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ABSTRACT

The goal of this research is to develop a new, simplified analytical method known as the ARA-residue power series
method for obtaining exact-approximate solutions employing Caputo type fractional partial differential equations
(PDEs) with variable coefficient. ARA-transform is a robust and highly flexible generalization that unifies several
existing transforms. The key concept behind this method is to create approximate series outcomes by implementing
the ARA-transform and Taylor’s expansion. The process of finding approximations for dynamical fractional-order
PDEs is challenging, but the ARA-residual power series technique magnifies this challenge by articulating the
solution in a series pattern and then determining the series coefficients by employing the residual component and
the limit at infinity concepts. This approach is effective and useful for solving a massive class of fractional-order
PDEs. Five appealing implementations are taken into consideration to demonstrate the effectiveness of the projected
technique in creating solitary series findings for the governing equations with variable coefficients. Additionally,
several visualizations are drawn for different fractional-order values. Besides that, the estimated findings by the
proposed technique are in close agreement with the exact outcomes. Finally, statistical analyses further validate the
efficacy, dependability and steady interconnectivity of the suggested ARA-residue power series approach.
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1 Introduction

Several real-life occurrences in thermodynamics, molecular biology, operations research, and
other disciplines of materials research can be lucratively modelled using fractional derivatives [1–6].
The principal motivation behind this is that realistic modelling of a core challenge requires not only
the precise moment but also the preceding sequential schedule, which can be efficiently accomplished
by utilizing fractional calculus [7,8]. However, numerous applied science researchers have concentrated
on fractional partial differential equations (PDEs) in designing procedures for interaction problems
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and discussing physical phenomena. Aside from that, estimated and analytical strategies for FDE
solutions have been investigated [9,10]. The subject of fractional initial value problems (IVPs) has
captured the attention of academic researchers because it has the functionality of describing several
capabilities of real-life manifestations within a more believable methodology than conventional PDEs.
Many accomplishments have been attributed to the assumption of strategy presence and consistency in
the fractional IVP framework [11]. For additional scientific articles on fractional ordinary and PDEs
emerging in various fields of scientific research, see [12–14].

In a given situation, the level of flexibility of the nonlinear system in contemporary calculus (such
as conventional calculus) is greater than that of the local differential equations operator. Authors
[15,16] encompass the following applications of computation. As a consequence, intellectuals place
an elevated significance on the investigation of non-integer order differentiation and integration.
Geometrically, the arbitrarily defined order derivatives, which are predominantly predefined integrals,
describe the complete function’s concentration, or the entire global integration variety [17,18]. The
practise of academics has greatly boosted the efficiency of differential equations as well as quantitative
and quantifiable scientific studies. It is worth noting that the following derivative operators were
developed using conclusive essential methodologies. It is a well-established fact that there is currently
no underlying solution to this problem. Consequently, the power law kernel has multiple interpreta-
tions. The Caputo fractional-order derivative (CFD) [19] is perhaps the most appealing underlying
conceptualization. Dynamical formulae are notorious for being hard to address quantitatively or
precisely. As a result, computational intelligence methodologies for evaluating the foregoing formulas
have been constructed. Numerous intellectuals have mainly investigated computational perspectives
to investigate fractional PDE under CFD [20,21].

Furthermore, owing to the quantitative intricacies of the fractional operators involved, figuring
out the numerical method for fractional IVP processes can be occasionally challenging. In this context,
computational and analytical strategies have been created and energized in order to explore the
outcomes of various types of linear/nonlinear fractional IVP mechanisms. To reference a couple
different ones: the Adomian decomposition method, Legendre polynomial, Lie symmetry analysis,
Haar wavelet method, spectral collocation method, homotopy perturbation method, homotopy
analysis transform method, reproducing kernel Hilbert space method, Bernoulli polynomials, B-spline
functions, Chebyshev polynomials and the residue power series method, see [22–24].

In 2013, Omar Abu Arqub, a Jordanian mathematician [25], invented the residual power series
method (RPSM). However, RPSM is an analytical procedure for tackling ordinary, partial, and
fuzzy DEs, as well as fractional-order integro-DEs, which correlates with the Taylor’s series having
the residual error function. It offers linear and nonlinear DE series strategies in the context of
convergence series. For its inaugural moment, RPSM was used to develop solutions to fuzzy DEs
in 2013. Arqub et al. [26] applied an efficient technique for addressing the solution of higher-order
IVP. Arqub et al. [27] used the RPSM to consider numerous findings for dynamical fractional-order
boundary value problems. El-Ajou et al. [28] expounded the novel recursive approach RPSM for
establishing the solutions of the nonlinear fractional KdV-Burgers model. Later on, this dynamical
scheme merged with several integral transforms to make it more comprehensive. It is a useful meta-
heuristic algorithm because it applies with the help of closed-form functional information. In the
scenario of nonlinear challenges, obtaining a solution in closed form is unattainable, and determining
the series coefficients is a tough challenge. To address the shortcomings of the classic PSM, an
optimized version of the PSM is introduced that treats the coefficient values as transmogrified
operations that pursue a set of regulations and are ascertained by recurrence connections. For more
details on RPSM, see [29–31].
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In 1780, the French mathematician and physicist P. S. Laplace [32,33] proposed the integral
transform. In 1822, J. Fourier [34] invented the Fourier transform. Laplace and Fourier transforms
are the cornerstone of operations and maintenance interpretation, a strand of mathematical concepts
with enormously potent implementations not just in mathematical modeling but also in different
scientific fields such as thermodynamics, technology, cosmology, and so forth. This research is based
on the implementation of the ARA Ts (ARA Ts), an innovative integral transform, introduced
by Saadeh et al. [35]. This transform is an influential and multi-functional generalization that
consolidates several configurations of the conventional Laplace transform, including the Sumudu
transform [36], the Elzaki transform [37], the Natural transform [38], the Yang transform [39] and
the Shehu transform [40].

Numerous publications have been written to explain dynamic processes that can be induced
and propagated in a variety of concentrations and configurations. The majority of academics have
concentrated on minimizing the fundamental formulae of varying concentration models to evolution
problems in the pattern of PDES such as the Swift-Hohenberg model (KdV) equation, Burger
equation, Black-Scholes model, Boussinesq equation and so on [41–44].

Another development of the RPSM is assembled in this article by acclimating the ARA Ts
[35,45] to the RPSM technique [25,26]. In this article, the new framework, ARA-residual power series
method (ARARPSM), is used to effectively resolve fractional-order PDEs. Furthermore, the detailed
explanation of the nonlinear fractional-order PDEs is outlined below:

• The ARARPSM is an efficacious approach and a novel method for obtaining numerical
approximations to dynamical fractional PDEs in series pattern. The series coefficients can be
ascertained quickly by employing the notion of limit at ∞, which also helps in saving time and
resources when compared to earlier traditional methods.

• Five problems are analyzed statistically to identify the reliability and robustness of the suggested
technique. Furthermore, analytical findings are also compared with the existing results and are
in agreement with the exact findings and several other techniques.

• Diagrammatically, relevance is indeed discovered for multiple fractional-order derivative
attributes and the statistical performances of the mean absolute deviation, mean deviation,
Theil’s inequality coefficients, and semi-interquartile range. Hence, the methodology is accurate,
easy to employ, not influenced by supercomputing iterations of inconsistencies, and doesn’t
necessitate an enormous amount of memory storage or time.

• This technique, unlike the conventional power series technique, somehow doesn’t entail iden-
tifying the coefficient values of the commensurate terms or the application of a recursion
connection. The suggested restriction concept-based methodology shows series coefficients but
not fractional derivatives, similar to the RPSM. Unlike RPSM, which also demands numerous
computations to quantify multiple fractional derivatives during the completion of the task
successfully, only a very few computations are required to evaluate the coefficients.

