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ABSTRACT

In the assessment of car insurance claims, the claim rate for car insurance presents a highly skewed probability
distribution, which is typically modeled using Tweedie distribution. The traditional approach to obtaining the
Tweedie regression model involves training on a centralized dataset, when the data is provided by multiple parties,
training a privacy-preserving Tweedie regression model without exchanging raw data becomes a challenge. To
address this issue, this study introduces a novel vertical federated learning-based Tweedie regression algorithm
for multi-party auto insurance rate setting in data silos. The algorithm can keep sensitive data locally and uses
privacy-preserving techniques to achieve intersection operations between the two parties holding the data. After
determining which entities are shared, the participants train the model locally using the shared entity data to
obtain the local generalized linear model intermediate parameters. The homomorphic encryption algorithms are
introduced to interact with and update the model intermediate parameters to collaboratively complete the joint
training of the car insurance rate-setting model. Performance tests on two publicly available datasets show that the
proposed federated Tweedie regression algorithm can effectively generate Tweedie regression models that leverage
the value of data from both parties without exchanging data. The assessment results of the scheme approach those of
the Tweedie regression model learned from centralized data, and outperform the Tweedie regression model learned
independently by a single party.
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1 Introduction

In recent years, there has been a growing interest in the analysis of vehicle insurance data.
Currently, many property and casualty insurance companies face a high combined cost ratio, with
motor insurance accounting for a significant portion of the overall costs. In this context, usage-
based insurance (UBI) for vehicles has emerged as a competitive product in the commercial vehicle
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insurance market. UBI premiums are determined based on specific vehicle usage behavior and the
corresponding level of risk. Insurers collect data during the underwriting cycle to extract appropriate
risk type parameters for different driving behaviors and habits of insured vehicles. These parameters
are then used to adjust the traditional commercial vehicle insurance premiums for the next cycle,
ultimately determining differentiated premiums for the insured vehicles. However, there is currently
no clear standard for the differentiated premium adjustment mechanism of vehicle UBI products. It
can only judge the risk type for a specific type of driving parameter (e.g., mileage, driving speed), or
use multiple driving parameters to determine the comprehensive risk type [1].

In the motor insurance industry, there are numerous individual risks that require classification
according to their characteristics and determining rates for each risk category based on the classifi-
cation. The development of risk-based rate setting models for motor insurance can be divided into
three stages: Initial rate setting models, the popularity of generalized linear models (GLM), and the
emergence of extended classes. Early actuarial models for motor insurance rate setting used additive
and multiplicative models, with the former assuming an additive relationship between rate factors and
the latter assuming a multiplicative relationship. Since the late 20th century, GLMs [2] have become the
industry standard for categorical rate setting in some countries, establishing a relationship between the
mathematical expectations of response variables and predictor variables through a linkage function
[3–5]. While GLMs have contributed to the development of non-life rate setting techniques, they
have limitations when dealing with increasingly complex data with certain correlation structures, such
as clustered, repeated, or stratified data, and when reflecting non-parametric effects of explanatory
variables. Hastie et al. [6,7] proposed a generalized additive model (GAM) to analyse the semi-
parametric and non-parametric relationships between variables, which was further applied to the
analysis of factors influencing the modelling of auto insurance claim frequency. For correlated
structural data, random effects models based on GLMs have been introduced to improve data analysis
accuracy and validity, with examples including linear mixed models (LME) and generalized linear
mixed models (GLMM) [8–10].

The applications of GLMs in the car insurance field include risk assessment, claims prediction,
premium pricing, and loss fitting. These applications can help car insurance companies better manage
and control risks, improve business efficiency, and profitability. Therefore, the development of GLMs
in the car insurance field provides more accurate and reliable modeling tools for insurance companies.

Traditional motor insurance pricing is only related to fixed factors such as age, gender, mileage and
price of the vehicle. In practice, however, there are also dynamic data on users and vehicles that affect
motor insurance pricing. In the auto insurance claims process, insurance companies have an urgent
need for external data due to the low understanding of personnel information and the low quality of
information collection. Insurers are therefore beginning to work with external data vendors to fuse
internal and external data and develop motor insurance risk control models using machine learning
algorithms.

