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ABSTRACT

The low efficiency and high cost of fresh agricultural product terminal distribution directly restrict the operation
of the entire supply network. To reduce costs and optimize the distribution network, we construct a mixed integer
programming model that comprehensively considers to minimize fixed, transportation, fresh-keeping, time, carbon
emissions, and performance incentive costs. We analyzed the performance of traditional rider distribution and
robot distribution modes in detail. In addition, the uncertainty of the actual market demand poses a huge threat
to the stability of the terminal distribution network. In order to resist uncertain interference, we further extend the
model to a robust counterpart form. The results of the simulation show that the instability of random parameters
will lead to an increase in the cost. Compared with the traditional rider distribution mode, the robot distribution
mode can save 12.7% on logistics costs, and the distribution efficiency is higher. Our research can provide support
for the design of planning schemes for transportation enterprise managers.
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Nomenclature
Sets
Nd The set of distribution center node
Nc The set of demand node
N+ The set of positive integers
R Complete set
R The set of arcs
Z The set of interval value uncertainty

Parameter

cv
f The costs of vehicle acquisition

cm
f The costs of vehicle maintenance

ct Unit energy cost of vehicle
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ct The penalty cost per unit time
cr The performance reward coefficient
cdfk

i The unit cost of fresh-keeping effort in distribution center
ccfk

i,j The unit cost of fresh-keeping effort in routing
τ The proportional coefficient of qj

q̃j The uncertain demand
q0

j The normal demand
ε The random variable
� The floating amount of demand
Γ The safety parameters
di,j The travel distance
qj The normal demand
h The vehicle load
tw

i,j The waiting time
ttran

i,j The delivery time
tdfk

i The time for fresh-keeping efforts of the distribution center
tcfk

i,j The time for mobile device preservation efforts
vi The average speed
t0 The benchmark delivery time

Variables

αi Distribution center i selection or not
δi Whether to choose the fresh-keeping efforts of the distribution center
βi,n Number of delivery employees or robots in the ith distribution center
γi,j Routing i, j selection or not
εi,j Whether to make efforts to keep mobile devices fresh or not

1 Introduction

With the improvement of residents living standards and E-commerce, the demand for fresh
agricultural products has gradually increased. The production operation problem induced by the
increase in demand has received extensive attention from academia and industry [1]. In recent years,
the transportation network of fresh agricultural products has undergone great evolution [2]. Low
efficiency and high cost of distribution have always been problems in the logistics industry, especially
in the terminal distribution process [3,4]. Studies have shown that the low efficiency and high cost
of terminal distribution directly restrict the efficiency improvement of the entire distribution supply
chain. Different from general products, fresh agricultural products have a strong demand for quality
assurance, and their special attributes put forward strict requirements for the efficiency of the terminal
distribution network.

In urban logistics, the difficulty of operating the terminal distribution network from distribution
centers to consumers is becoming more and more challenging. The terminal distribution system
provides transportation services from the distribution point to the final destination, which is
a necessary link to realize the combination of Online to Offline (O2O). The research on the
development of O2O food delivery industry from 2017 to 2019 shows that the goal of the
O2O industry has changed from the pursuit of quantity to the pursuit of high quality [5].
In terms of the terminal distribution, some scholars have concluded that both platform logistics and
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self-service logistics are feasible. When the online market potential is high, the platform logistics
strategy is more environmentally friendly [6]. The terminal distribution is a critical part of the
supply chain, as rising customer demand expectations force higher costs to provide better service.
Traditional labor-based terminal distribution services require a large number of workers to perform
and rely on careful planning and scheduling to minimize global costs [7]. In addition, the successive
implementation of the national carbon emission policy will promote the transformation of social
operation mode and economic transformation, which will lead to the transformation of the most
capable last-mile delivery form [8]. Considering the dual goals of economy and environmental
protection, the terminal distribution mode will inevitably undergo tremendous changes. Models based
on empirical estimates can no longer meet the needs of reality, while quantitative analysis is more in
line with the real needs of real companies.

Recently, with the popularization of mobile Internet terminal service technology, various terminal
distribution platforms emerge in an endless stream [9]. The improvement of living standards makes
people have higher and higher requirements for delivery speed and service quality. The planning of
distribution routes not only directly determines on-time delivery, but also has a significant impact on
operating costs and profits. Rider delivery is the main way to provide services. Riders communicate
fresh agricultural products to consumers via motorcycles or electric vehicles, but this approach has a
number of drawbacks. During rush hour, congested city roads lead to delayed arrivals and reduced
customer satisfaction. The rider delivery model has a limited-service scope and cannot deliver orders
from distant customers in a timely manner. Therefore, how to improve the completion time and reduce
the distribution cost is an urgent problem to be solved when exiting the industry. The distribution
problem is also affected by emergencies. During the epidemic of COVID-19, many resources such as
medical supplies and daily necessities in the hardest-hit areas need to be distributed 24 h a day. In order
to control the infection of germs, many communities prohibit the entry and exit of outsiders, resulting
in a serious shortage of internal delivery personnel. The low efficiency of terminal distribution has
directly caused the logistics industry to be hit hard.

