131, 011001.

35. Qian, F., Luo, Y., Sun, H., Tai, W., Zuo, L. (2019). Optimal tuned inerter dampers for performance
enhancement of vibration isolation. Engineering Structures, 198, 109464.

36. Ikago, K., Saito, K., Inoue, N. (2012). Seismic control of single-degree-of-freedom structure using tuned
viscous mass damper. Earthquake Engineering & Structural Dynamics, 41(3), 453–474.

37. Dai, J., Xu, Z., Gai, P., Hu, Z. (2021). Optimal design of tuned mass damper inerter with a Maxwell element
for mitigating the vortex-induced vibration in bridges. Mechanical Systems and Signal Processing, 148,
107180.

38. Dai, J., Xu, Z., Gai, P. (2019). Tuned mass-damper-inerter control of wind-induced vibration of flexible
structures based on inerter location. Engineering Structures, 199, 109585.

39. Sun, H., Zuo, L., Wang, X., Peng, J., Wang, W. (2019). Exact H2 optimal solutions to inerter-based isolation
systems for building structures. Structural Control & Health Monitoring, 26(6), e2357.

40. Jangid, R. S. (2021). Optimum tuned inerter damper for base-isolated structures. Journal of Vibration
Engineering & Technologies, 9, 1483–1497.

41. Gonzalez-Buelga, A., Clare, L. R., Neild, S. A., Jiang, J. Z., Inman, D. J. (2015). An electromagnetic inerter-
based vibration suppression device. Smart Materials and Structures, 24, 055015.

42. Shen, W., Niyitangamahoro, A., Feng, Z., Zhu, H. (2019). Tuned inerter dampers for civil structures
subjected to earthquake ground motions: Optimum design and seismic performance. Engineering Structures,
198, 109470.

43. Crandall, S. H., Mark, W. D. (1963). Random vibration in mechanical systems. USA: Academic Press.
44. Asami, T., Nishihara, O., Baz, A. M. (2002). Analytical solutions to H∞ and H2 optimization of dynamic

vibration absorbers attached to damped linear systems. Journal of Vibration and Acoustics-Transactions of
the ASME, 124(2), 284–295.

45. Palacios-Quiñonero, F., Rubió-Massegú, J., Rossell, J. M., Karimi, H. R. (2019). Design of inerter-based
multi-actuator systems for vibration control of adjacent structures. Journal of the Franklin Institute, 356(14),
7785–7809.

46. Djerouni, S., Elias, S., Abdeddaim, M., Rupakhety, R. (2022). Optimal design and performance assessment
of multiple tuned mass damper inerters to mitigate seismic pounding of adjacent buildings. Journal of
Building Engineering, 48, 103994.

47. Luo, Y., Sun, H., Wang, X. (2019). The H2 parametric optimization and structural vibration suppression of
electromagnetic tuned mass-inerter dampers. Engineering Mechanics, 36(4), 89–99.

48. Sun, H., Luo, Y., Wang, X., Yu, J., Peng, J. (2018). Parametric optimization and vibration control of
electromagnetic tuned mass-inerter dampers for the structures. Journal of Shenyang Jianzhu University
(Natural Science), 34(3), 410–418.



CMES, 2024, vol.138, no.1 587

49. Rana, R., Soong, T. T. (1998). Parametric study and simplified design of tuned mass dampers. Engineering
Structures, 20(3), 193–204.

50. Luo, Y., Sun, H., Wang, X. (2018). H2 parameters optimization and vibration reduction analysis of
electromagnetic tuned mass damper. Journal of Vibration Engineering, 31(3), 529–538.

Appendix A. The numerator and denominator coefficients of Eq. (7) are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bs
0 = λd(λ2 + (β2 + 1)λs)

Bs
1 = 2(βdfdξd(λ2 + (β2 + 1)λs) + ξ1λd(μ2 + (β2 + 1)μs))

Bs
2 = β2λd + βd(4ξ1fdξd(μ2 + (β2 + 1)μs) + λ2 + (β2 + 1)λs)

Bs
3 = 2βd(β2fdξd + μ2ξ1 + (β2 + 1)ξ1μs)

Bs
4 = β2βd

(A1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

As
0 = λd(λs + λ2(λs + 1))
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1 = 2(λ2(βdfdξd(λs + 1) + ξ1λd(μs + 1)) + βdfdξdλs + ξ1λd(μ2 + (μ2 + 1)λs + μs))