Risk control models are statistical models that are used to estimate the risk associated with an
event or situation. In the context of car insurance, risk control models can be used to predict the
likelihood of a claim and determine an appropriate premium. These models are often based on various
factors such as driver age, driving record, vehicle make and model, and geographical location.

In auto insurance risk control scenario, joint modelling refers to a modelling project in which an
insurer and an external data vendor collaborate to provide samples with risk performance to the data
vendor, match the feature data to develop a model, and then access the model to make a risk strategy.
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With the tightening of regulations on personal data privacy and the increasing reliance of insurers on
external data, joint modelling is also gaining importance.

However, in recent years, countries around the world have increasingly attached importance
to data privacy protection, and laws and regulations for privacy protection have been introduced
successively [11]. Original data from different institutions or individuals cannot be collected and
used at will. The constraints of these laws and regulations have led to the emergence of data islands,
where data sources cannot exchange data, making the traditional learning method of regression model
training through data concentration impractical.

To overcome the challenges brought by data privacy protection, many new technologies and
algorithms have emerged, such as federated learning and homomorphic encryption. Federated learn-
ing (FL) [12] can perform model training between multiple data sources without leaking personal
data, allowing different institutions to share and aggregate data without revealing sensitive data.
Homomorphic encryption [13] technology allows certain specific calculations, such as addition and
multiplication, to be performed while keeping the data encrypted, making data sharing more secure.

Federated learning is widely used in scenarios that require data privacy protection, such as
healthcare, financial services, and military fields. In regression problems, federated learning can be
used to predict numerical target variables, such as predicting stock prices or disease incidence rates
[14,15].

To address the above issues, a Tweedie generalized linear regression-based joint modelling scheme
for federal learning car insurance rate setting is proposed. The scheme considers the joint modelling
of car insurance rate setting while taking into account the privacy protection of user and vehicle data.
All sensitive data is stored in the local institution to which the data belongs, and encryption-based
user ID alignment is used to ensure that the participants align the common user sample without the
flow of raw data. The experimental results show that the scheme has good results for the quantitative
analysis of car insurance pricing variables and user risks.

2 Preliminaries
2.1 Federated Learning

Federated learning is essentially a cryptographic distributed machine learning framework that
enables data sharing and joint modelling on the basis of data privacy and security and legal compliance.
The core idea is that when multiple data sources participate in model training, only the intermediate
parameters of the model are interacted with for joint model training without the need for raw data flow,
and the raw data can be kept local. This approach achieves a balance between data privacy protection
and data sharing and analysis, i.e., a “data available but not visible” data application model.

Vertical federated learning, i.e., sample-aligned federated learning, is suitable for scenarios where
there is a large overlap in user space between participants and little or no overlap in feature space,as
shown in Fig. 1. The training process of vertical federated learning generally consists of two parts,
first aligning entities with the same ID but distributed across different participants, and then training
a cryptographic model based on these aligned entities.
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Figure 1: Vertical federated learning

2.2 Federated Learning Framework
The mainstream federal learning frameworks currently available include FATE (Federated AI

Technology Enabler) by WeBank, PySyft by OpenMined, PaddleFL (Paddle Federated Learning) by
Baidu, FedMl by USC, and TFF (TensorFlow Federated) by Google [16–21].

PySyft separates private data from model training using federation learning, differential privacy
and cryptographic computation in major deep learning frameworks such as PyTorch and TensorFlow.
PaddleFL is an open source federal learning framework based on PaddleFL, offering many federal
learning strategies and their applications in computer vision, natural language processing, recommen-
dation. FedML is an open research library and benchmark that facilitates the development of new
federated learning algorithms and fair performance comparisons, supporting three computational
paradigms (distributed training, mobile training and standalone simulation) for users to experiment in
different system environments. TFF is mainly used for horizontal federal learning scenarios, especially
for Android mobile devices. With TFF, developers are able to train shared global models across
multiple participating clients.