In urban logistics distribution, distribution is divided into rider distribution and robot
distribution. These two distribution modes serve different regions and groups of people. Tra-
ditional logistics distribution has been difficult to meet social demand, and the application
of new intelligent logistics and distribution is imminent. The introduction of high technology
has made the distribution of fresh agricultural products no longer limited to manual distribu-
tion, and a driverless vehicle distribution model has gradually emerged. Various distribution
modes have different advantages and disadvantages, which distribution mode is more practi-
cal is a topic worth exploring. With the success of experiments related to driverless technol-
ogy, robotic distribution has provided a new solution for logistics distribution. Recent years,
logistics unmanned technology has entered the stage of application from the experimental test stage,
and unmanned vehicles and drone distribution have gradually entered people’s life. After experiencing
the COVID-2019, the advantages of robot delivery have become prominent. It can not only achieve
the demand for contactless distribution, reduce the spread of the epidemic virus, but also relieve the
tight labor force. Contactless automatic delivery robots have attracted much attention [10,11]. Many
logistics companies and E-commerce giants have joined the research and development of unmanned
distribution, and robot distribution may be the future development direction of logistics. Autonomous
delivery robots realize unmanned driving and perform terminal distribution tasks through automatic
navigation systems, also known as unmanned delivery vehicles [12–14], automated vehicles, Automatic
Navigation Robots [15], etc. Robot distribution refers to the process of unmanned vehicles loading
goods, planning routes through vehicle autonomous navigation systems, and delivering goods to
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designated locations, including four key technologies of environmental perception, navigation and
positioning, path planning and motion control. Both terminal distribution modes have their own
advantages and disadvantages. The robot distribution mode reduces the demand for the number of
personnel, but increases the difficulty of technical algorithms. The traditional rider distribution mode
is simple to operate, but with the rise of labor costs, the main problem will gradually be induced. In
order to deal with the actual development and future planning problems of enterprises, it is of great
significance to study the comparison between route planning algorithms and transportation modes,
which is bound to help improve distribution efficiency, improve logistics service quality and reduce
costs.

We conduct an in-depth exploration of the terminal distribution problem, and the main contribu-
tions are summarized as follows:

• First, we propose two delivery modes based on real scenarios, namely the traditional rider
delivery mode and the robot delivery mode, and comprehensively consider a variety of costs to
construct mixed-integer programming model, including, fixed cost, transportation cost, fresh-
keeping cost, time cost, carbon emission cost and performance incentive cost.

• Second, we extend the proposed mixed integer programming model into a robust counterpart
form for the uncertainty or instability of the parameters of the real market environment.

• Third, we designed a customized algorithm and collected real terminal distribution enterprise
data to verify the effectiveness of the model and strategy.

The remainder of this article follows. Section 2 lists relevant references. Section 3 describes the
terminal delivery problem and presents a modeling analysis of rider delivery mode and robot delivery
mode. Section 4 extends the model to a robust counterpart form. Section 5 presents the design of
the algorithm framework. Section 6 constructs simulation cases based on real scenarios to verify the
effectiveness of the proposed strategies and models. Section 7 concludes the paper and future research
directions.

2 Literature Review

The innovation of delivery mode will definitely change the practice of terminal distribution
logistics and bring new challenges to logistics service providers. Autonomous delivery vehicles have
the potential to revolutionize terminal distribution in a more sustainable, customer-centric way [16].
The robot delivery model has emerged with the invention of robots, and many scholars have studied
the feasibility of its model. Taking into account the possible constraints of terrain and road conditions.
Aiming at the complex road conditions of urban traffic, Yu et al. constructed a hybrid pickup delivery
vehicle and robot scheduling mode, and verified compatibility through cases [17].

With the increase in demand and the development of technology, robotic delivery has gradually
attracted the attention of scholars. Boysen et al. studied the autonomous delivery robot model, where
the delivery robot follows the truck route of the warehouse and the drop-off point to minimize the
weighted number of delayed deliveries by customers, and tested the robot delivery model with the
traditional model to evaluate the potential of the joint delivery model [18]. A number of tech companies
and logistics providers have been experimenting with robotic deliveries [19], and pilots have been
implemented in campuses and residential areas. Of course, the robot delivery model also has certain
shortcomings. Electric robots are powered by electricity and have limited battery life, so they have a
small delivery range. In addition to safety considerations, the delivery robot travels at a low speed, so it
is not efficient for long-distance delivery. For this reason, many logistics companies are studying joint
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delivery models and expanding the coverage of delivery robot services [20]. Bergmann et al. conducted
research on the first-mile and last-mile distribution business problems of urban distribution, and found
that the truck-based robot pickup and distribution model can improve distribution efficiency [21]. In
terms of the economics of distribution, Liu et al. studied the problem of distribution robots combined
with electric trucks in the distribution of groceries or medicines, and proposed a non-dominated
sorting genetic algorithm. The results show that the proposed algorithm is promising and effective in
actual distribution, and can achieve economical, balance environment and customer satisfaction [22].
Bakach et al. constructed a two-level vehicle routing model and found that robotic delivery can save
about 70% of operating costs compared to traditional truck delivery [23]. Similarly, for the terminal
distribution cost and traffic flow, Heimfarth et al. proposed a truck-robot distribution model that
can carry robots. The study found that compared with the traditional truck distribution model, this
system can significantly reduce costs and further reveal Advantages of robotic delivery strategies [24].
Considering safe travel and obstacle avoidance, robot delivery is slower. However, studies by some
scholars have confirmed that robot-assisted distribution is quite effective in crowded areas, if the robot
is properly modified to increase its cargo capacity [25]. However, if the user acceptance of robot delivery
is too low, the delivery robot solution may be a huge waste of resources [16].