As
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(
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2
1 μs + 4ξ 2

1 μs

)
As

3 = 2(βd(β2fdξd + 4μ2ξ
2
1 fdξd + λs((β2 + 1)fdξd + (μ2 + 1)ξ1) + λ2(fdξd + ξ1(μs + 1)) + 4ξ 2

1 fdξdμs

+ 4μ2ξ
2
1 fdξdμs + μ2ξ1λd + ξ1λdμs + μ2ξ1 + ξ1μs) + β2

d fdξd(λ2 + λs) + ξ1λd(μ2 + β2(μs + 1) + μs))

As
4 = β2(βd(4ξ1fdξd + 4ξ1fdξdμs + λd + λs + 1) + λd) + βd(4ξ1(μs((βd + 1)fdξd + ξ1) + μ2((βd + 1)fdξd

+ ξ1(μs + 1))) + λ2 + λs)

As
5 = 2βd(β2((βd + 1)fdξd + ξ1(μs + 1)) + ξ1(μ2 + μs))

As
6 = β2βd

(A2)

Appendix B. The numerator coefficient of Eq. (8) is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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0 = λd(β2(λs + 1) + λs)

Cs
1 = 2(β2(βdfdξd(λs + 1) + ξ1λd(μs + 1)) + βdfdξdλs + ξ1λdμs)

Cs
2 = βd(4ξ1fdξdμs + λs) + β2(βd(4ξ1fdξd + 4ξ1fdξdμs + λd + λs + 1) + λd)

Cs
3 = 2βd(β2((βd + 1)fdξd + ξ1(μs + 1)) + ξ1μs)

Cs
4 = β2βd

(B1)
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Appendix C. The numerator and denominator coefficients of Eq. (9) are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bp
0 = λd(λ2(βd + 1) + (β2 + βd + 1)λs)

Bp
1 = 2(βdfdξd(λ2 + (β2 + 1)λs) + ξ1λd(μ2(βd + 1) + (β2 + βd + 1)μs))

Bp
2 = β2λd + βd(4μ2ξ1fdξd + β2(4ξ1fdξdμs + λd + λs) + 4ξ1fdξdμs + λ2 + λs)

Bp
3 = 2βd(β2fdξd + μ2ξ1 + (β2 + 1)ξ1μs)

Bp
4 = β2βd

(C1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ap
0 = λd(λs + λ2(λs + 1))

Ap
1 = 2(λd(λs(βdfdξd + (μ2 + 1)ξ1) + ξ1(μ2 + μs)) + λ2(λd(βdfdξd + ξ1(μs + 1)) + βdfdξd(λs + 1))

+ βdfdξdλs)

Ap
2 = βd(4ξ1fd(λd + 1)ξd(μ2 + μs) + λs(4(μ2 + 1)ξ1fdξd + λd + 1) + λ2(4ξ1fdξd + 4ξ1fdξdμs + λd

+ λs + 1)) + λd(λ2 + 4μ2ξ
2
1 + β2(λs + 1) + λs + 4μ2ξ

2
1 μs + 4ξ 2

1 μs)

Ap
3 = 2(βd(β2fdλdξd + β2fdξd + 4μ2ξ

2
1 fdξd + λs((β2 + 1)fdξd + (μ2 + 1)ξ1) + λ2(fdξd + ξ1(μs + 1))

+ 4ξ 2
1 fdξdμs + 4μ2ξ

2
1 fdξdμs + μ2ξ1λd + ξ1λdμs + μ2ξ1 + ξ1μs) + ξ1λd(μ2 + β2(μs + 1) + μs))

Ap
4 = β2(βd(4ξ1fdξd + 4ξ1fdξdμs + λd + λs + 1) + λd) + βd(4ξ1(μs(fdξd + ξ1) + μ2(fdξd + ξ1(μs + 1)))

+ λ2 + λs)

Ap
5 = 2βd(β2(fdξd + ξ1(μs + 1)) + ξ1(μ2 + μs))

Ap
6 = β2βd

(C2)

Appendix D. The numerator coefficient of Eq. (10) is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cp
0 = λd((βd + 1)λs + β2(λs + 1))