FATE is an open source project initiated by the AI division of WeBank, the world’s first
industrial-grade federation learning framework, providing a reliable and secure computing framework
for the federation learning ecosystem. By the end of 2021, more than 1,000 companies and 200
research institutions have participated in the FATE open source ecosystem, with a large number of
mainstream participants, contributors and major community contributors. the FATE project uses
multiparty secure computing (MPC) [22] and homomorphic encryption technologies to build an
underlying secure computing protocol that supports different types of secure machine learning. The
FATE technical architecture is underpinned by Tensorflow/Pytorch (deep learning), EggRoll/Spark
(distributed computing framework) and a multi-party federated communication network, with a
federated security protocol on top, and a library of federated learning algorithms built on top of the
security protocol. Around practical scenarios, FATE has built a federated blockchain, federated multi-
cloud management, federated model visualisation platform, federated modelling pipeline scheduling,
and federated online reasoning at the top of the technical architecture.

2.3 Tweedie Distribution
Tweedie-like distributions were first introduced in 1984 by Tweedie, a statistician at the University

of Liverpool, UK, and later named by Smyth et al. [23]. In probability theory and statistics, the Tweedie
distribution is a family of probability distributions that includes the purely continuous normal, gamma
and inverse Gaussian distributions, the purely discrete scalar Poisson distribution, and the class of
compound Poisson-gamma distributions that have positive mass at zero but are otherwise continuous.
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The Tweedie distribution is a special case of the exponential dispersion model and is often used as the
distribution for generalized linear models.

The Tweedie distribution is a special case of an exponential dispersion model (EDM) with a power
parameter p characterized by the following power relationship between the mean and variance of the
distribution, where μ and φ are the mean and dispersion parameters, respectively.

Var(x) = φμp (1)

The power parameter p determines the subclass of distributions in the family. For example, p = 1
links to the Poisson distribution, p = 2 links to the Gamma distribution, p = 3 links to the inverse
Gaussian distribution, links to the Compound Poisson-Gamma distribution, which can be shown in
Table 1.

Table 1: Common members and parameters of the Tweedie distribution family

Tweedie EDMs p V(μ) κ(θ) θ φ d(y, μ) α(y, φ) S � �

Normal 0 1
θ2

2
μ σ 2 (y − μ)2 exp

(
− y2

σ 2 −
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2

) R R R

Poisson 1 μ exp(θ) log(μ) 1 2
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μ
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)
1
y!

N ∪ {0} R
+

R

Poisson-gamma (1, 2) μp (1 − p)θ(2−p)/(1−p)

2 − p
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1 − p
φ 2
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max(y, 0)2−p

(1 − p)(2 − p)
−
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) − R
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R
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Gamma 2 μ2 − log(−θ) − 1
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Explanation of parameters: p is the exponential parameter, V(μ) is the variance function, κ(θ) is
the cumulative function, θ is the typical parameter, φ is the dispersion, d (y, μ) is the deviation, α(y, φ)

is the normalisation constant, S is the support, � is the mean and � is the respective parameter space
of the natural parameters.

Given that it is a composite distribution, a random variable can be described as:

X =

⎧⎪⎪⎨
⎪⎪⎩

0 M = 0

M∑
i=1

Ci M > 0
(2)

where M Poisson(λ) and Ci Gamma(n, ζ ), M independently of Ci. The probability density function of
X is:

f (x | μ, φ, p) = a(x, φ, p) · exp
{

1
φ

(
x · μ1−p

1 − p
− μ2−p

2 − p

)}
(3)

where α(x, φ, p) is a normalisation constant to ensure that this is a valid probability density function.
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2.4 Generalized Linear Model
The generalized linear model (GLM), first proposed by McCulloch [24] and Nelder et al. [25], is

one of the most established models for car insurance pricing it is a model that analyses and treats the
correlation between multiple rate factors and the explanatory variables with the help of an exponential
family distribution due to the introduction of a link function. As the GLM is not limited to normal
distributions, but extends to exponential family distributions, it is more suitable for modelling data
with special structures such as biased and dichotomous data. At the same time, the GLM relaxes the
assumptions required of its traditional linear regression model, expanding the range of applications
of the model. The model generally consists of three components: the stochastic component, the
systematic component and the link function.