The traditional rider delivery mode requires hiring a large number of delivery staff. In 2019, the
cost of riders reached 41 billion CNY, accounting for 83% of the entire commission cost, and the
cost of manual delivery is very high [26]. The random shuttle of express vehicles on urban roads has
brought great pressure to urban traffic. The traditional logistics with low efficiency, high cost and
manual distribution has been unable to meet the development and demands of social economy. In
order to improve distribution efficiency, reduce logistics costs, and meet social distribution needs and
customer experience, the voice of robotic logistics is getting stronger.

3 Problem Description and Modeling

The terminal distribution network of fresh agricultural products is a key link affecting the
entire industry chain. Fig. 1 depicts the terminal distribution network of fresh retail enterprises.
The distribution network consists of distribution centers and demand sites, distribution tools and
distribution paths. The distribution center conducts quality inspection, packaging and sorting of fresh
agricultural products according to the order requirements. Demand sites are widely distributed in
urban blocks, and their location and demand are highly uncertain. In the traditional delivery mode,
the delivery vehicles are riders combined with electric vehicles. With the development of technology,
the robot distribution mode is gradually applied. In our research, two delivery modes are proposed,
namely the rider and the robot delivery mode. In order to ensure service quality, the delivery time has
a strict time window limit. If the time window is exceeded, corresponding penalty costs will be paid.
The research goal of the delivery problem of fresh agricultural products is to improve transportation
efficiency and reduce costs by optimizing the network.
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Rider Robot

Figure 1: The terminal distribution network

3.1 Costs of Rider Delivery Mode
(1) Fixed costs.

Crider
fixed

(
αi, βi,n

) =
∑

i
αics

f

∑
n
βi,n

(
cv

f + cm
f

)
, ∀i ∈ Nd, ∀n ∈ N+, (1)

including rider wages, vehicle acquisition and vehicle maintenance costs, among them, αi ∈ {0, 1} , ∀i ∈
I , αi = 1 select distribution center or not. βi,n indicates number of delivery rider.

(2) The cost of transportation.

Crider
transportation

(
γi,j

) =
∑

i

∑
r(i,j)

γi,jcvdi,jqjh−1, ∀i ∈ Nd, ∀j ∈ Nc, (2)

among them, cv represents the unit energy cost of vehicle driving, di,j represents the travel distance, qj

represents the demand, and h represents the vehicle load.

(3) The cost of fresh-keeping effort.

Crider
fresh−keep

(
δi, εi,j

) =
∑

i
δicdfk

i tdfk
i +

∑
i

∑
r(i,j)

εi,jccfk
i,j qi,jtcfk

i,j , ∀i ∈ Nd, ∀j ∈ Nc, (3)

Among them, the insurance efforts for fresh products are divided into two parts, namely, the
fresh-keeping effort cost of fixed distribution centers and movable distribution tools. The preservation
cost cdfk

i ccfk
i,j is closely related to the preservation time tdfk

i tcfk
i,j and the product quantity qi,j. The unit

fresh-keeping effort cost is generally affected by the season. In this paper, only short-term distribution
planning is involved, so the fluctuation of the unit fresh-keeping cost is ignored and a constant value
is taken.

(4) The cost of time penalty.

Crider
penalty

(
γi,j

) =
∑

i

∑
r(i,j)

γi,jct

(
ttran

i,j + tw
i,j − t0

)
, ∀i ∈ Nd, ∀j ∈ Nc, (4)

among them, ct represents penalty cost per unit time, tw
i,j represents waiting time, delivery time ti,j ≥

di,jvi
−1, vi rider average speed and t0 represents benchmark delivery time.

(5) The cost of performance reward.

Crider
reward

(
βi,n

) =
∑

n
βi,ncrτqj, ∀i ∈ Nd, ∀j ∈ Nc, ∀n ∈ N+, (5)

where, cr is performance reward coefficient, τ is proportional coefficient of qj.
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3.2 Modeling of Rider Delivery Mode
The first item of the objective function (6) is fixed cost, including total rider salary, vehicle

acquisition cost and fixed maintenance cost. The second item is the cost of transportation delivery.
The third term is the time penalty cost, and last is performance reward.

minimize
αi ,δi ,βi,n ,εi,j ,γi,j

{
Crider

fixed + Crider
transportation + Crider

fresh−keep + Crider
penalty + Crider

reward

}
(6)

subject to,

γi,jdi,j ≤ dmax, ∀i ∈ Nd, ∀j ∈ Nc, r (i, j) ∈ R (7)

∑
i

γi,j = 1, ∀j ∈ Nc (8)

∑
r(i,j)

γi,j −
∑

r(j,i)
γi,j = 0, ∀j ∈ Nc, r (i, j) ∈ R, r (j, i) ∈ R (9)

εi,jtcfk
i,j ≥ γi,jttran

i,j , ∀i ∈ Nd, ∀j ∈ Nc, r (i, j) ∈ R (10)

βi,n ≤ Mαi, ∀i ∈ Nd (11)

∑
r(i,j)

γi,jwi,jqj ≤ Hmax
j , ∀i ∈ Nd, ∀j ∈ Nc, r (i, j) ∈ R (12)

γi,jttran
i,j ≤ TMax

i,j , ∀i ∈ Nd, ∀j ∈ Nc (13)

