
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.028738

ARTICLE

EfficientShip: A Hybrid Deep Learning Framework for Ship Detection
in the River

Huafeng Chen1, Junxing Xue2, Hanyun Wen2, Yurong Hu1 and Yudong Zhang3,*

1School of Computer Engineering, Jingchu University of Technology, Jingmen, 448000, China
2School of Computer Science, Yangtze University, Jingzhou, 434023, China
3School of Computing and Mathematic Sciences, University of Leicester, Leicester, LE1 7RH, UK

*Corresponding Author: Yudong Zhang. Email: yudongzhang@ieee.org

Received: 05 January 2023 Accepted: 05 May 2023 Published: 22 September 2023

ABSTRACT

Optical image-based ship detection can ensure the safety of ships and promote the orderly management of
ships in offshore waters. Current deep learning researches on optical image-based ship detection mainly focus
on improving one-stage detectors for real-time ship detection but sacrifices the accuracy of detection. To solve
this problem, we present a hybrid ship detection framework which is named EfficientShip in this paper. The
core parts of the EfficientShip are DLA-backboned object location (DBOL) and CascadeRCNN-guided object
classification (CROC). The DBOL is responsible for finding potential ship objects, and the CROC is used to
categorize the potential ship objects. We also design a pixel-spatial-level data augmentation (PSDA) to reduce the
risk of detection model overfitting. We compare the proposed EfficientShip with state-of-the-art (SOTA) literature
on a ship detection dataset called Seaships. Experiments show our ship detection framework achieves a result of
99.63% (mAP) at 45 fps, which is much better than 8 SOTA approaches on detection accuracy and can also meet
the requirements of real-time application scenarios.

KEYWORDS
Ship detection; deep learning; data augmentation; object location; object classification

1 Introduction

With the continuous advancement of technology and the rapid development of industrial pro-
duction, international trade is gradually increasing. The market of the shipping industry is also
flourishing. In order to ensure the safety of ships and promote the orderly management of ships,
satellites (generate SAR images) are used to monitor ships at sea [1] and surveillance cameras (generate
optical images) are adopted for tracking ships in offshore waters [2,3]. At the technical level, with the
maturity of artificial intelligence technology [4], computer-aided methods of ship classification, ship
instance segmentation and ship detection from images are studied to reduce the burden on human
monitors [5]. We focus on ship detection based on optical images generated by surveillance cameras
in this paper.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.028738
https://www.techscience.com/doi/10.32604/cmes.2023.028738
mailto:yudongzhang@ieee.org

302 CMES, 2024, vol.138, no.1

In recent years, deep learning-based ship detection has become a hot research area [6–8]. Sea
ship detection is one of the general object detections [9]. Researches on deep learning based object
detection can be roughly split into two classifications: One-stage detectors and two-stage detectors [10].
One-stage detectors combine object location and classification in one deep learning framework, while
two-stage detectors find object location in the first place and classify the potential objects secondly.
Representative one-stage detection algorithms are RetinaNet [11], FCOS [12], CenterNet [13], ATSS
[14], PAA [15], BorderDet [16], and YOLO series [17–21]. Mainstream two-stage object detection
approaches are R-CNN [22], SPPNet [23], Fast RCNN [24], Faster RCNN [25], FPN [26], Cascade
RCNN [27], Grid RCNN [28], and CenterNet2 [29].

Generally, the one-stage detector is considered to have a faster detection speed, while the two-stage
detection algorithm has higher detection accuracy. While recent methods of ship detection [3,30–37]
focus on improving one-stage detectors for real-time ship detection, they sacrifice the accuracy of
detection. In this paper, we present a real-time two-stage ship detection algorithm, which improves
detection accuracy while ensuring real-time performance. The algorithm includes two parts: the DLA-
backboned object location (DBOL) and the CascadeRCNN-guided object classification (CROC). To
further improve the accuracy of ship detection, we design a novel pixel-spatial-level data augmentation
(PSDA) for increasing the number of samples at a high multiple and effectively. The PSDA, DBOL
and CROC make up the proposed hybrid deep learning framework of EfficientShip.

The contributions of this study can be summarized as follows:

(1) The DBOL is presented for finding potential ship objects in real time. We integrate DLA [38],
ResNet-50 [39] and CenterNet [13] into DBOL for evaluating object likelihoods quickly and accurately.

(2) The CROC is put forward to real-time categorize the potential ship objects. We calculate
the category scores of suspected objects based on conditional probability and extrapolate the final
detection.

(3) The PSDA is proposed to reduce the risk of the model overfitting. We amplify the original data
by 960 times based on pixel and spatial image augmentation.

(4) Our EfficientShip (includes PSDA, DBOL and CROC) gets the best performance compared
with 8 existing SOTA methods: 99.63% (accuracy) with 45 fps (speed).

2 Related Work
2.1 Ship Detection

Ship detection can be divided into SAR image-based [5,40] and optical image-based ship detection
[2,3]. Here we focus on reviewing optical image-based ship detection. Traditional optical image-based
ship detection use hand-crafted features which sliding window to obtain the candidate area of the ship
target based on the saliency map algorithm or the visual attention mechanism. The features of the
candidate target are extracted for training to obtain the detection model [41,42].

Recently, deep learning-based ship detection has attracted researchers’ attention. Shao et al. [3]
introduced a CNN framework on the basis of saliency-aware for ship detection. Based on YOLOv2, the
ship’s location and classification under a complex environment were inferred by CNN firstly and were
refined through saliency detection. Sun et al. [32] presented an algorithm named NSD-SSD for real-
time ship detection. They combined dilated convolution and multiscale feature to promote knockdown
performance in detecting a small object of a ship. For getting the inferring score of every class and
the variation of every prior bounding box, they also designed a batch of convolution filters at every

CMES, 2024, vol.138, no.1 303

trenchant feature layer. They finally reconstructed prior boxes with K-means clustering to advance
visual accuracy and the ship-detecting efficiency.