Stochastic component: The probability distribution of the random component, error term or
dependent variable Y is known as the random. The samples of the dependent variable Y , y1, y2, ..., yn,
are independent of each other and obey any of the exponential distribution families distribution. These
include the zero-truncated Poisson distribution, the normal distribution, the gamma distribution, the
inverse Gaussian distribution, etc. The probability density of the family of exponential distributions is:

f (y | θ , ϕ) = exp
{

yθ − b(θ)

a(ϕ)
+ c(y, ϕ)

}
(4)

Systematic component: System components, i.e., linear combinations of independent variables.
There is a correlation between the system components and the independent variables and this
relationship can be assumed to be linearly correlated. The system components can be expressed as
follows:

ηi = β0 + β1X1i + · · · + βrXri (5)

Link function: It is a function that expresses the relationship between the stochastic component
and the system component. In traditional linear regression models, the link function is a unit function
of 1. However, in generalized linear models, the link function is specified as strictly monotonic and
differentiable, and is used to link the mean of the explanatory variable Y to the system components.

2.5 Homomorphic Encryption
Homomorphic encryption was first proposed by Rivest et al. [26]. The use of homomorphic

encryption ensures that the result of algebraic operations on the ciphertext is the same as the result
of encryption after performing the same algebraic operations on the plaintext. That is, for any valid
operation f and plaintext m, there is the property f (Enc(m)) = Enc(f (m)). This special property
allows third parties to perform algebraic operations on the ciphertext, without the need for decryption
operations throughout the process. According to the supported operations, homomorphic encryption
can be classified into fully homomorphic encryption (FHE) [27,28], leveled fully homomorphic encryp-
tion (LFHE) [29], additional homomorphic encryption (AHE) [30] and multiplicative homomorphic
encryption (MHE) [31].

This work is concerned with additive semi-homomomorphic encryption, e.g., the Paillier encryp-
tion algorithm is a classical additive semi-homomomorphic encryption algorithm and has been used
in common federated learning algorithms. During the initialisation phase, the Paillier encryption
algorithm generates the key pair < pk, sk >.The public key pk is used for encryption and can be
disclosed to the other participants, the private key sk is used for decryption and cannot be disclosed.
Given integers x,y, the Paillier encryption algorithm supports the following operations:

• Encryption: Enc (x, pk) → [[x]].

• Decryption: Dec ([[x]], sk) → x.
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• Homomorphic addition: HAdd ([[x]] , [[y]]) → [[z]], where [[z]] satisfies Dec ([[z]] , sk) → x + y.

• Scalar addition: SAdd ([[x]] , y) → [[z]], where [[z]] satisfies Dec ([[z]] , sk) → x + y.

• Scalar multiplication: SMul ([[x]] , y) → [[z]], where [[z]] satisfies Dec([[z]], sk) → x ∗ y.

3 Car Insurance Rate Setting Federated Learning Modelling Scheme
3.1 General Architecture

Through analysis of the data, this modelling applies to vertical federal learning, for which a system
oriented towards vertical federal learning was created between the insurance company (generally
referred to as Company A) and the data company (generally referred to as Company B), with the
system architecture shown in Fig. 2.

Figure 2: Vertical federated learning for car insurance rate setting

The training process for vertical federation learning generally consists of two parts. The first part
is cryptographic entity alignment, where the data of Company A and Company B are stored in their
respective systems and the original data are not exchanged. The system uses an encryption-based user
ID alignment technique to ensure that Parties A and B can align common users without exposing
their respective original data. During entity alignment, the system does not expose users belonging to
a particular company. The second part is the cryptographic model training phase, where the parties
can use the data from these shared entities to collaboratively train a machine learning model after the
shared entities have been identified.
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3.2 Tweedie Distribution Generalised Linear Regression Federated Learning Model
3.2.1 System Initialisation

The proposed model consists of two participants, A and B, and one collaborator, C, working
together to train the machine learning model, with each participant having a sample size of n. The
work consists of the following main components:

1. Participant A, with a certain number of specific samples, each with a corresponding feature
value Xai = (xai1

, xai2
, ..., xain), Xai ∈ DA. Participant B, with a certain number of samples, each

with corresponding feature value Xbi = (xbi1
, xbi2

, ..., xbin) and labels Ybi, (Xbi, Ybi) ∈ DB. DA

and DB have partial overlap samples DC. This scheme assumes that A, B know the overlapping
sample IDs in advance, otherwise, the sample IDs can be blinded using the RSA encryption
mechanism, and then the samples can be aligned. Assume that the learning rate is η and
the regularization parameter is α. Additive homomorphic encryption is represented using the
notation [[•]].

2. A and B each have their own machine learning model training servers, S1 and S2, which are
controlled by A and B respectively and cannot carry out a conspiracy attack. This server is only
responsible for the computation of machine learning models, such as eigenvalue computation,
gradient computation and loss function computation.

3.2.2 Calculating Model Training Loss Function

Train1(WA, WB, DA, DB, DC) → L:

According to Table 2 the training objective function can be obtained as:

min
WA ,WB

L =
∑

2‖d
(
yi, ŷi

) ‖ + α

2

(‖WA‖2 + ‖WB‖2
)

(6)

(a) A and B input each sample i into the model to calculate the eigenvalues: uA
i ← NetA(WA, DA),

uB
i ← NetB(WB, DB). The sample eigenvalue set matrix is uA, uB.

(b) For the calculation of the loss function of the generalized linear regression of the Tweedie
distribution, according to Eq. (6), we have:

[[L]] =
∥∥∥∥∥

|Dc|∑
i

2

{
−ybie(1−p)(uA

i +uB
i )

1 − p
+ e(2−p)(uA

i +uB
i )

2 − p

}
+ α

2

(‖WA‖2 + ‖WB‖2
)∥∥∥∥∥ (7)

(c) The servers S1, S2 compute the losses of A, B and use homomorphic encryption to obtain:

[[LA]] =
∥∥∥α

2

(‖WA‖2
)∥∥∥ , [[LB]] =

∥∥∥α

2

(‖WB‖2
)∥∥∥ ,

[[LAB]] =
∥∥∥∥∥

|DC |∑
i

2

{
−ybie

(1−p)([[uA
i ]]+[[uB

i ]])

1 − p
+ e(2−p)([[uA

i ]]+[[uB
i ]])

2 − p

}∥∥∥∥∥ .

(d) Server S2 receives the parameters from S1 and calculates the overall loss, then we have:

L = [[LA]] + [[LB]] + [[LAB]] (8)
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Convergence or non-convergence based on L, if the model converges, the training is finished and
the relevant parameters WA, WB are output.

3.2.3 Calculating Model Training Gradients

Train2(uA, uB, L) →
(

δL
δWA

,
δL

δWB

)
:

Assuming that the loss function values L do not converge, the corresponding gradient values need

to be calculated, let [[di]] =
[[

e(2−p)(uA
i +uB

i )
]]

−
[[

ybie(1−p)(uA
i +uB

i )
]]

, according to Eq. (7):

[[
δL

δWA

]]
=

|DC|∑
i

[[di]] xA
i + [[αWA]] (9)

[[
δL

δWB

]]
=

|DC|∑
i

[[di]] xB
i + [[αWB]] (10)

A and B are computed jointly by homomorphic encryption to obtain the respective
δL

δWA

and

δL
δWB

, update the gradient and recalculate the loss function.

The steps of model training are summarized in four steps, the following are shown in Table 2.

Step 1: The coordinator C creates the key and sends the public key to both Party A and Party B.

Step 2: The intermediate results are encrypted and exchanged between side A and side B. The
intermediate results are then used to help calculate the gradient and loss values.

Step 3: Parties A and B calculate the encryption gradient and add the additional mask respectively,
and Parties A and B send the encryption result to Party C.

Step 4: Party C decrypts the gradient and loss information and sends the results back to Parties
A and B. Parties A and B unmask the gradient information and update the model parameters based
on the gradient information.