γi,j ≤ Mαi, ∀i ∈ Nd (14)

αi, βi,n, γi,j, δi, εi,j ∈ {0, 1} , ∀i ∈ Nd, ∀j ∈ Nc, ∀n ∈ N+ (15)

Specific constraints. Constraint (7) is distance constraint, and dmax represents the maximum
mileage. Constraint (8) states that each demand site can only be accessed once. Constraint (9) states
that the flow constraint of each customer point is conserved, and the rider must leave after completing
the delivery. Constraint (10) indicates that the cold storage time of mobile equipment must be greater
than or equal to the transportation time. Constraint (11) indicates that a single rider performs at
most one route delivery task. Constraint (12) represents the load constraint of robot distribution, qj

represents the number of pick-up points, wi,j represents the quality coefficient, and Hmax
i,j represents the

maximum capacity. Constraint (13) represents time constraint, and wj represents dwell time, which is
related to the number of points. Constraint (14) represents the path constraint, only the riders involved
in the delivery will participate in the subsequent delivery action, where M is a sufficiently large number.
Constraint (15) is a related variable constraint.

3.3 Costs of Robot Delivery Mode
(1) Fixed costs.

Crobot
fixed

(
αi, βi,n

) =
∑

i
αicv

f

∑
n
βi,ncm

f , ∀i ∈ Nd, ∀n ∈ N+, (16)

including the purchase cost of the delivery robot and the fixed maintenance cost of the delivery robot,
among them, αi ∈ {0, 1} , ∀i ∈ I , αi = 1 select distribution center or not. βi,n indicates delivery robot
number.
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(2) The cost of transportation.

Crobot
transportation

(
γi,j

) =
∑

i

∑
r(i,j)

γi,jcvdi,jqjh−1, ∀i ∈ Nd, ∀j ∈ Nc (17)

among them, cv represents the unit energy consumption cost of the unmanned vehicle, and di,j

represents the travel distance of the delivery robot.

(3) The cost of time penalty.

Crobot
penalty

(
γi,j

) =
∑

i

∑
r(i,j)

γi,jct

(
ttran

i,j + tw
i,j − t0

)
, ∀i ∈ Nd, ∀j ∈ Nc (18)

where, ct represents penalty cost per unit time, delivery time ttran
i,j ≥ di,jvi

−1, average speed of vi robot, tw
i,j

is wait-to-pickup cost and t0 is benchmark delivery time.

(4) The cost of fresh-keeping effort.

Crobot
fresh−keep

(
δi, εi,j

) =
∑

i
δicdfk

i tdfk
i +

∑
i

∑
r(i,j)

εi,jccfk
i,j qi,jtcfk

i,j , ∀i ∈ Nd, ∀j ∈ Nc, (19)

Similar to the rider distribution mode, the machine distribution mode also requires special
refrigeration equipment to ensure the freshness of fresh products.

3.4 Modeling of Robot Delivery Mode
The objective function (20) of the robot delivery mode is to minimize the cost. The first term is

the fixed cost of the delivery robot. The second item is the transportation cost related to the driving
distance. The third term is the time penalty cost.

minimize
αi ,βi,n ,γi,j ,δi ,εi,j

{
Crobot

fixed + Crobot
transportation + Crobot

penalty + Crobot
fresh−keep

}
(20)

subject to,

γi,jdi,j ≤ dmax, ∀i ∈ Nd, ∀j ∈ Nc, r (i, j) ∈ R (21)

∑
i
γi,j = 1, ∀j ∈ Nc (22)

∑
r(i,j)

γi,j −
∑

r(j,i)
γi,j = 0, ∀j ∈ Nc, r (i, j) ∈ R, r (j, i) ∈ R (23)

βi,n ≤ Mαi, ∀i ∈ Nd (24)

εi,jtcfk
i,j ≥ γi,jttran

i,j , ∀i ∈ Nd, ∀j ∈ Nc, r (i, j) ∈ R (25)

∑
r(i,j)

γi,jwi,jqj ≤ Hmax
j , ∀i ∈ Nd, ∀j ∈ Nc, r (i, j) ∈ R (26)

γi,jttran
i,j ≤ TMax

i,j , ∀i ∈ Nd, ∀j ∈ Nc (27)

γi,j ≤ Mαi, ∀i ∈ Nd (28)

αi, βi,n, γi,j, δi, εi,j ∈ {0, 1} , ∀i ∈ Nd, ∀j ∈ Nc, ∀n ∈ N+ (29)

Specific constraints. Constraint (21) is the distance constraint, dmax represents the maximum
mileage. Constraint (22) states that each client can only be accessed once. Constraint (23) indicates
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that the flow constraints of each customer point are conserved, and the delivery robot must leave after
completing the delivery. Constraint (24) indicates that a single delivery robot can perform at most one
route delivery task. Constraint (25) indicates that the cold storage time of mobile equipment must
be greater than or equal to the transportation time. Constraint (26) represents the load constraint of
robot delivery, qij represents the number of pick-up points, wi,j represents the quality coefficient, and
Hmax

i,j represents the maximum capacity. Constraint (27) represents the one-shot path time constraint.
Constraint (28) represents the approximate path, and only participating robots can participate in
subsequent delivery actions. Constraint (29) is a related variable constraint.