Cp
1 = 2(β2(λd(βdfdξd + ξ1(μs + 1)) + βdfdξd(λs + 1)) + βdfdξdλs + ξ1(βd + 1)λdμs)

Cp
2 = βd(4ξ1fdξdμs + λs) + β2(βd(4ξ1fdξd + 4ξ1fdξdμs + λd + λs + 1) + λd)

Cp
3 = 2βd(β2(fdξd + ξ1(μs + 1)) + ξ1μs)

Cp
4 = β2βd

(D1)

Appendix E. Using the Residue Theorem, the evaluation index PI can be calculated by the following
formula:

PI = 1
2π

∫ +∞

−∞

∣∣∣∣− B4 (iα)
4 + B3 (iα)

3 + B2 (iα)
2 + B1 (iα) + B0

A6 (iα)
6 + A5 (iα)

5 + A4 (iα)
4 + A3 (iα)

3 + A2 (iα)
2 + A1 (iα) + A0

∣∣∣∣
2

dα = Num
Den

(E1)
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where

Num = −B5
2
(−A6A3A1A0 + A6A2A1

2 − A5
2A0

2 + 2A5A4A1A0 + A5A3A2A0 − A5A2
2A1 − A4

2A1
2

− A4A3
2A0 + A4A3A2A1) + A6(B4

2 − 2B5B3)(−A5A1A0 + A4A1
2 + A3

2A0 − A3A2A1)

+ A6(−B3
2 + 2B4B2 − 2B5B1)(−A6A1

2 − A5A3A0 + A5A2A1) + A6(B2
2 − 2B3B1 + 2B4B0)

× (A6A3A1 + A5
2A0 − A5A4A1) + A6(−B1

2 + 2B2B0)(A6A5A1 − A6A3
2 − A5

2A2 + A5A4A3)

+ A6B0
2

A0

(A6
2A1

2 + A6A5A3A0 − 2A6A5A2A1 − A6A4A3A1 + A6A3
2A2 − A5

2A4A0

+ A5
2A2

2 + A5A4
2A1 − A5A4A3A2) (E2)

Den = 2A6(A6
2A1

3 + 3A6A5A3A1A0 − 2A6A5A2A1
2 − A6A4A3A1

2 − A6A3
3A0 + A6A3

2A2A1 + A5
3A0

2

− 2A5
2A4A1A0 − A5

2A3A2A0 + A5
2A2

2A1 + A5A4
2A1

2 + A5A4A3
2A0 − A5A4A3A2A1) (E3)

Appendix F. In Eq. (12), the specific forms of Ps
n (n = 1,2,3,4) and Qs

n (n = 1,2,3,4) are:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ps
1 = 4β3

d (λs + λ2(λs + 1))3

Ps
2 = 4β2

d (λs + λ2(λs + 1))2

Ps
3 = 4βd(λs + λ2(λs + 1))

Ps
4 = βd(λs + λ2(λs + 1))2

(F1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qs
1 = (2β3

2λs(λs + 1)((βd + 2)λs + 1) + β2
2λs(λ2(βd + 1)((βd + 3)λs + 2) + λs(β

2
dλs + βd (6λs + 2) + 6λs

+ 3)) + 2β2(βd + 1)λs(λ2 + λs)(λ2(βd + 1) + (βd + 2)λs) + (βd + 1)2(λ2 + λs)
3 + β4

2 (λs + 1)3)

Qs
2 = (β2

2λs((βd + 6)λs + 4) + 2β2λs(λ2(βd + 2) + (βd + 3)λs) + (βd + 2)(λ2 + λs)
2 + 2β3

2 (λs + 1)2)

Qs
3 = λ2 + β2

2 (λs + 1) + 2β2λs + λs

Qs
4 = (β2

2λs((βd + 3)λs + 2) + β2λs(2λ2(βd + 1) + (2βd + 3)λs) + (βd + 1)(λ2 + λs)
2 + β3

2 (λs + 1)2)

(F2)
Appendix G. In Eq. (13), the specific forms of Ms

n (n = 1,2,3,4) and Ns
n (n = 1,2,3,4) are:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ms
1 = 4β3

dλ
2
s(λs + λ2(λs + 1))3

Ms
2 = 4β2

dλ
2
s(λs + λ2(λs + 1))2

Ms
3 = 4βdλ

2
s(λs + λ2(λs + 1))