3.3 Security Analysis
The training protocol shown in Table 2 does not reveal any information to C because C is given

only the parameters of the masked gradient, and the randomness and confidentiality of the masked
matrix are guaranteed. In the above protocol, Party A learns its gradient at each step, but this is not
sufficient for A to learn any information from B according to Eq. (9), since the security of the scalar
product protocol is based on n equations with more than n unknowns that cannot be solved [20,21].
Here, it is assumed that the number of samples NA is much larger than the number of features nA.
Similarly, B cannot obtain any information from A.

Table 2: Training steps for vertical federated learning: Tweedie regression

Party A Party B Party C

Step 1 Initializes WA. Initializes WB. Creates an encryption key, sends
public key to A and B.

(Continued)
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Table 2 (continued)
Party A Party B Party C

Step 2 Compute [[μA
i ]] and sends to B. Compute [[uB

i ]], [[dB
i ]], [[L]], sends

[[dB
i ]] to A, sends [[L]] to C.

Step 3 Initializes RA,compute[[
δL

δWA

]]
+ [[RA]] and sends to C.

Initializes RB, compute[[
δL

δWB

]]
+ [[RB]] and sends to C.

Decrypt L, sends
δL

δWA
+ RA to

A,
δL

δWB
+ RB to B.

Step 4 Update WA. Update WB.
Result WA WB

Proof of protocol security: This work assumes that both parties are semi-honest. If one party is
malicious and tricks the system by falsifying its input, e.g., if Party A submits only a non-zero input
and a non-zero feature, it can determine the value of uB

i for that sample feature but has no way of
knowing the value of xB

i or WB, and this bias will distort the results of the next iteration, alerting the
other party, which will terminate the learning process. At the end of the training process, each party
(A or B) has no knowledge of the other party’s data structure and is only given the model parameters
associated with its own features. During the inference process, both parties need to collaborate to settle
the predictions through the steps shown in Table 3, which still does not lead to information leakage.

Table 3: Evaluation steps for vertical federated learning: Tweedie regression

Party A Party B Party C

Step 1 Sends user ID i to A and B.
Step 2 Compute uA

i and sends to C. Compute uB
i and sends to C. Gets result uA

i + uB
i .

4 Experiment

In this Section, we evaluate the convergence value of our solution for different values of power and
the time overhead for different size quantities through experiments. We also experimentally compare
the evaluation results of our solution with those of the stand-alone solution.

4.1 Experimental Environments
The experiments are executed in a LAN environment based on the FATE vertical federated

learning framework, running on an AMD Ryzen 7 5800H 3.20 Ghz CPU processor with 8 cores and
16 threads and 32 G DDR 4 RAM, in a 64-bit CentOS 7.3 environment with FATE version 1.8. The
Tweedie regression model was trained using Python language and the Numpy library.

4.2 Experimental Datasets
We evaluated the performance of the Tweedie regression federated learning model using two

datasets from the financial insurance field.

The freMTPL2freq dataset is a French automobile third-party liability claims dataset, containing
677,991 samples of third-party liability insurance policies, each sample consisting of 10-dimensional
attribute features and one label. The attribute features include policy holder characteristics (age,
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gender, etc.), vehicle characteristics (make, model, etc.), and claim-related information (time, location,
etc.).

The CarData dataset comes from a publicly available set of insurance policy claims data on car
insurance in de Jong et al. [3]. This dataset provides 65,536 insurance samples from 2004–2005, each
sample consisting of 7-dimensional attribute features and one label. The attribute features include
policy holder characteristics (age, gender, etc.), vehicle characteristics (make, model, etc.), and other
relevant information related to the insurance policy. The label represents the total amount of claims
made by the policy holder during the policy period. It is widely used in machine learning research
to develop models for predicting the total amount of claims made by policy holders based on their
demographic and policy information.

4.3 Experimental Result
To verify the effectiveness of the FL-TRM (Tweedie Regression Federated Learning Model)

method proposed experimental comparisons will be conducted with three other methods.