4 Model Extension

There are many uncertain factors in the real market environment, such as the heterogeneity of
customer demand at the demand side, the instability of supply and inventory, and even the uncertainty
of traffic control on delivery time. With the help of modern technology (big data, machine learning,
optimization, etc.), the availability of information is enhanced [27,28]. Affected by these uncertainties,
the order quantity also has great uncertainty. The development of modern Internet technology can
provide more convenience for the development of the market [29]. In other words, uncertainty factors
will directly affect the order demand, and then affect the design of route planning. Considering the
interference of potential uncertain factors, we extend the above model through uncertain robust theory
[30–33]. The deterministic demand scenario is extended to the uncertain scenario. Its purpose is to
achieve the optimal design scheme of path planning on the basis of meeting customer needs to the
greatest extent. According to real scenarios, the goal of the stochastic programming model is to
minimize the total cost. Based on robust programming theory, we extend the basic model. Define
the random variable ε, we get the extensive form q̃j = q0

j + ε� of qj, where � is the floating amount
of demand.

Proposition 1. Considering the random demand parameters, the model of rider delivery mode under
the deterministic scenario can be extended to the uncertain scenario in Section 3.2, which is named robust
counterpart form of rider delivery mode. The interval value uncertainty sets Z, {Z : ‖ε‖∞ ≤ 1, ε ∈ R} and
Γ are defined as safety parameters (at most |Γ| uncertain parameters may fluctuate), The value range of
the object responding to [Γl, Γu]. When ε ← 0 or |Γ| ← 0 the model generations into linear programming
model.

Robust counterpart form of rider delivery mode:

minimize

⎧⎨
⎩

Crider
fixed

(
αi, βi,n

) + Crider
penalty

(
γi,j

)
+ 	sup

ε∈Z

[
Crider

transportation

(
γi,j|q̃j

) + Crider
fresh−keep

(
δi, εi,j|q̃j

) + Crider
reward

(
βi,n|q̃j

)]
⎫⎬
⎭ (30)

subject to constraints (7), (8), (9), (10), (11), and, constraints (13), (14).

Considering the uncertain demand parameters, we can get linear inequality (26) with the data
varying in the uncertainty set.∑

r(i,j)

γi,jwi,jq0
j + Γsup

ε∈Z

∑
r(i,j)

γi,jwi,jε� ≤ Hmax
j , ∀i ∈ Nd, ∀j ∈ Nc, r (i, j) ∈ R (31)

Proof of proposition 1. In the rider delivery mode, considering the influence of uncertain demand
parameters qj ← q̃j, the item of objection Crider

transportation

(
γi,j|qj

)
is transformed into Crider

transportation

′
(γi,j|qj),

that is,
∑

i

∑
r(i,j) γi,jcvdi,jq0

j h
−1 + Γsup

ε∈Z

∑
i

∑
r(i,j) γi,jcvdi,jε�h−1. Similarly, the item Crider

transportation

(
βi,n|qj

)
is
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transformed into Crider
transportation

(
βi,n|q̃j

)
, that is

∑
n βi,ncrτq0

j + Γsup
ε∈Z

∑
n βi,ncrτε�. Since the supremum

sup
ε

{ε ∈ Z : ‖ε‖∞ ≤ 1, ε ∈ R} is taken for the fluctuation of uncertain demand parameters, the uncer-

tain parameters form a linear relationship with the cost, and then form a linear relationship with the
objective function. It can be clearly seen that the total cost increases with the increase of parameter
uncertainty, and decreases on the contrary. At this time, when the volatility of the parameters is
ε = 0, the model degenerates into a linear programming model under a deterministic scenario. In
addition, the safety parameters reflect the number of uncertain parameter nodes. The larger the safety
parameters, the higher the robustness. It also means the increase in the number of parameters that can
fluctuate. When the safety parameters are Γ = 0, it is the situation with the weakest robustness. At
this time, the model degenerates into a linear programming model. The proof is complete.

Proposition 2. Similar to Proposition 1, considering the interval value uncertain parameter set
{Z : ‖ε‖∞ ≤ 1, ε ∈ R}, the demand parameter is extended to uncertain scenarios in the robot delivery
mode, which is named robust counterpart form of robot delivery mode. When ε ← 0 or |Γ| ← 0 the
model generates into linear programming model.

Robust counterpart form of robot delivery mode

minimize

⎧⎨
⎩

Crobot
fixed

(
αi, βi,n

) + Crobot
penalty

(
γi,j

)
+ 	sup

ε∈Z

[
Crobot

transportation

(
γi,j|q̃j

) + Crobot
fresh−keep

(
δi, εi,j|q̃j

)]
⎫⎬
⎭ (32)

subject to constraints (21), (22), (23), (24), (25), and, uncertain inequality constraints as (31).

Proof of proposition 2. In the robot delivery mode, considering the influence of uncertain
demand parameters, the item Crobot

transportation

(
γi,j|qj

)
will be transformed into Crobot

transportation

′ (
γi,j|q̃j

)
, that is,∑

i

∑
r(i,j) γi,jcvdi,jq0

j h
−1 + Γsup

ε∈Z

∑
i

∑
r(i,j) γi,jcvdi,jε�h−1. Similar to the proof of Proposition 1, the supre-

mum sup
ε

{ε ∈ Z : ‖ε‖∞ ≤ 1, ε ∈ R} is taken for the fluctuation of uncertain demand parameters. It

can be found that the uncertain demand forms a linear relationship with the cost, and then forms a
linear relationship with the total cost. Similarly, when the volatility of the parameters is ε = 0, the
model degenerates into a linear programming model under a deterministic scenario. Also, when the
security parameter is Γ = 0, it is the situation with the weakest robustness. At this time, the model
degenerates into a linear programming model. The proof is complete.