2 Preliminaries

This section provides a number of interpretations, characteristics, and some helpful findings that
form the foundation of the novel methodology. The ARA Ts is derived using the classic Laplace
integral. In order to simplify the method for solving ordinary and partial DEs in the temporal domain,
Saadeh et al. [35] proposed the ARA Ts in 2020. ARA is the identifier of the proposed transform; the
term is not an acronym. It has some interesting properties, such as the ability to generate multiple
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transforms by varying the significance of the index m, which was also initiated in [45], a duality with
the Laplace transform, and the ability to navigate the singularity at time zero.

Definition 2.1. ([22]) For δ > 0, the Caputo derivative of the mapping �(u, t) is described as

D δ

t �(u, t) = J
n−δ

t Dn

t �(u, t), δ ∈ (n − 1, n), m ∈ N, u ∈ J , t > 0,

where J signifies an interval and Jδ

t is the time-fractional Riemann-Liouville integral operator order
δ > 0 stated as

J
δ

t �(u, t) =
⎧⎨
⎩

1
�(δ)

t∫
0

(t − ζ )δ−1�(u, ζ )dζ , 0 < ζ < t,

�(u, ζ ), δ = 0.

Definition 2.2. ([35]) The ARA Ts of order m of the continuous mapping �(u, t) on the interval
J × [0, ∞) for t, is stated by

Gm
[
�(u, t)

] = s

∞∫
0

tm−1 exp(−st)�(u, t)dt, s > 0.

In the assertions that follow, we list a few ARA Ts ation fundamentals [35] that are crucial to our
studies.

Suppose that there are two continuous mappings �(u, t) and h̄(u, t) defined on J × [0, ∞) for
which the ARA Ts exists, then we have

(i) Gm

[
ā�(u, t) + b̄h̄(u, t)

] = āGm

[
�(u, t)

] + b̄Gm

[
h̄(u, t)

]
, where ā and b̄ are nonzero constants,

(ii) lim
s �→∞

G1

[
�(u, t)

] = �(u, 0), u ∈ J , s > 0,

(iii) G2

[
tδ
] = �(δ + 2)

sδ+1
, δ > 0, s > 0,

(iv) G1

[
D δ

t �(u, t)
] = sδG2

[
�(u, t)

] − sδ�(u, 0), δ ∈ (0, 1], u ∈ J , s > 0,

(v) G2

[
D δ

t �(u, t)
] = sδG2

[
�(u, t)

]−δsδ−1G1

[
�(u, t)

]+(δ−1)sδ−1�(u, 0), δ ∈ (0, 1], u ∈ J , s >

0,

(vi) G2

[
D 2δ

t �(u, t)
] = s2δG2

[
�(u, t)

] − 2δs2δ−1G1

[
�(u, t)

] + (2δ − 1)s2δ−1�(u, 0) + (δ −
1)sδ−1D δ

t �(u, 0), δ ∈ (0, 1], u ∈ J , s > 0,

(vii) lim
s �→∞

G2

[
�(u, t)

] = �(u, 0), u ∈ J , s > 0.

Theorem 2.3. ([25]) Assume there is a mapping �(u, t) with fractional power series (FPS)
representation at time t = 0, is defined as follows:

�(u, t) =
∞∑

m=0

ām(u)tmδ, δ ∈ (n − 1, n], n = 1, 2, ..., t ∈ [0, α].

For continuous mappings �(u, t) and Dmδ

t �(u, t) defined on J × [0, ∞), then the coefficients
ām(u) have the following formulation:

ām(u) = Dmδ

t �(u, 0)

�(mδ + 1)
, for m = 0, 1, 2, ...,
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where Dmδ

t = D δ

t .D δ

t ...D δ

t︸ ︷︷ ︸
m−times

.

Theorem 2.4. ([46]) Suppose there is a continuous mapping �(u, t) defined on J × [0, α] for which
the ARA Ts for the variable t occurs and is expressed by the FPS form

G2

[
�(u, t)

] =
∞∑

m=0

h̄m(u)

smδ+1
, δ ∈ (0, 1], u ∈ J and s > 0. (1)

Then

h̄m(u) = (mδ + 1)Dmδ

t �(u, 0). (2)

Remark 1. (a) The �th truncated series of the series interpretation (1) is stated as follows:

G2

[
�(u, t)

]
�
=

�∑
m=0

h̄m

smδ+1
. (3)

(b) For the ARA Ts of order two of the mapping �(u, t) has the series interpretations (1), then the
ARA Ts of order one can be written as follows:

G1

[
�(u, t)

] =
∞∑

m=0

h̄m

(mδ + 1)smδ
. (4)

and the �th truncated series is stated as follows:

p1G1

[
�(u, t)

]
�
=

�∑
m=0

h̄m

(mδ + 1)smδ
. (5)

(c) The inverse of the ARA Ts of order two for the FPS (1) is presented as follows:

�(u, t) = G −1
2

( ∞∑
m=0

h̄m

smδ+1

)
(t) =

∞∑
m=0

Dmδ

t �(u, 0)

�(mδ + 1)
tmδ. (6)

Theorem 2.5. ([46]) Assume that there is a continuous mapping �(u, t) defined on J × [0, α] for
which the ARA Ts for the variable t holds. Also, suppose that G1 has the subsequent series formulation:

G1

[
�(u, t)

] =
∞∑

m=0

Cm(u)

smδ
,

where Cm(u) = Dmδ

t �(u, 0).

If
∣∣G1

[
D (m+1)δ

t �(u, t)
]∣∣ ≤ M on s ∈ (0, d1], then the remainder R̄m(u, s) holds the subsequent

variant:

∣∣R̄m(u, s)
∣∣ ≤ M (u)

s(m+1)δ
, u ∈ J , s ∈ (0, d1].
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3 Configuring Series Findings of FPDEs

In this section, the new framework, ARARPSM, is used to effectively resolve fractional-order
PDEs of the form:

D δ

t �(u, t) = ∂ϒ(u, t)
∂u

, δ ∈ (0, 1], u ∈ J , t > 0 (7)

subject to the initial settings

�(u, 0) = x̄(u), D δ

t �(u, 0) = b̄(u), (8)

where ϒu signifies the nonlinear term relative to u of order r1, while D δ

t denotes the CFD of order δ

and �(u, t) is the known function depending on variable u and t, respectively.

This part explains the ARA-RPS approach to addressing time-fractional PDEs. The proposed
method relies on Taylor’s expansion to generate solitary solutions after applying the ARA Ts to the
governing formulation.

Taking the initial value problem (IVP) (7) and (8), we implement the ARARPSM.

Apply the ARA Ts of order two G2 on both sides of the equation with respect to the variable t
on (7)

G2

[
D δ

t �(u, t)
] = G2

(
Nu

[
�(u, t)

])
. (9)

In view of assertion (vi) and the initial conditions (8), then (9) reduces to

G2

[
�(u, t)

] − 2δ

s
G1

[
�(u, t)

] + 2δ − 1
s

ā(u) + δ − 1
sδ+1

b̄(u) − 1
s2δ

G2

[
Nu

(
G −1

2

[
G2

[
�(u, t)

]])]
= 0. (10)

Suppose that the respective series conceptions correspond to the ARA-RPS solution of formula
(9) has the following form:

G1

[
�(u, t)

] =
∞∑

m=0

h̄m(u)

(mδ + 1)smδ
, (11)

and

G2

[
�(u, t)

] =
∞∑

m=0

h̄m(u)

smδ+1
. (12)

Making the use of assertion (vii), we have

lim
s �→∞

sG2

[
�(u, t)

] = �(u, 0). (13)

Since h̄0(u) = ā(u). So that, the series expression (12) reduces to

G2

[
�(u, t)

] = a1(u)

s
+ h̄(u)

sδ+1
+

∞∑
m=2

h̄m(u)

smδ+1
. (14)
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To obtain h̄(u), taking product on both sides of (14) by sδ+1 and applying the limit as s �→ ∞,
we have

lim
s �→∞

sδ+1G2

[
�(u, t)

] = lim
s �→∞

sδā(u) + lim
s �→∞

sδ
h̄m(u)

smδ+1
.

or accordingly

h̄1(u) = lim
s �→∞

(
sδG2

[
�(u, t)

] − sδ−1ā(u)
)
.