Liu et al. [31] have designed an advanced CNN-enabled learning method for promoting ship
detection under different weather conditions. On the basis of YOLOv3, they devised new scale of
anchor boxes, localization probability of bounding boxes, soft non-maximum suppression, and medley
loss function for advancing the CNN capacities of learning and expression. On the other hand, they
introduced an agile DA tactics through produce synthetically-degraded pictures to enlarge the capacity
and diversity of rudimentary ship detection dataset. Considering the influence of meteorological
factors on ship detection accuracy, Nie et al. [30] synthesized foggy images and low visibility pictures
via exploiting physical models separately. They trained YOLOv3 on the expanded dataset, including
both composite and original ship pictures and illustrated that the trained model achieved excellent ship
detection accuracy within a variety of weather conditions. For real-time ship detection, Li et al. [33]
concentrated the network of YOLOv3 by training predetermined anchors based on the annotations of
Seaship, instead max-pooling layer with convolution layer, expanding channels of prediction network
to promote the detection ability of tiny object, and embedding CBAM attention module into the
backbone network to facilitate the model focusing on the object. Liu et al. [43] proposed two new
anchor-setting methods, the average method and the select-all method, for detecting ship targets on the
basis of YOLOv3. Additionally, they adopt the feature fusion structure of cross PANet for combining
the different anchor-setting methods. Chen et al. [35] introduced the AE-YOLOv3 for real-time end-
to-end ship identification. AE-YOLOv3 was merged in the feature attention module, embedded with
the feature extraction network, and fused through multiscale feature enhancement model.

Liu et al. [34] presented a method of RDSC on the basis of YOLOv4 by reducing more than
40% weights compared to the original one. The improved lightweight algorithm achieved a tinier
network volume and preferable real-time performance on ship detection. Zhang et al. [36] presented
a lightweight CNN named Light-SDNet for detecting ships under various weather conditions. Based
on YOLOv5, they modificated CA-Ghost, C3Ghost, and DWConv to decrease the model parameters
size. They designed a hybrid training tactic by deriving jointly-degraded pictures to expand the number
of the primitive dataset. Zhou et al. [37] improved YOLOv5 for ship target detection, and named it
as YOLO-Ship, which adopted MixConv to update classical convolution operation and concordant
attention framework. At decision stage, they employed Focal Loss and CIoU Loss for optimizing raw
cost functions.

In order to reach the goal of real-time application while obtaining detection accuracy, most of
the above algorithms choose a one-stage detection algorithm as the basis for improvement. Different
from these methods, we present a real-time approach of two-stage detection as the main ship detection
framework and verify its accuracy and real-time performance through experiments.

2.2 Data Augmentation (DA)
Image data collection and labeling are very labor-intensive. Due to funding constraints, ship

detection datasets usually have only thousands of annotated images [2]. But the deep learning model
has many parameters and requires tens of thousands of data for training. While a deep convolutional
neural network (CNN) learns a function that has a very high correlation with the small training data, it
is poorly generalizable to testing set (overfitting). Data augmentation technology can simulate training
image data through lighting variations, occlusion, scale and orientation variations, background clutter,
object deformatio, etc., so that the deep learning model is robust to these disturbances and reducing
overfitting on testing data [44,45].

304 CMES, 2024, vol.138, no.1

Image DA algorithms can be split into basic image manipulations and deep learning approaches
[44]. Basic image manipulations change original image pixels while the image label is conserved. Basic
image manipulations include geometric transformations, color space transformations, kernel filters
and random erasing. Image geometric transformations shift the geometry of image without altering
its actual pixel values. Simple geometric transformations cover flipping, cropping, rotation and trans-
lation. Color space transformations will shift pixel values through an invariable number, separate RGB
color channel or limit pixel values into a range. The methods of kernel filter sharpen or blur original
images via sliding of filter matrix across training image. Inspired by CNN dropout regularization,
random erasing does the operation of masking training image patch with the values 0, 255, or random
number. Taylor et al. proved the effectiveness of geometric and color space transformations [46], while
Zhong et al. verified the performance of random erasing through experiments [47]. Xu et al. presented
a novel shadow enhancement named SBN-3D-SD for higher detection-tracking accuracy [48].

Deep learning-based augmentation adopts learning methods to produce synthetic examples for
training data. It can be divided into adversarial training based DA, GAN-based DA, neural transfer
based DA, and meta-learning-based DA [44]. Adversarial training based DA generates adversarial
samples and inserts them into the training set so that the inferential model can learn from the
adversarial samples during training [49]. Method of GAN is an unsupervised generative model that
can generate synthetic data given a random noise vector. Adding the data generated by GAN-based
DA into the training set can optimize deep learning model parameters [50]. The idea of neural style
transfer is to manipulate sequential features across a CNN so that the image pattern can be shifted
into other styles while retaining its primitive substance. Meta-learning-based DA uses a pre-prepared
neural network to learn DA parameters from medley images, Neural Style Transfer, and geometric
transfigurations. The image generated by deep learning-based augmentation is abstract and cannot
pinpoint target bounding boxes. So it is not suitable for ship detection.

3 Methodology

In this section, we describe the method of EfficientShip for ship detection. It includes proposed
PSDA, DBOL and CROC (as shown in Fig. 1).

Figure 1: The architecture of the proposed EfficientShip. PSDA is used for expanding the amount
of image sample; DBOL is responsible for detecting potential objects; CROC tries to identify the
potential objects

3.1 Proposed PSDA
The ship detection dataset is small for the current study. Therefore, we present a method named

PSDA to counteract the overfitting of the ship detection model. PSDA includes pixel level DA (PDA),

CMES, 2024, vol.138, no.1 305

spatial level DA (SDA), and their combination. PDA will change the content of the input image at the
pixel level, and SDA is to perform geometric transformations on it.

Suppose the number of DA methods we used is mda, and a train image xtr(i) ∈ X tr, where X tr

indicates the train set. Each DA method will generate nda (as shown in Fig. 2), for every image will
produce mda × nda new images. At the pixel level, we will perform five subsequent DA methods for the
training image set X tr.