The following difficulties are often faced when solving stochastic optimization models in uncertain
demand scenarios. In practical applications, since the probability distribution of random parameters
is unknown, it is difficult to solve, even if it is assumed to obey a known probability distribution.
First of all, if is a continuous random variable, it involves the calculation of multiple integrals, and
the calculation is extremely difficult. Second, the distribution problem we study contains multiple
constraints, and there may be no solutions. Finally, there are multiple chance constraints in the path
optimization problem. Since the probability distribution of demand is unknown, this constraint may
be non-convex, and how to model and calculate is also very difficult to deal with.

5 Solution Method

Section 5.1 describes the basic data, and Section 5.2 describes the solution steps of the model.
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5.1 Data
This section takes the data of local transportation companies in Jinan of Shandong as the research

object to verify the effectiveness of the proposed distribution model. The information involved in our
research mainly comes from Baidu Map, and the transportation cost parameters come from the public
data of the network. The distribution center is a supermarket, which distributes fresh agricultural
products to nearby demand nodes that may appear randomly. The distribution start point is the
supermarket distribution station, and the distribution end point is the community demand site. The
distribution service is realized by two modes of transportation, namely the rider distribution mode and
the robot mode. According to real-world scenarios, we collect actual data to verify the model. Since
there is no standard template case for the distribution of fresh agricultural products, the design scenario
of this paper is as follows. There are three distribution centers, namely RT-Mart (Lixia Store), RT-
Mart (Shizhong Store), and RT-Mart (Tianqiao Store). There are a total of 20 demand sites, namely,
Sanjian Ruifu Garden, Renai Street Community, Qingnian West Road Community, Nanqumen
Lane Community, Foshanyuan Community, Rongxiuyuan, Taikangli Community, Linxiang Building,
Huajingyuan, Wenhuaxi Road Community, Wenhui Garden, Desheng Homestead, Shun Ai Garden,
Crown Villa, Lishan Famous County, Evergrande Emperor Jing, Hongtai Community, Longchang
Garden, Langmao Mountain Community, Tianbao New Residence. The order data of the merchant
is simulated and generated. The order quantities of each demand site are 260, 320, 410, 450, 380, 280,
300, 460, 450, 310, 220, 340, 410, 350, 340, 280, 390, 460, 350, 360. Taking into account the screening
and packaging processes that exist in reality, we set the delivery time for fresh produce delivery to
30–45 min. Taking into account the screening and packaging processes that exist in reality, we set the
delivery time for fresh produce delivery to 30–45 min. If it is not delivered within 45 min, a penalty cost
will be incurred, and the longer the delay time, the greater the penalty cost. Referring to the real scene,
set the relevant parameters of the delivery tool, which are the rider delivery mode and the robot delivery
mode. The fixed costs are 4000 and 4500, respectively; The unit delivery cost is 5 and 3, respectively;
The average delivery speed is 15 and 12, respectively; The time penalty costs are 10 and 8, respectively;
The rated load is 10 and 15, respectively; The unit energy consumption is 2 and 4, respectively; The
carbon emission conversion factors are both 0.6101 and 0.6101; The maximum driving distance is set to
5 km. The locations (latitude and longitude) of the distribution center and the demand site are shown
in Table 1.

5.2 Solution Framework
We set up the solution framework shown below, and build algorithms to solve the models in

Sections 3 and 4. Based on the above basic data, the algorithm framework is designed with Matlab
(R 2020) as the programming platform, and the solver Gurobi (9-5) is called to solve the model. The
operating system is Windows 10, Core (TM) i5-8300H CPU, computer memory is 8 GB, 512 G SSD,
and the frequency is 2.3–3.6 GHz. The specific steps are shown in Fig. 2.

6 Simulation Analysis

In order to verify the effectiveness of the model, we conduct a comparative analysis of the two
delivery modes from multiple dimensions. Section 6.1 compares and analyzes the time efficiency.
Section 6.2 describes the influencing factors of cost. Section 6.3 is the robust price of robust coun-
terpart form. Section 6.4 formulates the delivery route planning scheme. Section 6.5 compares the
influencing of distribution efficiency.
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Table 1: Locations of distribution center and the demand site

M1 M2 M3 D1 D2 D3

Longitude 36.65523 36.63048 36.67562 36.6516 36.657711 36.65793
Latitude 117.03647 116.98945 116.98128 116.99762 116.996444 117.01345

D4 D5 D6 D7 D8 D9
Longitude 36.656567 36.6582 36.632221 36.66378 6.66138 36.66436
Latitude 117.018272 117.02902 116.978577 116.99744 117.00477 117.00313

D10 D11 D12 D13 D14 D15
Longitude 36.65489 36.65324 36.64372 36.65636 36.64583 36.6513
Latitude 117.01669 117.02461 116.99114 117.0347 117.03106 117.03116

D16 D17 D18 D19 D20 –
Longitude 36.65521 36.65785 36.61316 36.63203, 36.66951 –
Latitude 117.05409 117.04474 116.97387 116.996361 116.97612 –