Now, assertion (v) provides that

h̄1(u) = lim
s �→∞

s
(
G2

[
D δ

t �(u, t)
] + δsδ−1G1

[
�(u, t)

] − δsδ−1ā(u)
)

= lim
s �→∞

sG2

[
D δ

t �(u, t)
] + lim

s �→∞
δ
(

sδG1

[
D δ

t �(u, t)
] − sδā(u)

)
.

Employing assertion (iv), we attain

h̄1(u) = lim
s �→∞

sG2

[
D δ

t �(u, t)
] + δ lim

s �→∞
G1

[
D δ

t �(u, t)
]
.

Assertions (ii) and (vii) lead to

h̄1(u) = (δ + 1)D δ

t b̄(u).

Therefore, the ARA-RPS findings of (10) has the series formulations:

G1

[
�(u, t)

] = ā(u) + b̄(u)

sδ
+

∞∑
m=2

h̄m(u)

(mδ + 1)smδ
, (15)

G2

[
�(u, t)

] = ā(u)

s
+ (δ + 1)b̄(u)

sδ+1
+

∞∑
m=2

h̄m(u)

smδ+1
, (16)

and the �th truncated series expansion of (15) and (16) have the following interpretations:

G1

[
�(u, t)

]
�
= ā(u) + b̄(u)

sδ
+

�∑
m=2

h̄m(u)

(mδ + 1)smδ
, (17)

G2

[
�(u, t)

]
�
= ā(u)

s
+ (δ + 1)b̄(u)

sδ+1
+

�∑
m=2

h̄m(u)

smδ+1
. (18)

To determine the parameter estimates of series developments in (17) and (18), we describe the
ARA-residual component of (10), as shown

G2 Res(u, s) = G2

[
�(u, t)

] − 2δ

s
G1

[
�(u, t)

] + 2δ − 1
s

ā(u) + δ − 1
sδ+1

b̄(u)

+ 1
s2δ

G2

[
Nu

(
G −1

2

[
G2

[
�(u, t)

]])]
, (19)
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and the truncated �th residue function is

G2 Res�(u, s) = G2

[
�(u, t)

]
�
− 2δ

s
G1

[
�(u, t)

]
�
+ 2δ − 1

s
ā(u) + δ − 1

sδ+1
b̄(u)

+ 1
s2δ

G2

[
Nu

(
G −1

2

[
G2

[
�(u, t)

]
�

])]
, � = 2, 3, ... (20)

Multiplying both sides of (18) by s�δ+1, � = 2, 3, ... and applying the limit as s �→ ∞ will enable
you to identify the coefficients h̄m(u), m ≥ 2 in the series expansion (20). After that, we have

lim
s �→∞

s�δ+1G2 Res�(u, s) = 0, � = 2, 3, ...

The ARA-RPS solution can be found by releasing the evidence below:

(a1) G2 Res(u, s) = 0, u ∈ J , s > 0,

(b1) lim
��→∞

G2 Res�(u, s) = G2 Res(u, s), u ∈ J , s > 0,

(c1) lim
s �→∞

sG2 Res(u, s) = 0 and lim
s �→∞

G2 Res�(u, s) = 0, u ∈ J , s > 0,

(d1) lim
s �→∞

s�δ+1G2 Res(u, s) = lim
s �→∞

s�δ+1G2 Res�(u, s) = 0, u ∈ J , s > 0.

In order to achieve the solution of the IVP (7) and (8) in the feature space, the achieved coefficients
h̄m(u) are supplemented in the series findings (12), and then the inverse ARA Ts of order two G −1

2

is used.

4 Test Examples

Here, we take into consideration three well-known and significant time fractional PDEs with vary-
ing coefficients challenges in order to illustrate the effectiveness and appropriateness of ARARPSM.

Example 1. Assume the subsequent nonlinear time fractional (1 + 1) wave like equation [47]:

D 2δ

t �(u, t) − u2 ∂

∂u
�(u, t)

∂2

∂u2
�(u, t) + u2

( ∂2

∂u2
�(u, t)

)2

+ �(u, t) = 0, (21)

where δ ∈ (0, 1], u ∈ R and t ≥ 0 supplemented with initial conditions

�(u, 0) = 0, D δ

t �(u, 0) = u2. (22)

Proof. Implementing the ARA Ts of order two G2 on (21), we have

G2

[
D 2δ

t �(u, t)
]

− G2

[
u2 ∂

∂u
�(u, t)

∂2

∂u2
�(u, t)

]
+ G2

[
u2

( ∂2

∂u2
�(u, t)

)2
]

+ G2

[
�(u, t)

] = 0. (23)

It follows that

s2δG2

[
�(u, t)

] − 2δs2δ−1G1

[
�(u, t)

] + (2δ − 1)s2δ−1�(u, 0)

+ (δ − 1)sδ−1D δ

t �(u, 0) − G2

[
u2∂u

(
G −1

2

[
G2

[
�(u, t)

]])
∂2

u

(
G −1

2

[
G2

[
�(u, t)

]])]

+ G2

[
u2∂2

u

(
G −1

2

[
G2

[
�(u, t)

]])]
+ G2

[(
G −1

2

[
G2

[
�(u, t)

]])]
= 0. (24)
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After simplification, (24) reduces to

G2

[
�(u, t)

] − 2δ

s
G1

[
�(u, t)

] + 2δ − 1
s

�(u, 0) + δ − 1
sδ+1

D δ

t �(u, 0)

− 1
s2δ

G2

[
u2∂u

(
G −1

2

[
G2

[
�(u, t)

]])
∂2

u

(
G −1

2

[
G2

[
�(u, t)

]])]

+ 1
s2δ

G2

[
u2∂2

u

(
G −1

2

[
G2

[
�(u, t)

]])]
+ 1

s2δ
G2

[(
G −1

2

[
G2

[
�(u, t)

]])]
= 0. (25)

Suppose that the ARA-RPS result of (25) has the subsequent series expression:

G1

[
�(u, t)

] =
∞∑

m=0

h̄m(u)

(mδ + 1)smδ
, (26)

G2

[
�(u, t)

] =
∞∑

m=0

h̄m(u)

smδ+1
, (27)

and the �th truncated series of the expansion (26) and (27) are

G1

[
�(u, t)

]
�
=

�∑
m=0

h̄m(u)

(mδ + 1)smδ
, (28)

G2

[
�(u, t)

]
�
=

�∑
m=0

h̄m(u)

smδ+1
. (29)

Conducting product both sides of (29) by s and applying the limit as s �→ ∞, yields

lim
s �→∞

sG2

[
�(u, t)

]
�
= h̄0(u) + lim

s �→�

h̄m(u)

smδ
,

In view of the following assumption, we have

lim
s �→∞

sG2

[
�(u, t)

]
�
= �(u, 0)

and the initial settings mentioned in (22), we deduce that h̄0(u) = �(u, 0). Therefore, the series
expression stated in (29) reduces to

G2

[
�(u, t)

]
�
= �(u, 0) + h̄1(u)

sδ+1
+

�∑
m=2

h̄m(u)

smδ+1
. (30)

In order to evaluate h̄(u), taking product on both sides of (31) by sδ+1 and applying the limit as
s �→ ∞, to find

lim
s �→∞

sδ+1G2

[
�(u, t)

]
�
= lim

s �→∞
sδ�(u, 0) + h̄1(u) + lim

s �→∞

�∑
m=2

h̄m(u)

s(m−1)δ
.