Figure 2: Schematic of proposed PSDA. (a) PDA is used for expanding the amount of image sample
at pixel level; (b) SDA is used for expanding the amount of image sample at spatial level

(I) Image Blur

Applying an image blur algorithm to a raw image can generate nda images.

xtr_p1−→(i) = FIB[xtr(i)]

= [xtr_p1
1 (i), · · · , xtr_p1

nDA
(i)]

(1)

where FIB means a certain image blur function [51]. The functions include Gaussian blur, glass blur,
median blur, motion blur, zoom blur, etc.

(II) Noise Injection

New nda images were generated by noise injection.

xtr_p2−→(i) = FNI [xtr(i)]

= [xtr_p2
1 (i), · · · , xtr_p2

nDA
(i)]

(2)

where FNI means a noise injection function [51]. Noise injection algorithms include Gaussian noise,
ISO noise, multiplicative noise, etc.

306 CMES, 2024, vol.138, no.1

(III) Color Jitter

Color jitter generates a minor variations of color values in the training image.

xtr_p3−→(i) = FCJ [xtr(i)]

= [xtr_p3
1 (i, hf

b), xtr_p3
1 (i, hf

c), xtr_p3
1 (i, hf

s), · · · , xtr_p3
nDA

(i, hf
s)]

(3)

where FCJ denotes color jitter [51]. Color jitter can be operated from three aspects: hf
b-brightness, hf

c-
contrast and hf

s -saturation.

(IV) Color Shift

Color shift is color variation caused by different fade rates of dyes or imbalance of dyes within a
picture patch.

xtr_p4−→(i) = FCS[xtr(i)]

= [xtr_p4
1 (i, tf

r), xtr_p4
1 (i, tf

b), xtr_p4
1 (i, tf

g), · · · , xtr_p4
nDA

(i, tf
g)]

(4)

where FCS means color shift [51]. Color shift can be operated from three channels: tf
r -red, tf

b-blue and
tf

g-green.

(V) Random Generation

Random generation method can generate new images by performing multiple operations on
original image pixels, such as brightness, contrast, gamma correction, curve, fog, rain, shadow, snow,
sun flare, etc. Each training image in X tr is operated nda times through random generation gop. The
variation range of gop is [−az, +az] and complies with the distribution V .

gi
op ∼ V [−MSR, +MSR] (5)

where MSR is the maximum operation range [52]. Hence, we have

xtr_p5(i) = FRG[xtr(i)]

= [xtr_p5
1 (i, g1

op), xtr_p5
1 (i, g2

op), · · · , xtr_p5
nDA

(i, gnDA
op)]

(6)

where FRG means random generation [45].

At the spatial level, the image transformation will not change the original image content, but
the object bounding box will be transformed along with the transformation. The main transforma-
tions are:

(I) Image Affine

Image affine is a common geometric transformation that preserves the collinearity between pixels.
It includes translation, rotation, scaling, shear and their combination.

xtr_s1(i) = FIR[xtr(i)]

= [xtr_s1
1 (i, ha), xtr_s1

2 (i, ha), · · · , xtr_s1
nDA

(i, ha)]
(7)

where FIR means the image affine function, ha represents an operation of translation, rotation, scaling,
or shear [45].

CMES, 2024, vol.138, no.1 307

(II) Image Cropping

Image cropping can freely crop the input image to any size.

xtr_s2(i) = FIC[xtr(i)]

= [xtr_s2
1 (i), xtr_s2

2 (i), · · · , xtr_s2
nDA

(i)]
(8)

where FIC means the image cropping function [52].

(III) Elastic Transform

Elastic transformation alters the silhouette of the input picture upon the application of a force
within its elastic limit. It is controlled by the parameters of the Gaussian filter and affine.

xtr_s3(i) = FET [xtr(i)]

= [xtr_s3
1 (i), xtr_s3

2 (i), · · · , xtr_s3
nDA

(i)]
(9)

where FET means the elastic transform function [45].

Algorithm 1 shows the pseudocode of PSDA on one training image xtr(i).

Algorithm 1: Pseudocode of PSDA on a training image
Input: A raw training image xtr(i)
Output: A new dataset � emanated with |�| = mda × nda

1: #PDA:
2: Apply image blur for generating xtr_p1

3: Apply noise injection for generating xtr_p2

4: Apply color jitter for generating xtr_p3

5: Apply color shift for generating xtr_p4

6: Apply random generation for generating xtr_p5

7: #SDA:
8: Apply image affine for generating xtr_s1

9: Apply image cropping for generating xtr_s2

10: Apply elastic transform for generating xtr_s3

11: Combine above outputs, |�| = xtr_p1 ∪ xtr_p2 ∪ xtr_p3 ∪ xtr_p4 ∪ xtr_p5 ∪ xtr_s1 ∪ xtr_s2 ∪ xtr_s3

3.2 Proposed DLA-Backboned Object Location (DBOL)
The main task in the first step of two-stage object detection is to produce a number of patch

bounding boxes with different proportions and sizes according to the characteristic features such as
texture, color and other details of the image. Some of the patches represented by bounding boxes
contain target, while others only involve background.

As Fig. 1 illustrated, the first step of two-stage ship detection is to generate a set of K ship
detections as bounding boxes b1, · · · , bK . We use P(Ok) to indicates the likelihood of the object Ok

with an unknown category. We can get

P(Ok) =
{

0, background
1, target waiting to be classified (10)

where P(Ok) = 0 shows the object Ok is the background while P(Ok) = 1 implies the things Ok in
bounding box is a target waiting to be classified [29].