Ms
4 = βdλ

2
s(λs + λ2(λs + 1))2

(G1)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ns
1 = 2β2β

2
dλ

5
s + β2

dλ
5
s + 2βdλ

5
s + β2

dλ2λ
4
s + 2βdλ2λ

4
s + 6β2

2βd (λs + 1) λ4
s + (λ2 + λs) λ4

s + 2β2(2λs + 1)λ4
s

+ 2β2βd(3λs + 1)λ4
s + β2

2β
2
d (λ

3
s + 1)λ2

s + 2β3
2βd(λs − 1)(λs + 1)3λs − β2

2β
2
dλ2(λs − 2)(λs + 1)2λs

− 2β2
2βdλ2(λs + 1)2(2λs − 1)λs + β4

2 (λs + 1)5 − 2β3
2βdλ2(λs + 1)4 + β2

2β
2
dλ

2
2(λs + 1)3

+ 2β2
2βdλ

2
2(λs + 1)3 + 2β3

2 (λs + 1)3(2λ2
s − λ2(λs + 1)) + β2

2 (λs + 1)(3(2λs + 1)λ3
s

− 3λ2(λs + 1)λ2
s + λ2

2(λs + 1)2)

Ns
2 = (βd + 2)λ4

s + 2β3
2 (λs + 1)4 − β2

2 (λs + 1)2(2(βd + 2)λ2(λs + 1) − λs(βd(λs − 2) + 6λs))

+ 2β2(((βd + 3)λs + 2)λ3
s − λ2(λs + 1)(βd(λs − 1) + 2λs)λs + (βd + 1)λ2

2(λs + 1)2)

Ns
3 = λ3

s − λ2λ
2
s + β2

2 (λs + 1)
3 + λ2

2 (λs + 1) − 2β2 (λs + 1)
(
λ2 (λs + 1) − λ2

s

)
Ns

4 = (βd + 1)λ4
s + β3

2 (λs + 1)
4 − β2

2 (λs + 1)
2
(2(βd + 1)λ2(λs + 1) − λs(βd(λs − 2) + 3λs))

+ β2((β
2
d + 2λ2

sβd + λs(3λs + 2))λ2
s + 2(βd + 1)λ2(βd − λs)(λs + 1)λs + (βd + 1)2λ2

2(λs + 1)2)

(G2)

Appendix H. In Eq. (14), the specific forms of Pp
1, Qp

n (n = 1,2,3,4) are:

Pp
1 = 4βd(λs + λ2(λs + 1)) (H1)⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Qp
1 = (β2 + 1)βd

Qp
2 = −2β2 − βd − 2

Qp
3 = (λ2 + 1)βd

Qp
4 = 2β2(βd + 1)λs + (βd + 1)2(λ2 + λs) + β2

2 (λs + 1)

(H2)

Appendix I. In Eq. (15), the specific forms of MP
n (n = 1,2,3,4,5) and Np

n (n = 1,2,3,4,5,6) are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mp
1 = β2λ

2
s

Mp
2 = λ2

s

Mp
3 = 4β2

2λ
2
s

Mp
4 = 4β2λ

2
s

Mp
5 = 4βdλ

2
s(λs + λ2(λs + 1))

(I1)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Np
1 = βd(λ

2
2 + β2

2 (λs + 1)2 + β2(λ
2
s − 2λ2(λs + 1)))

Np
2 = 2βd(β2(λs + 1) − λ2)

Np
3 = β2βd

Np
4 = βd(β

2
2 (λs + 1)(λs + λ2(λs + 1)) − 2β2λ2(λs + λ2(λs + 1)) + λ2

2(λ2 + λs))

Np
5 = −2λ2

2(βd + 1) + β2(βd + 2)(2λ2(λs + 1) − λ2
s) − 2β2

2 (λs + 1)2

Np
6 = −2β2(βd + 1)(λ2(λs + 1) − λ2

s)(λs + 1) + (βd + 1)2(λ3
s − λ2λ

2
s + λ2

2(λs + 1))

+ β2
2 (λs + 1)3

(I2)

Appendix J. The specific forms of Rn (n = 1, 2, . . . ,10) are:

R1 = Mp
1 Mp

3 Mp
4 Mp

5 Np
3 (J1)

R2 = Mp
1 Mp

3 Mp
4 Mp

5 Np
2 (J2)

R3 = Mp
2 Mp

3 Mp
4 Mp

5 Np
1 (J3)

R4 = Mp
1 Mp

2 Mp
3 Mp

4 Np
6 (J4)

R5 = Mp
1 Mp

2 Mp
3 Mp

5 Np
5 (J5)

R6 = Mp
1 Mp

2 Mp
4 MP

5 Np
4 (J6)

R7 = −Mp
1 Mp

3 Mp
4 Np

2 (J7)

R8 = 2Mp
2 Mp

3 Mp
4 Np

1 (J8)

R9 = Mp
1 Mp

2 Mp
3 Np

5 (J9)

R10 = 2Mp
1 Mp

2 Mp
4 Np

4 (J10)

Appendix K. The optimization results Eq. (26) can be obtained by solving Eq. (24), where the specific
form of polynomial Rn (n = 1, 2, . . . , 10) are as follows:

U1 = 12(R4R7 − R1R9) (K1)

U2 = 4(R4R8 + R2R9 + R1R10 − R5R7) (K2)

U3 = 2R3
5R

3
7 − 9R4R5R6R3

7 + 3R4R2
5R8R2

7 − 18R2
4R6R8R2

7 − 6R2R2
5R9R2

7 + 9R3R4R5R9R2
7

+ 9R2R4R6R9R2
7 + 9R1R5R6R9R2

7 − 27R3R2
4R10R2

7 − 6R1R2
5R10R2

7 + 9R2R4R5R10R2
7

+ 9R1R4R6R10R2
7 − 3R2

4R5R2
8R7 − 9R2R3R4R2

9R7 + 6R2
2R5R2

9R7 − 9R1R3R5R2
9R7

− 9R1R2R6R2
9R7 − 9R1R2R4R2

10R7 + 6R2
1R5R2

10R7 − 9R3R2
4R8R9R7 − 9R1R2

5R8R9R7

+ 3R2R4R5R8R9R7 + 45R1R4R6R8R9R7 − 9R2R2
4R8R10R7 + 3R1R4R5R8R10R7 − 9R2

2R4R9R10R7
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+ 45R1R3R4R9R10R7 + 3R1R2R5R9R10R7 − 9R2
1R6R9R10R7 − 2R3

4R
3
8 − 2R3

2R
3
9 + 9R1R2R3R3

9

− 2R3
1R

3
10 − 6R2

2R4R8R2
9 + 9R1R3R4R8R2

9 + 9R1R2R5R8R2
9 − 27R2

1R6R8R2
9 − 6R2

1R4R8R2
10

+ 3R2
1R2R9R2

10 − 6R2R2
4R

2
8R9 + 9R1R4R5R2

8R9 − 6R1R2
4R

2
8R10 + 3R1R2

2R
2
9R10 − 18R2

1R3R2
9R10

− 3R1R2R4R8R9R10 + 9R2
1R5R8R9R10 (K3)

U4 = 4(3(R1R9 − R4R7)(−R6R7 + R5R8 + R3R9 + R2R10) − (−R5R7 + R4R8 + R2R9 + R1R10)
2)3

+ (−2R3
5R

3
7 + 9R1R2R6R2

9R7 + 9R2
1R6R9R10R7 − 3R2

5(R4R7R8 − 2R2R7R9

− R1(3R8R9 + 2R7R10))R7 + 2R3
4R

3
8 + 2R3

2R
3
9 − 9R1R2R3R3

9 + 2R3
1R

3
10 + 27R2

1R6R8R2
9

− 3R2
1R2R9R2

10 − 3R1R2
2R

2
9R10 + 18R2

1R3R2
9R10 − 3R5(R10(3R8R9 + 2R7R10)R2

1

+ R9(3R6R2
7 − 3R3R9R7 + R2(3R8R9 + R7R10))R1 − R2

4R7R2
8 + 2R2

2R7R2
9

+ R4(−3R6R3
7 + 3R3R9R2

7 + 3R2R10R2
7 + R2R8R9R7 + R1R8R10R7 + 3R1R2

8R9)) + 3R2
4(6R6R8R2

7

+ 3R3(R8R9 + 3R7R10)R7 + R8(2R1R8R10 + R2(2R8R9 + 3R7R10)))3R4(R9(2R8R9 + 3R7R10)R2
2

+ (−3R6R9R2
7 + 3R3R2

9R7 + R1R10(R8R9 + 3R7R10))R2 + R1(2R1R8R2
10 − 3R6R7(5R8R9 + R7R10)