The experimental settings for LocalA-TRM and LocalB-TRM involve training the Tweedie
regression model only on the local data of participant A and participant B, respectively. The purpose of
this is to test the effectiveness of the Tweedie regression model under non-federated settings and verify
the effectiveness of federated learning. The NoFL-TRM experimental setting involves training the
model on the entire dataset after aggregating all the attribute features, which represents the traditional
Tweedie regression method. The purpose of this is to compare its performance with the federated
learning framework and evaluate the accuracy loss of the models trained under federated settings.

The freMTPL2freq dataset is partitioned into attribute features of 10 dimensions, which are split
between participant A and participant B according to the ratios of 2:8, 3:7, 4:6, and 5:5. The label
feature y is assigned to participant A, who serves as the active participant, while participant B serves
as the collaborative participant. The FL-TRM model will be trained using vertical federated learning
with the joint participation of both participants A and B.

The experiments are conducted with L1 regularization and a penalty factor of α = 0.1, using a
batch size of 2000 for batch gradient descent, a learning rate of η = 0.1, and a power value of p = 1.8.
The experimental results for different feature partition ratios are shown in Table 4.

Table 4: Experimental results under different feature partition ratios

Feature partition ratio Model MAE RMSE

2:8 LocalA-TRM 176.1543 6991.6499
LocalB-TRM 171.3418 6990.5048
NoFL-TRM 171.7904 6990.1939
FL-TRM 174.5564 6991.4738

3:7 LocalA-TRM 173.0040 6990.5731
LocalB-TRM 171.8653 6990.5259
NoFL-TRM 171.7904 6990.1939
FL-TRM 172.8734 6990.8932

(Continued)
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Table 4 (continued)

Feature partition ratio Model MAE RMSE

4:6 LocalA-TRM 172.9895 6990.5621
LocalB-TRM 172.1216 6990.5380
NoFL-TRM 171.7904 6990.1939
FL-TRM 172.1702 6990.5371

5:5 LocalA-TRM 172.3342 6990.5543
LocalB-TRM 172.1376 6990.5422
NoFL-TRM 171.7904 6990.1939
FL-TRM 171.8976 6990.2972

MAE (Mean Absolute Error) and RMSE (Root Mean Squared Error) are two evaluation metrics
for regression models where lower values indicate better performance. Table 4 shows that for LocalA-
TRM, as the number of features increases, both MAE and RMSE decrease, indicating an improvement
in model performance. On the other hand, for LocalB-TRM, as the number of features decreases,
both MAE and RMSE increase, indicating a deterioration in model performance. Both are weaker
than NoFL-TRM, which utilizes all features to learn, demonstrating that the more features used, the
better the trained model’s performance. This also proves that the model training performance in a
single participant scenario is proportional to the number of features.

From Table 4, it can be observed that the difference in the number of features between the
participating parties has an impact on the performance of FL-TRM. As the difference in the number
of features between the two parties decreases, the performance of FL-TRM improves. However, when
the feature segmentation ratio is 2:8, the performance of FL-TRM is worse than that of LocalB-TRM.
This is because LocalB-TRM is trained by a single party and has 80% of the features, which makes it
easier to find features that are beneficial for improving model performance.

In general, models trained on more data tend to perform better than models trained on less
data. However, the contribution of participants’ models to evaluation results depends not only on
the amount of data they have but also on many other factors such as data quality, model and
hyperparameter selection, and how well their data represents the overall sample.

FL-TRM failed to learn effectively due to the extremely unbalanced feature segmentation ratio.
This experiment also suggests that the difference in the number of features between the participating
parties in federated learning should not be too large.

On the CarData dataset, we conducted experiments with two participating parties. The feature
split ratio of the dataset was 4:3, which means that for each sample in the dataset, 4 out of 7 attributes
were allocated to participating Party A as the collaborator, while the remaining 3 attributes and the
label y were allocated to Party B as the active party. The FL-TRM model was trained through vertical
federated learning with the joint participation of Parties A and B. The experimental results are shown
in Table 5.