308 CMES, 2024, vol.138, no.1

The network architecture of the proposed DBOL is shown n Fig. 3. We select compact DLA [38]
as CNN backbone for inferring P(Ok) in the first stage of real-time object detection. The compact
DLA runs on the basis of ResNet-50 [39]. The method of CenterNet [13] is used for finding objects
as keypoints and regressing to bounding box parameters. The DLA-based feature pyramid generates
feature maps from stride 8 to 128. A 4-level regression branch and classification branch are used for
all feature pyramids to generate a detection heatmap and bounding box map. During the phase of
training, annotations of the actual center are allocated to given feature pyramid levels based on the
object scale. Locations are added into the 3 × 3 neighbor of the center, which will yield superior
bounding box as positives. The distance between boundaries is used as the representation of the
bounding box, and the gIoU cost is adopted for bounding box regression.

Figure 3: The architecture of the proposed DBOL. “Conv∗” is convolution operation, “C3, C4, C5”
denote the feature maps of the backbone network, “P3, P4, P5” are the feature levels used for the final
prediction, “H∗” is network head, “B∗” is bouding box of proposals, “C0” is object classification

3.3 Proposed CascadeRCNN-Guided Object Classification (CROC)
For every ship target k, the class distribution is dk(c) = P(Ck = c) to class c ∈ C ∪ {background},

where C is a collection of all ship classes. And P(Ck|Ok) designates the conditional categorical
classification at the second detection stage. If the equation P(Ok) = 0 holds, then Ck = background,
which means P(Ck = background|Ok = 0) = 1.

The conjoint category distribution of the ship detection is

P(Ck) =
∑

o

P(Ck|Ok = o)P(Ok = o) (11)

where o indicates an arbitrary object in the image [29]. Maximum likelihood estimation is employed
for training the detectors. For every labeled object, we maximize

log P(Ck) = log P(Ck|Ok = 1) + log P(Ok = 1) (12)

CMES, 2024, vol.138, no.1 309

to decrease to conjoint maximum likelihood objects of the two stages, respectively [29]. The maximum-
likelihood objective of the background class is

log P(background) = log(P(background|Ok = 1)P(Ok = 1) + P(Ok = 0)) (13)

The architecture of the proposed CROC is shown in Fig. 4. In this stage of detection, we select
CascadeRCNN [27] for inferring P(Ck|Ok) on the basis of P(Ok), which is deduced from the first stage.
At each cascade stage t, CascadeRCNN has a classifier ht optimal for IoU threshold value ut (ut > ut−1).
This is learned through reducing the cost

L(xt, g) = Lcls(ht(xt), yt) + λ[yt ≥ 1]Lloc(ft(xt, bt), g) (14)

where bt = ft−1(xt−1, bt−1), g is the ground truth object classification for xt, λ = 1 is the trade-off
coefficient, [·] is the indicator function, yt is the label of xt under given ut [27].

Figure 4: The architecture of the proposed CROC. The Feature Map is generated from DLA-34
backbone network, “H∗” is the network head, “B∗” is the bouding box of proposals, “B0” is the
bounding box of proposals produced in Fig. 3

Algorithm 2 shows the pseudocode of the CROC training process.

Algorithm 2: Pseudocode of CROC training process
Input: Training images
Output: Trained CNN model
1: Maximize log P(Ck) (See Eq. (12))
2: Factorize log P(background) (See Eq. (13))
3: Reduce the cost L(xt, g) (See Eq. (14))

4 Experimental Result and Analysis

In this section, we evaluate the proposed EfficientShip on Seaships [2] dataset. The experiments
use Pytorch (1.11.0) library which is installed in Ubuntu 20.04. The model parameters are trained on
an NVIDIA GeForce RTX 3090 GPU with 24 GB RAM. And the CPU is Intel(R) Xeon(R) Platinum
8255C with 45 GB RAM.

4.1 Dataset and Evaluation Metrics
The dataset we selected in this paper is SeaShips [2]. The dataset has 7000 images and includes

six categories: bulk cargo carrier, container ship, fishing boat, general cargo ship, ore carrier, and
passenger ship. Fig. 5 shows the appearance of different ships in SeaShips. The resolution of images is
1920 × 1080. All pictures in the dataset are selected from 5400 real-world video segments generated by
156 monitoring cameras in the coastline surveillance system. It covers targets of different backgrounds,
scales, hull parts, illumination, occlusions and viewpoints. We randomly divide the dataset into a
training set and a test set with proportion of 9:1 for the experiments followed by [35].

310 CMES, 2024, vol.138, no.1

Figure 5: Illustration of different ship samples and their labels in the SeaShips dataset. (a) bulk cargo
carrier; (b) container ship; (c) fishing boat; (d) general cargo ship; (e) ore carrier; (f) passenger ship

Experimental evaluation metrics include ship detection accuracy and runtime. The runtime is
reported by fps, and the detection accuracy is evaluated by standard mAP which defined as

mAP =
∑K

i=1 APi

K
(15)

where K = 6 for all ship categories in SeaShips.

4.2 Parameter Setting
PSDA. For PDA, we select 33 augmentation methods (with 40 adjustable parameters) for every

original training image. There are 15 parameter variations for each adjustable parameter setting
shown in Table 1. For one raw image, 600 new images can be augmented at this stage. Fig. 6 displays
the augmentation results of methods RandomFog and ColorJitter(in brightness). We choose 24
augmentation algorithms at the stage of SDA which generates 24 ∗ 15 = 360 new images with spatial
variation. The spatial parameter settings are listed in Table 2, and images generated by methods
Affine(rotate) and Resize are illustrated in Fig. 7. We construct a total of 960 new images for each
original training image in SeaShips [2] through PSDA.

DBOL & CROC. The method of DLA [38] is selected as the backbone of the first ship detection
stage. We extend DLA through a 4-layer BiFPN [53] with 160 feature channels. We reduce the output
FPN levels to 3 levels with strides 8-32. The model parameters in the first stage are trained with a
long schedule that repetitively fine-tunes. The amount of object proposals is reduced to 128 in the
target-detecting stage. For the second stage, the detection part of CascadeRcNN [27] is adopted for
recognizing the proposals. We raise the positive IoU threshold value from 0.6 to 0.8 for the method of
CascadeRcNN to reimburse the IoU distribution variation.