Therefore, we have

lim
s �→∞

sδ+1G2

[
�(u, t)

]
�
= lim

s �→∞
sδ+1�(u, 0) + h̄1(u).



770 CMES, 2024, vol.138, no.1

It follows that

h̄1(u) = lim
s �→∞

s
(

sδG2

[
�(u, t)

]
�
− sδ−1�(u, 0)

)
.

Considering assertion (v) provides that

h̄(u) = lim
s �→∞

s
[
G2

[
D δ

t �(u, t)
]] + δsδ−1G2

[
�(u, t)

] − δsδ−1�(u, 0)

= lim
s �→∞

sG2

[
D δ

t �(u, t)
] + lim

s �→∞
δ
[
sδG1

[
�(u, t)

] − sδ�(u, 0)
]
.

Making the use of assertion (iv), gives

h̄1(u) = lim
s �→∞

s
[
G2

[
D δ

t �(u, t)
]] + δ lim

s �→∞
G1

[
D δ

t �(u, t)
]
.

Making the use of assertion (ii) and (vii) lead us

h̄1(u) = (δ + 1)u2.

Therefore, the ARA-RPS findings of (25) has the subsequent series formulations:

G1

[
�(u, t)

] = u2 +
∞∑

m=2

h̄m(u)

(mδ + 1)smδ
, (31)

G2

[
�(u, t)

] = (δ + 1)u2 +
∞∑

m=2

h̄m(u)

smδ+1
, (32)

and the �th truncated series of the expansions (31) and (32) have the formulation

G1

[
�(u, t)

]
�
= u2 +

�∑
m=2

h̄m(u)

(mδ + 1)smδ
, (33)

G2

[
�(u, t)

]
�
= (δ + 1)u2 +

�∑
m=2

h̄m(u)

smδ+1
. (34)

Furthermore, we classify the ARA-residue function of (25), then

G2 Res(u, s) = G2

[
�(u, t)

] − 2δ

s
G1

[
�(u, t)

] + 2δ − 1
s

�(u, 0) + δ − 1
sδ+1

u2

− 1
s2δ

G2

[
u2∂u

(
G −1

2

[
G2

[
�(u, t)

]])
∂2

u

(
G −1

2

[
G2

[
�(u, t)

]])]

+ 1
s2δ

G2

[
u2∂2

u

(
G −1

2

[
G2

[
�(u, t)

]])]
+ 1

s2δ
G2

[(
G −1

2

[
G2

[
�(u, t)

]])]
(35)
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and the �th ARA-residual mapping of (35) is

G2 Res�(u, s) = G2

[
�(u, t)

]
�
− 2δ

s
G1

[
�(u, t)

]
�
+ 2δ − 1

s
�(u, 0) + δ − 1

sδ+1
u2

− 1
s2δ

G2

[
u2∂u

(
G −1

2

[
G2

[
�(u, t)

]
�

])
∂2

u

(
G −1

2

[
G2

[
�(u, t)

]
�

])]

+ 1
s2δ

G2

[
u2∂2

u

(
G −1

2

[
G2

[
�(u, t)

]
�

])]
+ 1

s2δ
G2

[(
G −1

2

[
G2

[
�(u, t)

]
�

])]
. (36)

Utilizing the fact that

G2 Res(u, s) = 0, lim
s �→∞

G2 Res�(u, s) = 0,

lim
s �→∞

s�δ+1G2 Res(u, s) = lim
s �→∞

s�δ+1G2 Res�(u, s) = 0, � = 2, 3, ... .

In order to evaluate the second unknown coefficient h̄2(u) by inserting the second truncated series
G1

[
�(u, t)

]
2

and G2

[
�(u, t)

]
2

into the second ARA-residual function G2Res2(s) to find

G2 Res2(s) = G2

[
�(u, t)

]
2
− 2δ

s
G1

[
�(u, t)

]
2
+ 2δ − 1

s
�(u, 0) + δ − 1

sδ+1
u2

− 1
s2δ

G2

[
u2∂u

(
G −1

2

[
G2

[
�(u, t)

]
2

])
∂2

u

(
G −1

2

[
G2

[
�(u, t)

]
2

])]

+ 1
s2δ

G2

[
u2∂2

u

(
G −1

2

[
G2

[
�(u, t)

]
2

])]
+ 1

s2δ
G2

[(
G −1

2

[
G2

[
�(u, t)

]
2

])]
= 0. (37)

Plugging

G1

[
�(u, t)

]
2
= �(u, 0) + u2 + h̄2(u)

(2δ + 1)s2δ
,

G2

[
�(u, t)

]
2
= �(u, 0) + (δ + 1)u2 + h̄2(u)

s2δ+1

in (38) and simple computations yield

G2 Res2(s) = h̄2(u)

s2δ+1

(
1 − 2δ

2δ + 1

)
− 1

s2δ
G2

[
u2∂u(ϕ + φ + ψ)∂2

u (ϕ + φ + ψ)
]

+ 1
s2δ

G2

[
u2∂2

u (ϕ + φ + ψ)
]
,

where ϕ = 0, φ = u2
tδ

�(δ + 1)
and ψ = h̄2(u)t2δ

�(2δ + 2)
. After simplification and solving lim

s �→∞
G2

Res2(u, s) = 0 for h̄2(u), we have

h̄2(u) = 0.

Revisiting the analogous process, we can evaluate the coefficients of the series (26) as follows:

h̄3(u) = −3δ + 1
4

u2, h̄4(u) = 0, h̄5(u) = 5δ + 1
16

u2, h̄6(u) = 0, h̄7(u) = 7δ + 1
64

u2, ....
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Hence, the seventh approximate solution of (26) is

G2

[
�(u, t)

] = (δ + 1)u2

sδ+1
− (3δ + 1)u2

4s3δ+1
+ (5δ + 1)u2

16s5δ+1
− (7δ + 1)u2

64s7δ+1
. (38)

Applying the inverse ARA Ts G −1
2 on (38), we attain the seventh-order approximate solution in

the original space which takes the form

�(u, t) = u2

(
tδ

�(δ + 1)
− t3δ

�(3δ + 1)
+ t5δ

�(5δ + 1)
− t7δ

�(7δ + 1)
+ ...

)
. (39)

For integer-order solution, the approximated solution (39) reduces to

�(u, t) = u2

(
tδ

�(2)
− t3δ

�(4)
+ t5δ

�(5)
− t7δ

�(7)
+ ...

)

= u2 sin t. (40)

It is worth noting that the integer-order solution (40) coincides with the result proposed by
Khalouta et al. [47].