Figure 2: Algorithm process framework

6.1 Time Efficiency
This section compares the operating efficiency of each model by observing the model operation

time. To ensure the validity of the results, all models are run in the same computer environment.
This section analyzes the operating efficiency of the four models, and the results are shown. Fig. 3
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shows the computational efficiency of the rider delivery and robot delivery mode. In order to facilitate
comparison, run in the same computer environment, set the number of sites as the only variable, and
observe the model running time. In addition, we also compare and analyze the operation time based
on different solvers (Gurobi, Gu and Cplex, Cp). It can be seen from the figure that the rider delivery
mode has the highest operating efficiency, and the overall running time is lower than the robot delivery
mode. From the details, with the increase of the number of service nodes, the operation time of the
model shows an obvious increasing trend. Comparing the three MIRP models, when the number
of stations is less than 10, the solution time of Gurobi-based and Cplex-based are not significantly
different. When the number of stations is higher than 10, the solution efficiency is obviously reduced
and the solution time is prolonged. Among them, the solution efficiency based on Gurobi is about 1.5
times of the solution efficiency based on Cplex. Due to the small site scale of the distribution route
optimization problem in this study, a feasible solution can be obtained within 10 s. With the expansion
of the model scale, the feasibility of the solution framework based on this framework will decrease,
so it is necessary to further optimize the algorithm or change the model framework, design the model
and solve it according to the actual demands.

Figure 3: Computational time efficiency

6.2 Cost Comparison
Fig. 4 depicts delivery costs in a 2-week delivery mode. It can be seen that the delivery cost of

the rider mode is higher than the cost of the robot delivery mode. In the single-cycle scenario, this
difference is not large, but as the delivery cycle increases, the distribution cost shows a clear difference.
In a single cycle, compared with the rider delivery mode, the robot delivery mode can save 2,893 CNY.
In the daily distribution cycle, compared with the rider delivery mode, the robot delivery mode can
save 5,786 CNY. In the weekly delivery cycle, compared with the rider delivery mode, the robot delivery
mode can save 40,502 CNY. On the whole, the robot distribution model can save 12.72% of the cost. In
the process of practical application, in addition to operating costs, the acquisition cost of distribution
tools is also a key factor worthy of attention. Since the research and development of unmanned
delivery robot-related technologies is still in its infancy, its configuration costs are high and it relies on
professional technicians for maintenance. In the future, if delivery robots can be mass-produced, their
efficiency advantages will gradually become apparent as their configuration costs decrease.
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Figure 4: Delivery costs

Fig. 5 analyzes the impact of fluctuations in uncertain demand parameters on total cost. To ensure
the unbiasedness of the experiment, all tests were fixed to a normal distribution, and the effect of
volatility changes on cost was studied by changing the mean and variance. Through the comparison
of numerical cases, it can be found that as the volatility of uncertain parameters increases, the total
cost of both the rider delivery mode and the robot delivery mode shows an upward trend. Different
modes have different cost rise rates, and the rider delivery mode has a larger cost growth rate, that is,
a larger slope. Relative to the rider delivery model. The robot delivery model is not only lower in total
cost, but also at a lower rate of cost growth. Therefore, compared with the rider delivery mode, the
robot delivery mode has more advantages in terms of economic cost.

Figure 5: The impact of volatility parameters on costs

6.3 Rate of Cost Increase
Since the uncertainty of real parameters will disturb the order demand and the number of demand

nodes, we introduce robust equivalence theory to resist the uncertainty disturbance. Since the robust
equivalent model is a decision under the worst-case scenario, the model has strong robustness. At



CMES, 2024, vol.138, no.1 733

the same time, these robust equivalent models are bound to pay a certain robust price. To ensure
the scientific of comparative experiments, we define the maximum boundary of uncertain demand
parameter fluctuation as [−0.1, 0, 1], and the value range and size of other parameters are the same,
whether in Rider delivery mode or Robot delivery mode. This section compares the impact of safety
parameters on costs, and the results are shown in Table 2. It can be found that with the increase of the
number of security parameters, the total cost of the model shows an upward trend. This phenomenon
exists in both rider delivery mode and robot delivery mode, which is also called robust price. Similarly,
the increase in cost further reflects the increase in the robustness of the model, that is, the greater the
compatibility of the model. In the worst-case scenario, when the parameters of up to 20 nodes may
be uncertain, the cost of Rider delivery mode increases by 22.34% and that of Robot delivery mode
increases by 23.54%.

Table 2: Rate of cost increase

Safety parameter 0 2 4 6 8 10

Rider delivery mode +0.00% +1.50% +1.96% +2.46% +3.20% +4.38%
Robot delivery mode +0.00% +1.83% +2.94% +3.16% +7.70% +10.28%
Safety parameter 12 14 16 18 20 –
Rider delivery mode +6.54% +14.58% +19.01% +22.67% +22.34% –
Robot delivery mode +13.24% +12.28% +16.11% +18.77% +23.54% –