CMES, 2024, vol.138, no.1 311

Table 1: Pixel level DA parameter settings

DA algorithm Parmeter setting

AdvancedBlur blur_limit=[1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57]
Blur blur_limit=[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
CLAHE clip_limit=[1, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4, 3.8, 4.2, 4.6, 5, 5.4, 5.8, 6.2,

6.6]
ColorJitter(brightness) brightness=[0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.3,

0.325, 0.35, 0.375, 0.4, 0.425, 0.45]
ColorJitter(contrast) contrast=[0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.3, 0.325,

0.35, 0.375, 0.4, 0.425, 0.45]
ColorJitter(saturation) saturation=[0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.3,

0.325, 0.35, 0.375, 0.4, 0.425, 0.45]
Defocus radius=[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
Downscale scale_min=[0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.3,

0.325, 0.35, 0.375, 0.4, 0.425, 0.45]
Emboss alpha=(0.2, [0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, 0.475, 0.5,

0.525, 0.55, 0.575, 0.6, 0.625, 0.65])
FancyPCA alpha=[0.1, 0.25, 0.4, 0.55, 0.7, 0.85, 1.0, 1.15, 1.3, 1.45, 1.6, 1.75,

1.9, 2.05, 2.3]
GaussNoise var_limit=(10, [200, 225, 250, 275, 300, 325, 350, 375, 400, 425,

450, 475, 500, 525, 550])
GaussianBlur blur_limit=(3, [3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31])
GlassBlur sigma=[0.3, 0.34, 0.38, 0.42, 0.46, 0.5, 0.54, 0.58, 0.62, 0.66, 0.7,

0.74, 0.78, 0.82, 0.86]
HueSaturationValue(hue_shift) hue_shift_limit=[-13, -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15]
HueSaturationValue(sat_shift) sat_shift_limit=[-29, -25, -21, -17, -13, -9, -5, -1, 3, 7, 11, 15, 19, 23,

27]
HueSaturationValue(val_shift) val_shift_limit=[-13, -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15]
ISONoise intensity=(0.1, [0.4, 0.44, 0.48, 0.52, 0.56, 0.6, 0.64, 0.68, 0.72, 0.76,

0.8, 0.84, 0.88, 0.92, 0.96])
ImageCompression quality_lower=[1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43],

quality_upper=[99, 96, 93, 90, 87, 84, 81, 78, 75, 72, 69, 66, 63, 60,
57]

MedianBlur blur_limit=[3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31]
MotionBlur blur_limit=[3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31]
MultiplicativeNoise multiplier=[0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1,

1.15, 1.2, 1.25, 1.3]
RGBShift(r_shift) r_shift_limit=[-13, -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15]
RGBShift(g_shift) g_shift_limit=[-13, -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15]
RGBShift(b_shift) b_shift_limit=[-13, -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15]
RandomBrightnessContrast
(brightness)

brightness_limit=[-0.175, -0.15, -0.125, -0.1, -0.075, -0.05, -0.025,
0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2]

RandomBrightnessContrast
(contrast)

contrast_limit=[-0.175, -0.15, -0.125, -0.1, -0.075, -0.05, -0.025,
0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2]

(Continued)

312 CMES, 2024, vol.138, no.1

Table 1 (continued)

DA algorithm Parmeter setting

RandomFog fog_coef_lower=[0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09,
0.1, 0.11, 0.12, 0.13, 0.14, 0.15], fog_coef_upper=[0.52, 0.54, 0.56,
0.58, 0.6, 0.62, 0.64, 0.66, 0.68, 0.7, 0.72, 0.74, 0.76, 0.78, 0.8]

RandomGamma gamma_limit=([83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
97], [103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117])

RandomRain slant_lower=[-15, -13, -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11, 13],
slant_upper=[-8, -6, -4, -2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

RandomShadow num_shadows_lower=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
num_shadows_upper=[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25]

RandomSnow snow_point_lower=[0.05, 0.07, 0.09, 0.11, 013, 0.15, 0.17, 0.19,
0.21, 0.23, 0.25, 0.27, 0.29, 0.31, 0.33], snow_point_upper=[0.55,
0.57, 0.59, 0.61, 0.63, 0.65, 0.67, 0.69, 0.71, 0.73, 0.75, 0.77, 0.79,
0.81, 0.83]

RandomSunFlare angle_lower=[0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.3,
0.325, 0.35, 0.375, 0.4, 0.425, 0.45], angle_upper=[0.5, 0.525, 0.55,
0.575, 0.6, 0.625, 0.65, 0.675, 0.7, 0.725, 0.75, 0.775, 0.8, 0.825,
0.85]

RandomToneCurve scale=[0.1, 0.13, 0.16, 0.19, 0.22, 0.25, 0.28, 0.31, 0.34, 0.37, 0.4,
0.43, 0.46, 0.49, 0.52]

RingingOvershoot blur_limit=[5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]
Sharpen alpha=[0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.3, 0.325,

0.35, 0.375, 0.4, 0.425, 0.45], [0.6, 0.625, 0.65, 0.675, 0.7, 0.725,
0.75, 0.775, 0.8, 0.825, 0.85, 0.875, 0.9, 0.925, 0.95])

Solarize threshold=[50, 55, 60, 65, 70, 75, 80, 85, 95, 100, 105, 110, 115,
120, 125]

Spatter std=[0.1, 0.115, 0.13, 0.145, 0.16, 0.175, 0.19, 0.205, 0.22, 0.235,
0.25, 0.265, 0.28, 0.295, 0.305]

Superpixels n_segments=[86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110,
112, 114]

UnsharpMask blur_limit=[21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 137, 141,
151, 161]

ZoomBlur max_factor=[1.01, 1.015, 1.02, 1.025, 1.03, 1.035, 1.04, 1.045, 1.05,
1.055, 1.06, 1.065, 1.07, 1.075, 1.08]