Example 2. Assume the subsequent nonlinear time fractional wave-like equation [47]:

D 2δ

t �(u, t) − (�(u, t))2 ∂2

∂u2

(
�u(u, t)�uu(u, t)�uuu(u, t)

)
− u2 ∂2

∂u2

(
�uu(u, t)

)3

+ 18�5(u, t) − �(u, t) = 0, (41)

where δ ∈ (0, 1], u ∈ R and t ≥ 0 supplemented with initial conditions

�(u, 0) = exp(u), D δ

t �(u, 0) = exp(u). (42)

Proof. Implementing the ARA Ts of order two G2 on (41), we have

G2

[
D 2δ

t �(u, t)
] − G2

[
(�(u, t))2 ∂2

∂u2

(
�u(u, t)�uu(u, t)�uuu(u, t)

)]

− G2

[
u2 ∂2

∂u2

(
�uu(u, t)

)3
]

+ 18G2

[
�5(u, t)

]
− G2

[
�(u, t)

] = 0. (43)

It follows that

s2δG2

[
�(u, t)

] − 2δs2δ−1G1

[
�(u, t)

] + (2δ − 1)s2δ−1�(u, 0) + (δ − 1)sδ−1D δ

t �(u, 0)

− G2

[
u2∂2

u

(
G −1

2

[
G2

[
�(u, t)

]])3]
+ 18

(
G2

[(
G −1

2

[
G2

[
�(u, t)

]])5])

− G2

[(
G −1

2

[
G2

[
�(u, t)

]])]
− G2

[(
G −1

2

[
G2

[
�(u, t)

]])2

∂u2
{
∂u

(
G −1

2

[
G2

[
�(u, t)

]])

× ∂2
u

(
G −1

2

[
G2

[
�(u, t)

]])
∂3

u

(
G −1

2

[
G2

[
�(u, t)

]])}]
= 0. (44)
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After simplification, (44) reduces to

G2

[
�(u, t)

] − 2δ

s
G1

[
�(u, t)

] + 2δ − 1
s

�(u, 0) + δ − 1
sδ+1

D δ

t �(u, 0)

− 1
s2δ

G2

[
u2∂2

u

(
G −1

2

[
G2

[
�(u, t)

]])3]
+ 18

s2δ

(
G2

[(
G −1

2

[
G2

[
�(u, t)

]])5])

− 1
s2δ

G2

[(
G −1

2

[
G2

[
�(u, t)

]])]
− 1

s2δ
G2

[(
G −1

2

[
G2

[
�(u, t)

]])2

∂u2
{
∂u

(
G −1

2

[
G2

[
�(u, t)

]])

× ∂2
u

(
G −1

2

[
G2

[
�(u, t)

]])
∂3

u

(
G −1

2

[
G2

[
�(u, t)

]])}]
= 0. (45)

Suppose that the ARA-RPS result of (45) has the subsequent series expression:

G1

[
�(u, t)

] =
∞∑

m=0

h̄m(u)

(mδ + 1)smδ
,

G2

[
�(u, t)

] =
∞∑

m=0

h̄m(u)

smδ+1
, u ∈ R, s > 0. (46)

Here, the expansions in (46) �th truncated series have the relatively similar reasoning as in Example
1 and result in the formation

G1

[
�(u, t)

]
�
= exp(u) + exp(u)

sδ
+

�∑
m=2

h̄m(u)

(mδ + 1)smδ
,

G2

[
�(u, t)

]
�
= exp(u)

s
+ (δ + 1)

exp(u)

sδ+1
+

�∑
m=2

h̄m(u)

smδ+1
. (47)

Introducing the �th ARA-residual function of (44), we have

G2 Res�(u, s)

= G2

[
�(u, t)

]
�
− 2δ

s
G1

[
�(u, t)

]
�
− 2δ − 1

s
exp(u) + δ − 1

sδ+1
exp(u)

− 1
s2δ

G2

[
u2∂2

u

(
G −1

2

[
G2

[
�(u, t)

]
�

])3]
+ 18

s2δ

(
G2

[(
G −1

2

[
G2

[
�(u, t)

]
�

])5])

− 1
s2δ

G2

[(
G −1

2

[
G2

[
�(u, t)

]
�

])]
− 1

s2δ
G2

[(
G −1

2

[
G2

[
�(u, t)

]
�

])2

∂u2
{
∂u

(
G −1

2

[
G2

[
�(u, t)

]
�

])

× ∂2
u

(
G −1

2

[
G2

[
�(u, t)

]
�

])
∂3

u

(
G −1

2

[
G2

[
�(u, t)

]
�

])}]
. (48)

Conducting product on both sides of (48) by s�δ+1, � = 2, 3, ... and applying limit as s �→ ∞ to
attain the coefficients h̄m(u) in the series expansion (46) as follows:

h̄2(u) = (2δ + 1) exp(x), h̄3(u) = (3δ + 1) exp(x), h̄4(u) = (4δ + 1) exp(x), h̄2(u) = (5δ + 1) exp(x),

h̄6(u) = (6δ + 1) exp(x), h̄7(u) = (7δ + 1) exp(x), ...
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Plugging the coefficients in the series expansion of G2

[
�(u, t)

]
, we acquire the seventh ARA-

approximate finding

G2

[
�(u, t)

] = exp(u)

s
+ (δ + 1) exp(u)

sδ+1
+ (2δ + 1) exp(u)

s2δ+1
+ (3δ + 1) exp(u)

s3δ+1
+ (4δ + 1) exp(u)

s4δ+1

+ (5δ + 1) exp(u)

s5δ+1
+ (6δ + 1) exp(u)

s6δ+1
+ (7δ + 1) exp(u)

s7δ+1
+ ... , (49)

Using the inverse ARA Ts of order two G −1
2 on (49), we arrive at the seventh approximation in the

original space, to attain

�(u, t) = exp(u)
(

1 + tδ

�(δ + 1)
+ t2δ

�(2δ + 1)
+ t3δ

�(3δ + 1)
+ t4δ

�(4δ + 1)
+ t5δ

�(5δ + 1)
+ t6δ

�(6δ + 1)

+ t7δ

�(7δ + 1)
+ ...

)
(50)

For integer-order solution, the approximated solution of (50) reduces to

�(u, t) = exp(u)
(

1 + t
�(2)

+ t2

�(3)
+ t3

�(4)
+ t4

�(5)
+ t5

�(6)
+ t6

�(7)
+ t7

�(8)
+ ...

)

= exp(u + t). (51)

It is worth noting that the integer-order solution (51) coincides with the result proposed by
Khalouta et al. [47].

Example 3. Assume the subsequent nonlinear time-fractional (2 + 1)-heat equation [48]:

D 2δ

t �(u, v, t) − 1
2

v2�uu(u, t) − 1
2

u2�vv(u, v, t) = 0, (52)

where δ ∈ (0, 1], u, v ∈ R2 and t ≥ 0 supplemented with initial conditions

�(u, v, 0) = v2. (53)

Proof. Implementing the ARA Ts of order two G2 on (52), we have

G2

[
D 2δ

t �(u, v, t)
]

− 1
2
G2

[
v2�uu(u, v, t)

]
− 1

2
G2

[
u2�vv(u, v, t)

]
= 0. (54)

It follows that

s2δG2

[
�(u, v, t)

] − 2δs2δ−1G1

[
�(u, v, t)

] + (2δ − 1)s2δ−1�(u, v, 0) + (δ − 1)sδ−1D δ

t �(u, v, 0)

− 1
2
G2

[
v2∂2

u

(
G −1

2

[
G2

[
�(u, v, t)

]])]
− 1

2
G2

[
u2∂2

v

(
G −1

2

[
G2

[
�(u, v, t)

]])]
= 0. (55)

After simplification, (55) reduces to

G2

[
�(u, v, t)

] − 2δ

s
G1

[
�(u, v, t)

] + 2δ − 1
s

�(u, v, 0) + δ − 1
sδ+1

D δ

t �(u, v, 0)