6.4 Delivery Route Planning
We conduct simulations based on actual cases, and the initial delivery path planning scheme

is shown in Fig. 6. It can be seen intuitively from the initial path planning scheme that the path
planning has the following defects. First, there is the problem of ultra-long-distance transportation,
which is bound to increase the cost of delivery, whether it is an unmanned delivery mode or a rider
delivery mode. Second, there is the problem of roundabout transportation, which will lead to uneven
distribution of distribution resources and waste of distribution resources. Third, there is the problem
that individual distribution centers are overburdened, which can easily lead to a backlog of agricultural
products in distribution centers, and agricultural products are highly perishable products. Improper
management will inevitably lead to greater losses. In order to balance resource allocation, we improved
the original model. Respond to real-world needs by optimizing the proportion of riders or robots. The
improved path planning scheme is shown in Fig. 7. It can be clearly seen that the path of the overall
improved scheme is clearer and more convenient than previous strategies. The problems of circuitous
transportation, long-distance transportation and overloading of individual sites are avoided. From
the overall optimized distribution route planning scheme, this kind of research can provide intuitive
reference suggestions for relevant managers, and has important practical application value.
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Figure 6: Initial schematic diagram of route planning

6.5 Delivery Efficiency
The logistics service level is described by taking time as a reference, and the on-time rate is

described by the difference from the reference time. The performance of the two modes is compared,
and management enlightenment is given according to the differences of the modes. The calculation for-

mula of logistics efficiency is, E = 1 −
(∑

i∈Nd

∑
r∈R γir (tir + tw) − ∑

i∈Nd

∑
r∈R γirt0

) / ∑
i∈Nd

∑
r∈R γirt0.

The computer simulation results under different probability distribution are shown in Fig. 8.

Two common probability distribution functions (normal and gamma distribution) are used as
examples to analyze the impact of parameter volatility on distribution efficiency. On the whole, as the
uncertainty of demand parameters increases, whether it is a normal distribution or a gamma distribu-
tion function, the distribution efficiency shows a downward trend. In other words, the fluctuation of
uncertain parameters will inevitably lead to the decline of logistics distribution efficiency, which is an
inevitable fact. From the comparison of distribution modes, it can be seen that the overall distribution
efficiency of the robot distribution mode is relatively high, which is within the range of 85∼95, which is
much higher than that of the rider distribution mode, which is in the range of 74∼82. In real practice,
due to the strong adaptability of robot distribution to weather and road conditions, it also shows a
high punctuality rate and service level. In the comparison of distribution functions, it can be seen
that the distribution efficiency shows significant differences under different separation functions. This
further confirms the importance of forecasting parameters. If uncertain parameters can be accurately
evaluated, the improvement of logistics distribution efficiency will be more scientific and feasible.
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For managers, it is very important for scientific planning and management to analyze the existing
parameters in a data-driven way to obtain valuable key parameters.

Figure 7: Schematic diagram of route planning after improvement

Figure 8: Delivery efficiency
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7 Conclusion

The terminal distribution network of fresh agricultural products has the problems of low effi-
ciency, high cost and great influence of uncertain factors. Taking the terminal distribution network
as the object of modeling, the classic rider distribution mode and the emerging robot distribution
mode are analyzed. Considering factors such as fixed cost, transportation cost, time penalty cost,
preservation effort cost and performance reward cost in the terminal distribution process, a mixed
integer linear integer programming model was constructed. Considering that there is still a lot of
uncertainty in the real market environment, in order to resist the interference of uncertainty, we
further extend the model to a robust correspondence model. We collected real data from Jinan
City, Shandong Province to form a simulation case, verified the proposed strategy, and obtained the
optimal distribution routing and inventory schemes for the two distribution modes, and put forward
suggestions or improvement schemes for enterprise decision makers.

The simulation experiment case obtains the following insights. In terms of the comparison of
the terminal distribution mode, compared with the traditional rider distribution mode, the robot
distribution mode can save 12.72% of the cost. If delivery robots can be popularized in the future,
their economic benefits and delivery efficiency will be very high. In terms of algorithm efficiency, all the
models we designed can obtain feasible solutions within an acceptable time, and the solution efficiency
based on Gurobi is higher than that based on Cplex. In terms of delivery route optimization, the
routing scheme of our improved scheme is clearer and more convenient than the random assignment
strategy. In terms of resisting uncertainty, as the uncertainty of demand parameters increases, the
fluctuation of uncertain parameters will inevitably lead to a decline in distribution efficiency. The
overall delivery efficiency of the robot delivery mode is much higher than that of the rider delivery
mode. In actual operation, due to the strong adaptability of robot distribution to weather and road
conditions, it shows a high punctuality rate and service level.

Based on the case insights and the current development status of fresh agricultural product
distribution companies, we make the following suggestions. In the scenario of not changing the
distribution mode, the terminal distribution enterprises of fresh products should pay attention to
the disturbance of uncertain factors on the distribution network, and the quantitative evaluation
of uncertain parameters is crucial to the robustness of the distribution network. For enterprises,
enterprises should seek profit margins on the basis of ensuring the stability of their supply. The
government should strengthen the subsidy for the research and development of high-tech facilities,
especially the research and development of equipment and technologies such as delivery robots.
Although our research can prove that the efficiency of the robot delivery model is better than that
of the traditional model, the application of technology is very important for general or small delivery.
Enterprises are still a problem, mainly due to the limitation of technical threshold. If the government
can provide better technical support or subsidies, it will greatly promote the improvement of the
terminal distribution network.

There are still some points that need to be improved in the current research. For example:
consider the joint distribution of multi-terminal distribution companies, consider the uncertainty of
time windows, the path planning of delivery robots in three-dimensional space, consider customer
satisfaction, etc. These factors will be considered in future research.
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