CMES, 2024, vol.138, no.1 313

Figure 6: Illustration of pixel level DA. Upper: Augmentation with RandomFog; Under: Augmentation
with ColorJitter(brightness)

Table 2: Space level DA parameter settings

DA algorithm Parmeter setting

Affine(scale) scale=[0.7, 0.72, 0.76, 0.79, 0.82, 0.85, 0.88, 0.91, 0.94, 0.97]
Affine(translate) translate_px=random.randint(0, 50)
Affine(rotate) rotate=[-13, -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15]
Affine(shear) shear=[-13, -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15]
BBoxSafeRandomCrop erosion_rate=[0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17,

0.19, 0.21, 0.23, 0.25, 0.27, 0.29]
CenterCrop height, width=margin-[5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41,

44, 47]
CropAndPad px=[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150]
ElasticTransform sigma=[36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64]
GridDistortion distort_limit=[-0.026, -0.022, -0.018, -0.014, -0.01, -0.006, -0.002,

0.002, 0.006, 0.01, 0.014, 0.018, 0.022, 0.026, 0.03]

(Continued)

314 CMES, 2024, vol.138, no.1

Table 2 (continued)

DA algorithm Parmeter setting

LongestMaxSize max_size=[1640, 1660, 1680, 1700, 1720, 1740, 1760, 1780, 1800,
1820, 1840, 1860, 1880, 1880, 1900]

OpticalDistortion distort_limit=[-0.0025, -0.002, -0.0015, -0.001, -0.0005, 0.0005,
0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.004, 0.0045, 0.005]

Perspective scale=[0.054, 0.057, 0.06, 0.063, 0.066, 0.069, 0.072, 0.075, 0.078,
0.081, 0.084, 0.087, 0.09, 0.093, 0.096]

PiecewiseAffine scale=[0.0125, 0.015, 0.0175, 0.02, 0.0225, 0.025, 0.0275, 0.03,
0.0325, 0.035, 0.0375, 0.04, 0.0425, 0.045, 0.0475]

PixelDropout dropout_prob=[0.00125, 0.0025, 0.00375, 0.005, 0.00625, 0.0075,
0.00875, 0.01, 0.01125, 0.0125, 0.01375, 0.015, 0.01625, 0.0175,
0.01875]

RandomCrop height=900, width=1600
RandomCropFromBorders crop_left=0.1, crop_right=0.1, crop_top=0.1, crop_bottom=0.1
RandomResizedCrop height=900, width=1600
RandomScale scale_limit=0.1
RandomSizedBBoxSafeCrop height=900, width=1600
RandomSizedCrop min_max_height=[720, 1080], height=900, width=1600
Resize height, width=margin-[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110,

120, 130, 140, 150]
Rotate limit=10
SafeRotate limit=10
ShiftScaleRotate shift_limit=0.0625, scale_limit=0.1, rotate_limit=5

4.3 Results and Analysis
(I) Ablation Study

We design the different experiments on the modules of the proposed framework to find their
effectiveness. We first select the EfficientShip with non-DA as a baseline. Then we add pixel-level
and spatial-level DA separately on the basis of the ship detection. Finally, we test the whole hybrid
ship detection framework which includes three complete steps. Details of the experimental results are
presented in Table 3. We can observe that the basic EfficientShip with non-DA yields the lowest mAP
value of 98.85%, and the baseline plus SDA can get a 0.43% boost. The baseline plus PDA yields a
0.62% improvement which shows PDA is much better than SDA. The whole proposed EfficientShip
achieves a detection accuracy of 99.63%.

Fig. 8 shows the mAP comparison chart of different modules. It also indicates the changes in
detection accuracy among various categories of the SeaShips dataset. Relatively, the bulk cargo carrier
is the most recognizable object, while the passenger ship is the most difficult target to identify. After
superimposing DA on the basis of two-stage detection, each category of detection accuracy is gradually
approaching 100%.

CMES, 2024, vol.138, no.1 315

Figure 7: Illustration of space level DA. Upper: Augmentation with Affine(rotate); Under: Augmen-
tation with PixelDropout

Table 3: Comparision of ship detection accuracy of different modules

Method mAP (%)

EfficientShip (non-DA) 98.85
EfficientShip (PDA) 99.28
EfficientShip (SDA) 99.47
EfficeingShip (PSDA) 99.63

(II) Comparison to State-of-the-Art Approaches

We compare the proposed approach with 8 SOTA methods [2,3,31–35,43] from accuracy and
efficiency of ship detection, as shown in Table 4. The data values of all SOTA algorithms are derived
from their original papers. Although the algorithm speed is not comparable because of the difference
in the platform on which the algorithm runs. However, it can be seen from Table 4 that the speeds of all
methods meet the requirements of real-time application scenarios. Compared with the earliest sea ship
detection algorithm [2], the accuracy of our method has improved detection accuracy by 16.63%. The

316 CMES, 2024, vol.138, no.1

accuracy of proposed algorithm is 99.63%, which has a 0.93% increase over the best SOTA-performing
algorithm [35].

Figure 8: Comparison of AP curves of different modules: (a) EfficientShip (non-DA); (b) EfficientShip
(PDA); (c) EfficientShip (SDA); (d) EfficeingShip (PSDA)

Table 4: Comparison of EfficientShip with SOTA

Method mAP (%) FPS

SeaShips [2] 83 83
SaliencyCNN [3] 87.4 49
eYOLO [31] 87.74 30
NSD-SSD [32] 89.3 45
ImprovedYOLOv3 [43] 90.58 37
RDSC [34] 94.6 68
EnhancedYOLO [33] 97 135
AE-YOLOv3 [35] 98.7 32
EfficientShip 99.63 45

5 Conclusions

Different from the traditional one-stage real-time ship detection methods, we fully utilized the
latest real-time algorithms of object detection to construct a novel two-stage ship detection named
EfficientShip. It includes DBOL, CROC, and PSDA. The DBOL is responsible for producing high-
quality bounding boxes of the potential ship, and the CROC undertakes object recognition. We train
the two stages jointly to boost the log-likelihood of actual objects. We also designed the PSDA to make
further efforts of promoting the accuracy of target detection. Experiments on the dataset SeaShips
show that the proposed EfficientShip has the highest ship detection accuracy among SOTA methods

CMES, 2024, vol.138, no.1 317

on the premise of achieving real-time performance. In the future, we will further verify the proposed
algorithm on some new larger datasets, such as LS-SSDD-v1.0 and Official-SSDD [54].