− 1
2s2δ

G2

[
v2∂2

u

(
G −1

2

[
G2

[
�(u, v, t)

]])]
− 1

2s2δ
G2

[
u2∂2

v

(
G −1

2

[
G2

[
�(u, v, t)

]])]
= 0. (56)
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Suppose that the ARA-RPS result of (56) has the subsequent series expression:

G1

[
�(u, v, t)

] =
∞∑

m=0

h̄m(u, v)
(mδ + 1)smδ

,

G2

[
�(u, v, t)

] =
∞∑

m=0

h̄m(u, v)
smδ+1

. (57)

Here, the expansions in (57) �th truncated series have the relatively similar reasoning as in Example
1 and result in the formation

G1

[
�(u, v, t)

]
�
= v2 + u2

sδ
+

�∑
m=2

h̄m(u, v)
(mδ + 1)smδ

,

G2

[
�(u, v, t)

]
�
= v2

s
+ (δ + 1)

u2

sδ+1
+

�∑
m=2

h̄m(u, v)
smδ+1

. (58)

Introducing the �th ARA-residual function of (57), we have

G2 Res�(u, v, s)

= G2

[
�(u, v, t)

]
�
− 2δ

s
G1

[
�(u, v, t)

]
�
− 2δ − 1

s
v2 + δ − 1

sδ+1
D δ

t �(u, v, 0)

− 1
2s2δ

G2

[
v2∂2

u

(
G −1

2

[
G2

[
�(u, v, t)

]
�

])]
− 1

2s2δ
G2

[
u2∂2

v

(
G −1

2

[
G2

[
�(u, v, t)

]
�

])]
. (59)

Conducting product on both sides of (59) by s�δ+1, � = 2, 3, ... and applying limit as s �→ ∞ to
attain the coefficients h̄m(u) in the series expansion (57) as follows:

h̄2(u, v) = (2δ + 1)v2, h̄3(u, v) = (3δ + 1)u2, h̄4(u, v) = (4δ + 1)v2, h̄2(u, v) = (5δ + 1)u2,

h̄6(u, v) = (6δ + 1)v2, h̄7(u, v) = (7δ + 1)u2, ... .

Plugging the coefficients in the series expansion of G2

[
�(u, t)

]
, we acquire the seventh ARA-

approximate finding

G2

[
�(u, v, t)

] = v2

s
+ (δ + 1)u2

sδ+1
+ (2δ + 1)v2

s2δ+1
+ (3δ + 1)u2

s3δ+1
+ (4δ + 1)v2

s4δ+1

+ (5δ + 1)u2

s5δ+1
+ (6δ + 1)v2

s6δ+1
+ (7δ + 1)u2

s7δ+1
+ ... . (60)

Using the inverse ARA Ts of order two G −1
2 on (60), we arrive at the seventh approximation in the

original space, to attain

�(u, v, t) = v2
(

1 + t2δ

�(2δ + 1)
+ t4δ

�(4δ + 1)
+ t6δ

�(6δ + 1)
+ ...

)

+ u2
( tδ

�(δ + 1)
+ t3δ

�(3δ + 1)
+ t5δ

�(5δ + 1)
+ t7δ

�(7δ + 1)
+ ...

)
. (61)
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For integer-order solution, the approximated solution of (61) reduces to

�(u, v, t) = v2
(

1 + t2

�(3)
+ t4

�(5)
+ t6

�(7)
+ ...

)
+ u2

( t
�(2)

+ t3

�(4)
+ t5

�(6)
+ t7

�(8)
+ ...

)

= v2 cosh t + u2 sinh t. (62)

It is worth noting that the integer-order solution (62) coincides with the result proposed by
Khan et al. [48].

Example 4. Assume the subsequent nonlinear time-fractional (3 + 1) wave-like equation [48,49]:

D 2δ

t �(u, v, w, t) − 1
2

u2�uu(u, v, w, t) − 1
2

v2�vv(u, v, w, t) − 1
2

w2�ww(u, v, w, t)

− (u2 + v2 + w2) = 0, (63)

where δ ∈ (0, 1], u, v, w ∈ R3 and t ≥ 0 supplemented with initial conditions

�(u, v, w, 0) = 0, D δ

t �(u, v, w, 0) = u2 + v2 − w2. (64)

Proof. Implementing the ARA Ts of order two G2 on (63), we have

G2

[
D 2δ

t �(u, v, w, t)
]

− 1
2
G2

[
u2�uu(u, v, w, t)

]
− 1

2
G2

[
v2�vv(u, v, w, t)

]

− 1
2
G2

[
w2�ww(u, v, w, t)

]
− G2

[
u2 + v2 + w2

] = 0. (65)

It follows that

s2δG2

[
�(u, v, w, t)

] − 2δs2δ−1G1

[
�(u, v, w, t)

] + (2δ − 1)s2δ−1�(u, v, w, 0)

+ (δ − 1)sδ−1D δ

t �(u, v, w, 0) − 1
2
G2

[
u2∂2

u

(
G −1

2

[
G2

[
�(u, v, w, t)
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− 1
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v2∂2

v
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G −1

2

[
G2

[
�(u, v, w, t)

]])]
− 1
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G2
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w2∂2

w

(
G −1

2

[
G2

[
�(u, v, w, t)

]])]
− G2

[
u2 + v2 + w2

] = 0. (66)

After simplification, (66) reduces to

G2

[
�(u, v, w, t)

] − 2δ

s
G1

[
�(u, v, w, t)

] + 2δ − 1
s

�(u, v, w, 0) + δ − 1
sδ+1

D δ

t �(u, v, w, 0)

− 1
2s2δ

G2

[
u2∂2

u

(
G −1

2

[
G2

[
�(u, v, w, t)

]])]
− 1

2s2δ
G2

[
v2∂2

v

(
G −1

2

[
G2

[
�(u, v, w, t)

]])]

− 1
2s2δ

G2

[
w2∂2

w

(
G −1

2

[
G2

[
�(u, v, w, t)

]])]
− 1

s2δ
G2

[
u2 + v2 + w2

] = 0. (67)
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Suppose that the ARA-RPS result of (67) has the subsequent series expression:

G1

[
�(u, v, w, t)

] =
∞∑

m=0

h̄m(u, v, w)

(mδ + 1)smδ
,

G2

[
�(u, v, w, t)

] =
∞∑

m=0

h̄m(u, v, w)

smδ+1
. (68)

Here, the expansions in (68) �th truncated series have the relatively similar reasoning as in Example
1 and result in the formation

G1

[
�(u, v, w, t)

]
�
= (u2 + v2 + w2) + (u2 + v2 − w2)

sδ
+

�∑
m=2

h̄m(u, v, w)

(mδ + 1)smδ
,

G2

[
�(u, v, w, t)

]
�
= (u2 + v2 + w2)

s
+ (δ + 1)

(u2 + v2 − w2)

sδ+1
+

�∑
m=2

h̄m(u, v, w)

smδ+1
. (69)

Introducing the �th ARA-residual function of (67), we have

G2 Res�(u, v, w, s)

= G2

[
�(u, v, w, t)

]
�
− 2δ

s
G1

[
�(u, v, w, t)

]
�
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s
(u2 + v2 + w2) + δ − 1

sδ+1
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2s2δ
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[
u2∂2

u

(
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2

[
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[
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]
�

])]
− 1

2s2δ
G2

[
v2∂2

v

(
G −1

2

[
G2

[
�(u, v, w, t)

]
�

])]

− 1
2s2δ

G2

[
w2∂2

w

(
G −1

2

[
G2

[
�(u, v, w, t)

]
�

])]
. (70)

Conducting product on both sides of (70) by s�δ+1, � = 2, 3, ... and applying limit as s �→ ∞ to
attain the coefficients h̄m(u) in the series expansion (68) as follows:

h̄2(u) = (2δ + 1)(u2 + v2 + w2), h̄3(u) = (3δ + 1)(u2 + v2 − w2), h̄4(u) = (4δ + 1)(u2 + v2 + w2),

h̄5(u) = (5δ + 1)(u2 + v2 − w2), h̄6(u) = (6δ + 1)(u2 + v2 + w2), h̄7(u) = (7δ + 1)(u2 + v2 − w2), ... .