− 3R3R9(R8R9 + 5R7R10))))
2 (K4)

U5 = R2
5R

2
7 + 3R1R6R9R7 + R2

4R
2
8 + R2

2R
2
9 − 3R1R3R2

9 + R2
1R

2
10 − R1R2R9R10 + R4(−3R6R2

7 + 3R3R9R7

+ 3R2R10R7 + 2R2R8R9 + 2R1R8R10) + R5(R4R7R8 − 2R2R7R9 − R1(3R8R9 + 2R7R10)) (K5)

Here, it is necessary to point out the calculation process of the optimum solutions fdopt and ξdopt

under parallel TID coupling in Table 4.

Substituting Eqs. (I1), (I2), (20), (J1)–(J10) and (K1)–(K5) into Eq. (26), the calculated result is:⎧⎨
⎩

fd = 1.077742289697411 − 1.766960131585629 × 10−15i

ξd = 0.11978984818672636 − 2.6187984688434 × 10−15i
(K6)

In the above Equation, i is the imaginary unit, omit the smallest imaginary part and keep three
decimal places, and get the optimum solutions in Table 4.

Appendix L. In Eq. (31), the specific forms of Pn (n = 1,2,3,4) and Qn (n = 1,2,3,4) are:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P1 = 4(λs + λ2(λs + 1))3β3
t

P2 = 4(λs + λ2(λs + 1))2β2
t

P3 = 4(λs + λ2(λs + 1))βt

P4 = (λs + λ2(λs + 1))2βt

(L1)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1 = β4
2 (λs + 1)

3 + 2β3
2λs(2λ2

s + 3λs + 1)(βt + 1) + β2
2λs(3λs(2λs + 1) + λ2(3λs + 2)) (βt + 1)

2

+ 2β2λs(λ
2
2 + 3λ2λs + 2λ2

s)(βt + 1)3 + (λ2 + λs)
3(βt + 1)4

Q2 = 2β3
2 (λs + 1)

2 + β2
2λs(3λs + 2)(βt + 2) + 2β2λs(2λ2 + 3λs)(βt + 1) − (λ2 + λs)

2
(βt − 2)

× (βt + 1)2

Q3 = λ2 + β2
2 (λs + 1) + 2β2λs + λs

Q4 = β3
2 (λs + 1)2 + β2

2λs(3λs + 2)(βt + 1) + β2λs(2λ2 + 3λs)(βt + 1)2 + (λ2 + λs)
2(βt + 1)3

(L2)

Appendix M. In Eq. (33), the specific forms of Mn (n = 1,2,3,4) and Nn (n = 1,2,3,4) are:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M1 = 4λ2
s (λs + λ2 (λs + 1))

3
β3

t

M2 = 4λ2
s (λs + λ2 (λs + 1))

2
β2

t

M3 = 4λ2
s (λs + λ2 (λs + 1)) βt

M4 = λ2
s (λs + λ2 (λs + 1))

2
βt

(M1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1 = β4
2 (λs + 1)

5 − 2β3
2 (λ2(λs + 1) − 2λ2

s) (λs + 1)
3
(βt + 1) + β2

2 (3(2λs + 1)λ3
s − 3λ2(λs + 1)λ2

s

+ λ2
2(λs + 1)2)(λs + 1)(βt + 1)2 + λ4

s(λ2 + λs)(βt + 1)4 + 2β2λ
4
s(2λs + 1)(βt + 1)3

N2 = −2β3
2 (λs + 1)
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2 + β2
2 (λs + 1)

2
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s + λ2
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s) + λ3
s − λ2λ

2
s + λ2

2(λs + 1)

N4 = β3
2 (λs + 1)

4 + λ4
s (βt + 1)

3 − β2
2 (λs + 1)

2
(2λ2(λs + 1) − 3λ2

s)(βt + 1) + β2((3λs + 2)λ3
s

− 2λ2(λs + 1)λ2
s + λ2

2(λs + 1)2)(βt + 1)2

(M2)
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