Acknowledgement: The authors wish to express their appreciation to the reviewers for their helpful
suggestions which greatly improved the presentation of this paper.

Funding Statement: This work was supported by the Outstanding Youth Science and Technology
Innovation Team Project of Colleges and Universities in Hubei Province (Grant No. T201923),
Key Science and Technology Project of Jingmen (Grant Nos. 2021ZDYF024, 2022ZDYF019), LIAS
Pioneering Partnerships Award, UK (Grant No. P202ED10), Data Science Enhancement Fund, UK
(Grant No. P202RE237), and Cultivation Project of Jingchu University of Technology (Grant No.
PY201904).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Huafeng Chen; data collection: Junxing Xue; analysis and interpretation of results: Huafeng
Chen, Junxing Xue, Yudong Zhang; draft manuscript preparation: Huafeng Chen, Hanyun Wen,
Yurong Hu, Yudong Zhang. All authors reviewed the results and approved the final version of the
manuscript.

Availability of Data and Materials: The data can be download from http://www.lmars.whu.edu.cn/
prof_web/shaozhenfeng/datasets/SeaShips(7000).zip.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Zhang, T., Zhang, X. (2019). High-speed ship detection in SAR images based on a grid convolutional neural

network. Remote Sensing, 11(10), 1206.
2. Shao, Z., Wu, W., Wang, Z., Du, W., Li, C. (2018). SeaShips: A large-scale precisely annotated dataset for

ship detection. IEEE Transactions on Multimedia, 20(10), 2593–2604.
3. Shao, Z., Wang, L., Wang, Z., Du, W., Wu, W. (2019). Saliency-aware convolution neural network for ship

detection in surveillance video. IEEE Transactions on Circuits and Systems for Video Technology, 30(3),
781–794.

4. Tutsoy, O. (2021). Pharmacological, non-pharmacological policies and mutation: An artificial intelligence
based multi-dimensional policy making algorithm for controlling the casualties of the pandemic diseases.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12), 9477–9488.

5. Zhang, T., Zhang, X., Ke, X., Liu, C., Xu, X. et al. (2021). HOG-ShipCLSNet: A novel deep learning
network with hog feature fusion for SAR ship classification. IEEE Transactions on Geoscience and Remote
Sensing, 60, 1–22.

6. Dai, W., Mao, Y., Yuan, R., Liu, Y., Pu, X. et al. (2020). A novel detector based on convolution neural
networks for multiscale SAR ship detection in complex background. Sensors, 20(9), 2547.

7. Cao, C., Wu, J., Zeng, X., Feng, Z., Wang, T. et al. (2020). Research on airplane and ship detection of aerial
remote sensing images based on convolutional neural network. Sensors, 20(17), 4696.

8. Zou, Z., Shi, Z., Guo, Y., Ye, J. (2019). Object detection in 20 years: A survey. arXiv preprint
arXiv:1905.05055.

http://www.lmars.whu.edu.cn/prof_web/shaozhenfeng/datasets/SeaShips(7000).zip
http://www.lmars.whu.edu.cn/prof_web/shaozhenfeng/datasets/SeaShips(7000).zip

318 CMES, 2024, vol.138, no.1

9. Rao, Y., Mu, H., Yang, Z., Zheng, W., Wang, F. et al. (2022). B-PesNet: Smoothly propagating semantics
for robust and reliable multi-scale object detection for secure systems. Computer Modeling in Engineering &
Sciences, 132(3), 1039–1054. https://doi.org/10.32604/cmes.2022.020331

10. Soviany, P., Ionescu, R. T. (2018). Optimizing the trade-off between single-stage and two-stage deep object
detectors using image difficulty prediction. 2018 20th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), Piscataway, IEEE.

11. Lin, T. Y., Goyal, P., Girshick, R., He, K., Dollár, P. (2017). Focal loss for dense object detection. Proceedings
of the IEEE International Conference on Computer Vision, Venice, Italy.

12. Tian, Z., Shen, C., Chen, H., He, T. (2019). FCOS: Fully convolutional one-stage object detection.
Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea.

13. Zhou, X., Wang, D., Krähenbühl, P. (2019). Objects as points. arXiv preprint arXiv:1904.07850.
14. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S. Z. (2020). Bridging the gap between anchor-based and anchor-

free detection via adaptive training sample selection. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Seattle, USA.

15. Kim, K., Lee, H. S. (2020). Probabilistic anchor assignment with IoU prediction for object detection.
European Conference on Computer Vision, Glasgow, UK, Springer.

16. Qiu, H., Ma, Y., Li, Z., Liu, S., Sun, J. (2020). BorderDet: Border feature for dense object detection.
European Conference on Computer Vision, Glasgow, UK, Springer.

17. Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You only look once: Unified, real-time object
detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas,
USA.

18. Redmon, J., Farhadi, A. (2017). YOLO9000: Better, faster, stronger. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, USA.

19. Redmon, J., Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv preprint arXiv:1804.02767.
20. Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M. (2020). YOLOv4: Optimal speed and accuracy of object

detection. arXiv preprint arXiv:2004.10934.
21. Glenn, J., Alex, S., Jirka, B., NanoCode012, Ayush, C. et al. (2021). ultralytics/yolov5: v5.0-yolov5-p6 1280

models. https://github.com/ultralytics/yolov5
22. Girshick, R., Donahue, J., Darrell, T., Malik, J. (2014). Rich feature hierarchies for accurate object

detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Columbus, USA.