Plugging the coefficients in the series expansion of G2

[
�(u, v, w, t)

]
, we acquire the seventh ARA-

approximate finding

G2

[
�(u, t)

] = (u2 + v2 + w2)

s
+ (δ + 1)(u2 + v2 − w2)

sδ+1
+ (2δ + 1)(u2 + v2 + w2)

s2δ+1

+ (3δ + 1)(u2 + v2 − w2)

s3δ+1
+ (4δ + 1)(u2 + v2 + w2)

s4δ+1
+ (5δ + 1)(u2 + v2 − w2)

s5δ+1

+ (6δ + 1)(u2 + v2 + w2)

s6δ+1
+ (7δ + 1)(u2 + v2 − w2)

s7δ+1
+ ... . (71)
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Using the inverse ARA Ts of order two G −1
2 on (71), we arrive at the seventh approximation in the

original space, to attain

�(u, v, w, t) = (u2 + v2 + w2)
( t2δ

�(2δ + 1)
+ t4δ

�(4δ + 1)
+ t6δ

�(6δ + 1)
+ ...

)

+ (u2 + v2 − w2)
( tδ

�(δ + 1)
+ t3δ

�(3δ + 1)
+ t5δ

�(5δ + 1)
+ t7δ

�(7δ + 1)
+ ...

)
. (72)

For integer-order solution, the approximated solution of (72) reduces to

�(u, v, w, t) = (u2 + v2 + w2)
( t2

�(3)
+ t4

�(5)
+ t6

�(7)
+ ...

)
+ (u2 + v2 − w2)

( t
�(2)

+ t3

�(4)
+ t5

�(6)
+ ...

)

= (u2 + v2 + w2)(cosh t − 1) + (u2 + v2 − w2) sinh t. (73)

It is worth noting that the integer-order solution (73) coincides with the result proposed by [48,49].

Example 5. Assume the subsequent 2D nonlinear time-fractional wave-like equation [47]:

D 2δ

t �(u, v, t) − ∂2

∂u∂v

(
�uu(u, v, t)�vv(u, v, t)

)

+ ∂2

∂u∂v

(
uv�u(u, v, t)�v(u, v, t)

) + �(u, v, t) = 0, (74)

where δ ∈ (0, 1], u, v ∈ R2 and t ≥ 0 supplemented with initial conditions

�(u, v, 0) = exp(uv), D δ

t �(u, v, 0) = exp(uv). (75)

Proof. Implementing the ARA Ts of order two G2 on (74), we have

G2

[
D 2δ

t �(u, v, t)
]

− G2

[ ∂2

∂u∂v
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] = 0. (76)

It follows that
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[(
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2
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G2

[
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]])]
= 0. (77)
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After simplification, (77) reduces to
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= 0. (78)

Suppose that the ARA-RPS result of (78) has the subsequent series expression:

G1

[
�(u, v, t)

] =
∞∑

m=0

h̄m(u, v)
(mδ + 1)smδ

,

G2

[
�(u, v, t)

] =
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h̄m(u, v)
smδ+1

. (79)

Here, the expansions in (79) �th truncated series have the relatively similar reasoning as in Example
1 and result in the formation

G1

[
�(u, v, t)

]
�
= exp(uv) + exp(uv)

sδ
+

�∑
m=2

h̄m(u, v)
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,
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+
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smδ+1

. (80)

Introducing the � th ARA-residual function of (79), we have
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])(
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. (81)

Conducting product on both sides of (81) by s�δ+1, � = 2, 3, ... and applying limit as s �→ ∞ to
attain the coefficients h̄m(u) in the series expansion (79) as follows:

h̄2(u) = −(2δ + 1) exp(uv), h̄3(u) = −(3δ + 1) exp(uv), h̄4(u) = (4δ + 1) exp(uv),

h̄5(u) = (5δ + 1) exp(uv), h̄6(u) = −(6δ + 1) exp(uv), h̄7(u) = −(7δ + 1) exp(uv), ... .
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Plugging the coefficients in the series expansion of G2

[
�(u, t)

]
, we acquire the seventh ARA-

approximate finding

G2

[
�(u, v, t)

] = exp(uv)
s

+ (δ + 1) exp(uv)
sδ+1

− (2δ + 1) exp(uv)
s2δ+1

− (3δ + 1) exp(uv)
s3δ+1

+ (4δ + 1) exp(uv)
s4δ+1

+ (5δ + 1) exp(uv)
s5δ+1

− (6δ + 1) exp(uv)
s6δ+1

− (7δ + 1) exp(uv)
s7δ+1

+ ... . (82)

Using the inverse ARA Ts of order two G −1
2 on (82), we arrive at the seventh approximation in the

original space, to attain

�(u, v, t) = exp(uv)
(

1 − t2δ

�(2δ + 1)
+ t4δ

�(4δ + 1)
− t6δ

�(6δ + 1)
+ ...

)

+ exp(uv)
( tδ

�(δ + 1)
− t3δ

�(3δ + 1)
+ t5δ

�(5δ + 1)
− t7δ

�(7δ + 1)
+ ...

)
. (83)

For integer-order solution, the approximated solution of (83) reduces to

�(u, v, t) = exp(uv)
(

1 − t2

�(3)
+ t4

�(5)
+ t6

�(7)
+ ...

)
+ exp(uv)

( t
�(2)

− t3

�(4)
+ t5

�(6)
+ ...

)

= exp(uv)(cos t + sin t). (84)

It is worth noting that the integer-order solution (84) coincides with the result proposed by
Khalouta et al. [47].

5 Numerical Simulation and Performance Techniques

Here, the consequences of the approximate and exact solutions to the approaches presented in
Examples 1–5 are evaluated graphically and numerically in this portion. In the context of an infinite
fractional power series, it is critical to supply the approximation inconsistencies of the estimated
solution provided by ARARPSM. To illustrate the precision and competence of ARARPSM, we used

the residual, mean absolute deviation (MAD): MADT�(u,t) =
μ∑

�=1

∣∣∣T�(u,t) − TExact

∣∣∣, Theil’s inequality

coefficient (TIC): TICT�(u,t) =

√
1
μ

∑μ

�
(T�(u,t) − TExact)

2

(√
1
μ

∑μ

�=1 T2
�(u,t) +

√
1
μ

∑μ

�=1 T2
Exact

) , variance adjusted for (VAF):

VAFT�(u,t) =
(

1 − Var(T�(u,t) − TExact)

Var(T�(u,t))

)
× 100, EVAF�(u,t) = ∣∣100 − VAFT�(u,t)

∣∣, and semi-interquartile

range (SIR): S.I .R = −1
2

× (Q1 − Q3), where Q1 represents the 1st-quartile and Q3 denotes the 3rd-

quartile, alongside their global depictions.

The approximate results produced using the suggested procedure and the accurate solving
Examples 1–5 are compared in Figs. 1–5a via a two-dimensional plot. From Figs. 1–5a, it can be seen
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that the analytical seventh-order solutions at δ = 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, and 1.0 congregate
to the actual solutions at δ = 1. Moreover, the presented strategy’s authenticity and appropriateness
are confirmed by the fact that the seventh-order approximations at δ = 0.1 interplay also with actual
findings at δ = 1.0. The potency of the suggested procedure is validated by the Tables 1–4, which show
that the approximations are very close to the exact solutions.