Based on Table 5, it can be seen that the model performance of FL-TRM on the CarData dataset
is better than that of LocalA-TRM and LocalB-TRM, indicating that the model obtained through
federated learning is better than the model trained by a single party.
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Table 5: Experimental results on the CarData dataset

Model MAE RMSE

LocalA-TRM 253.2908 1079.7570
LocalB-TRM 253.3144 1079.7959
NoFL-TRM 241.0070 1062.6478
FL-TRM 245.4078 1071.8824

In addition to evaluating the model using MAE and RMSE, the risk coefficient Ri = e(Intercept+ui) is
calculated for each sample vehicle based on the model parameters; the risk coefficients for all samples
in the CarData dataset are then cut into 10 quartiles of 0%, 10%, 20%, 30%, 45%, 65%, 80%, 85%,
90%, 95% and 100% to generate a risk score of “1 to 10”. Finally, the mean of the sample size and
payout rates under each score were counted, as shown in Table 6.

Table 6: Sample size and payout ratio means at different scores

NoFL-TRM FL-TRM

Score Count Mean value Count Mean value

1 6886 89.2906 6554 99.2172
2 6710 107.3694 6553 103.6351
3 6824 124.6016 6555 106.0244
4 10336 126.0966 6551 128.5415
5 13475 125.1362 9830 140.8193
6 10066 132.7357 13107 149.3325
7 3381 200.1981 9830 138.6016
8 3398 201.7028 3277 173.6400
9 3395 184.9875 3277 155.1071
10 3385 240.1961 6553 253.4401

Fig. 3 shows a comparison of the grouped sample sizes obtained by the scheme after risk
assessment of the data samples in the NoFL-TRM model and FL-TRM model, respectively, and it can
be seen that the differences are very small and the distribution pattern is consistent, with the highest
number of samples with a risk score of 6, the lowest number with a score of 1, and the second highest
number of samples with scores of 5 and 7. Also, by averaging the sample payout rates under each score
as shown in Fig. 4, the average payout rate of the samples was highest for a risk score of 10 and lowest
for a risk score of 0 in both the stand-alone and federated learning environments, which is consistent
with the actual payout data from the insurers.
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Figure 3: Sample size at different scores Figure 4: Sample payout means at different scores

Fig. 5 shows the relationship between the loss values and iteration rounds during the training of
the FL-TRM model. It can be observed from the figure that under the aforementioned hyperparameter
conditions, the proposed federated Tweedie regression model parameter update method can stably
update the parameters in the direction of gradient descent, resulting in a stable decrease in the loss
function. The model can converge after approximately 200 iterations.

Fig. 6 shows the variation of the convergence time of this scheme for different sizes of datasets.
It can be seen that the time overhead of this scheme grows linearly and steadily with constant
feature dimension and increasing dataset size, possessing better performance stability. The federal
learning model has a longer training time compared to traditional Tweedie regression. The reasons
for this performance degradation are the complexity of the federation learning algorithm itself and
the performance drain of the data network transmission experiments in a distributed environment,
especially the encryption and decryption based on the homomorphic encryption algorithm.

Figure 5: Relationship between rounds and losses Figure 6: Time overhead at different data sizes

5 Conclusion

In this work, we propose a federated learning-based Tweedie regression algorithm for constructing
a joint assessment model for multi-party auto insurance rate setting in data silos. The algorithm
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derives the logarithmic natural formula of the vertical federated Tweedie regression model using an
iterative method and constructs the gradient updating strategy of the parameters based on the loss
function, introducing homomorphic encryption algorithm to achieve fusion updates of parameters
from all parties and obtain the federated Tweedie regression model. The experiments on two datasets
demonstrate that federated learning can be used for model training using the datasets of all parties
while protecting data privacy. Furthermore, the model testing results prove that the federated learning
model performs better than the single-party trained models. In the auto insurance dataset with tag
features following Tweedie distribution, the proposed model achieves good results in setting auto
insurance rates. Future work will investigate the extension of the scheme to correlation structure data
analysis and improve the accuracy and validity of data analysis by introducing random effects based
on GLM.
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