23. He, K., Zhang, X., Ren, S., Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1904–1916.

24. Girshick, R. (2015). Fast R-CNN. Proceedings of the IEEE International Conference on Computer Vision,
Santiago, Chile.

25. Ren, S., He, K., Girshick, R., Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region
proposal networks. Advances in Neural Information Processing Systems, 28, 1–9.

26. Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B. et al. (2017). Feature pyramid networks for object
detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
USA.

27. Cai, Z., Vasconcelos, N. (2018). Cascade R-CNN: Delving into high quality object detection. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA.

28. Lu, X., Li, B., Yue, Y., Li, Q., Yan, J. (2019). Grid R-CNN. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Long Beach, USA.

29. Zhou, X., Koltun, V., Krähenbühl, P. (2021). Probabilistic two-stage detection. arXiv preprint
arXiv:2103.07461.

https://doi.org/10.32604/cmes.2022.020331
https://github.com/ultralytics/yolov5

CMES, 2024, vol.138, no.1 319

30. Nie, X., Yang, M., Liu, R. W. (2019). Deep neural network-based robust ship detection under different
weather conditions. 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New
Zealand, IEEE.

31. Liu, R. W., Yuan, W., Chen, X., Lu, Y. (2021). An enhanced CNN-enabled learning method for promoting
ship detection in maritime surveillance system. Ocean Engineering, 235, 109435.

32. Sun, J., Xu, Z., Liang, S. (2021). NSD-SSD: A novel real-time ship detector based on convolutional neural
network in surveillance video. Computational Intelligence and Neuroscience, 2021, 1–16.

33. Li, H., Deng, L., Yang, C., Liu, J., Gu, Z. (2021). Enhanced YOLO v3 tiny network for real-time ship
detection from visual image. IEEE Access, 9, 16692–16706.

34. Liu, T., Pang, B., Zhang, L., Yang, W., Sun, X. (2021). Sea surface object detection algorithm based on
YOLO v4 fused with reverse depthwise separable convolution (RDSC) for USV. Journal of Marine Science
and Engineering, 9(7), 753.

35. Chen, D., Sun, S., Lei, Z., Shao, H., Wang, Y. (2021). Ship target detection algorithm based on improved
YOLOv3 for maritime image. Journal of Advanced Transportation, 2021, 1–11.

36. Zhang, M., Rong, X., Yu, X. (2022). Light-SDNet: A lightweight CNN architecture for ship detection.
IEEE Access, 10, 86647–86662.

37. Zhou, S., Yin, J. (2022). YOLO-ship: A visible light ship detection method. 2022 2nd International
Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, IEEE.

38. Yu, F., Wang, D., Shelhamer, E., Darrell, T. (2018). Deep layer aggregation. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA.

39. He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA.

40. Zhang, T., Zhang, X., Ke, X., Zhan, X., Shi, J. et al. (2020). LS-SSDD-v1.0: A deep learning dataset
dedicated to small ship detection from large-scale sentinel-1 SAR images. Remote Sensing, 12(18), 2997.

41. Chen, Z., Li, B., Tian, L. F., Chao, D. (2017). Automatic detection and tracking of ship based on mean shift
in corrected video sequences. 2017 2nd International Conference on Image, Vision and Computing (ICIVC),
Chengdu, China, IEEE.

42. Zhang, Y., Li, Q. Z., Zang, F. N. (2017). Ship detection for visual maritime surveillance from non-stationary
platforms. Ocean Engineering, 141, 53–63.

43. Liu, T., Pang, B., Ai, S., Sun, X. (2020). Study on visual detection algorithm of sea surface targets based on
improved YOLOv3. Sensors, 20(24), 7263.

44. Shorten, C., Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal
of Big Data, 6(1), 60.

45. Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M. et al. (2020). Albumentations:
Fast and flexible image augmentations. Information, 11(2), 125.

46. Taylor, L., Nitschke, G. (2018). Improving deep learning with generic data augmentation. 2018 IEEE
Symposium Series on Computational Intelligence (SSCI), Bengaluru, India, IEEE.

47. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y. (2020). Random erasing data augmentation. Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34. New York, USA.

48. Xu, X., Zhang, X., Zhang, T., Yang, Z., Shi, J. et al. (2022). Shadow-background-noise 3D spatial decompo-
sition using sparse low-rank gaussian properties for video-SAR moving target shadow enhancement. IEEE
Geoscience and Remote Sensing Letters, 19, 1–5.

49. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A. (2018). Towards deep learning
models resistant to adversarial attacks. International Conference on Learning Representations.
https://openreview.net/forum?id=rJzIBfZAb

https://openreview.net/forum?id=rJzIBfZAb

320 CMES, 2024, vol.138, no.1

50. Huang, S. W., Lin, C. T., Chen, S. P., Wu, Y. Y., Hsu, P. H. et al. (2018). AugGAN: Cross domain adaptation
with GAN-based data augmentation. Proceedings of the European Conference on Computer Vision (ECCV),
Munich, Germany.

51. Wang, S. H., Govindaraj, V. V., Górriz, J. M., Zhang, X., Zhang, Y. -D. (2021). COVID-19 classification
by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network.
Information Fusion, 67, 208–229.

52. Zhang, Y., Zhang, X., Zhu, W. (2021). ANC: Attention network for COVID-19 explainable diagnosis based
on convolutional block attention module. Computer Modeling in Engineering & Sciences, 127(3), 1037–
1058. https://doi.org/10.32604/cmes.2021.015807

53. Tan, M., Pang, R., Le, Q. V. (2020). EfficientDet: Scalable and efficient object detection. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA.

54. Zhang, T., Zhang, X., Li, J., Xu, X., Wang, B. et al. (2021). SAR ship detection dataset (SSDD): Official
release and comprehensive data analysis. Remote Sensing, 13(18), 3690.

https://doi.org/10.32604/cmes.2021.015807

	EfficientShip: A Hybrid Deep Learning Framework for Ship Detection in the River
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experimental Result and Analysis
	5 Conclusions
	References