(a) (b)

Figure 1: Graphical illustrations for Example 1. (a) Two-dimensional plots for various values of
fractional-order in comparison with the exact solution. (b) Histogram plots on the mean, mean-
deviation, semi-interquartile range and standard deviation

(a) (b)

Figure 2: Graphical illustrations for Example 2. (a) Two-dimensional plots for various values of
fractional-order in comparison with the exact solution. (b) Histogram plots on the mean, mean-
deviation, semi-interquartile range and standard deviation
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(a) (b)

Figure 3: Graphical illustrations for Example 3. (a) Two-dimensional plots for various values of
fractional-order in comparison with the exact solution. (b) Histogram plots on the mean, mean-
deviation, semi-interquartile range and standard deviation

(a) (b)

Figure 4: Graphical illustrations for Example 4. (a) Two-dimensional plots for various values of
fractional-order in comparison with the exact solution. (b) Histogram plots on the mean, mean-
deviation, semi-interquartile range and standard deviation

Figs. 1–5b show the visual display of the statistical efficiency interventions along with their
analysis on histograms for the results of the ARARPSM for the proposed dynamical systems.
However, the ideal outcomes are depicted by exact and approximated values are discovered around
10−05−10−04, whereas the worst findings are represented in form of mean 10−04−1000, that are encountered
around 10−04 − 1000. Achievements for M.D, S.I.R., and SD are discovered around 10−08 − 10−05,
respectively. The effectiveness of the ARARPSM, which is based on statistical formulation and solves
the system dynamics in Examples 1–5, can clearly be seen to be valuable and worthwhile. For the
dynamical framework Examples 1–5, indicating the wave-like and heat models, key parameters on
the computation of global operators, such as MAD, EVAF, and T.I.C for numerous implementations
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analysis of the suggested ARARPSM are reported in Table 5. Hence, the MED terms of global TIC,
MAD and EVAF physical quantities reside 10−7−10−8, 10−9−10−10, and 10−9−10−10, respectively, whilst
the global S.I.R formula of TIC, MAD and EVAF reside 10−5 −10−6, 10−9 −10−10, and 10−9 −10−10,
respectively for Examples 1–5 dynamical framework. The correlation has proven that the indicated
method and [29,47–49] produce the same results, demonstrating the efficiency and dependability of
the ARARPSM.

(a) (b)

Figure 5: Graphical illustrations for Example 5. (a) Two-dimensional plots for various values of
fractional-order in comparison with the exact solution. (b) Histogram plots on the mean, mean-
deviation, semi-interquartile range and standard deviation

Table 1: Comparison of statistical data analysis presentations of the time-fractional nonlinear (1 + 1)

wave-like system in Example 1 that depend on the fractional-order and averages such as mean, mean
deviation, semi-inter quartile range, and standard deviation with different values of t, u and the results
proposed by [47]

t u Exact [47] �(u, t) Mean M.D S.I.R S.D

0.01 0.1 9.999833E-05 1.000486E-04 1.000235E-04 2.514448E-08 5.028896E-08 3.555966E-02
0.05 0.2 1.999167E-03 1.999850E-03 1.999508E-03 3.413755E-07 6.827510E-07 4.827779E-07
0.1 0.3 8.985007E-03 8.987445E-03 8.986226E-03 1.218566E-06 2.437132E-06 1.723313E-06
0.15 0.4 2.391010E-02 2.391558E-02 2.391284E-02 2.741670E-06 5.483340E-06 3.877307E-06
0.2 0.5 4.966733E-02 4.967721E-02 4.967227E-02 4.938210E-06 9.876420-06 6.983684E-06
0.25 0.6 8.906543E-02 8.908097E-02 8.907320E-02 7.771985E-06 1.554397E-06 1.099125E-06
0.3 0.7 1.448049E-01 1.448272E-01 1.448161E-01 1.115065E-05 2.230130E-05 1.576940E-05
0.35 0.8 2.194546E-01 2.194845E-01 2.194695E-01 1.493080E-05 2.986160E-05 2.111534E-05
0.4 0.9 3.154289E-01 3.154667E-01 3.154478E-01 1.892245E-05 3.784490E-05 2.676039E-05
0.45 1.0 4.349655E-01 4.350113E-01 4.349884E-01 2.289255E-05 4.578510E-05 3.237495E-05
0.5 1.1 5.801049E-01 5.801580E-01 5.801315E-01 2.656935E-05 5.313870E-05 3.757474E-05
0.55 1.2 7.526696E-01 7.527289E-01 7.526993E-01 2.964530E-05 5.929060E-05 4.192479E-05
0.6 1.3 9.542458E-01 9.543093E-01 9.542776E-01 3.178115E-05 6.356230E-05 4.494533E-05

(Continued)
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Table 1 (continued)

t u Exact [47] �(u, t) Mean M.D S.I.R S.D

0.65 1.4 1.186165E-00 1.186231E-00 1.186198E-00 3.260850E-05 6.521700E-05 4.611538E-05
0.7 1.5 1.449490E-00 1.449553E-00 1.449522E-00 3.172950E-05 6.345900E-05 4.487229E-05
0.75 1.6 1.744995E-00 1.745053E-00 1.745024E-00 2.871950E-05 5.743900E-05 4.061551E-05
0.8 1.7 2.073159E-00 2.073205E-00 2.073182E-00 2.311900E-05 4.623800E-05 3.269520E-05
0.85 1.8 2.434149E-00 2.434177E-00 2.434163E-00 1.442700E-05 2.885400E-05 2.040286E-05
0.9 1.9 2.827810E-00 2.827814E-00 2.827812E-00 2.084500E-06 4.169000E-06 2.947928E-06
0.95 2.0 3.253662E-00 3.253633E-00 3.253647E-00 2.910300E-05 2.910300E-05 2.057893E-05
1 2.1 4.410000E-00 3.710815E-00 3.710851E-00 3.624750E-05 7.249500E-05 5.126171E-05

Table 2: Comparison of statistical data analysis presentations of the time-fractional nonlinear wave-
like system in Example 2 that depend on the fractional-order and averages such as mean, mean
deviation, semi-inter quartile range, and standard deviation with different values of t, u and the results
proposed by [47]

t u Exact [47] �(u, t) Mean M.D S.I.R S.D

0 0.1 1.116278E-00 1.116284E-00 1.116281E-00 2.809500E-06 5.619000E-06 3.973233E-06
0.05 0.2 1.284025E-00 1.284048E-00 1.284036E-00 1.105300E-05 2.210600E-05 1.563130E-05
0.1 0.3 1.491825E-00 1.491866E-00 1.491845E-00 2.064150E-05 4.128300E-05 2.919149E-05
0.15 0.4 1.733253E-00 1.733314E-00 1.733284E-00 3.062700E-05 6.125400E-05 4.331312E-05
0.2 0.5 2.013753E-00 2.013834E-00 2.013793E-00 4.060100E-05 8.120200E-05 5.741848E-05
0.25 0.6 2.339647E-00 2.339744E-00 2.339696E-00 4.867700E-05 9.735400E-05 6.883967E-05
0.3 0.7 6.883967E-00 2.718383E-00 2.718333E-00 5.067750E-05 1.013550E-04 7.166881E-05
0.35 0.8 3.158193E-00 3.158270E-00 3.158232E-00 3.877100E-05 7.754200E-05 5.483047E-05
0.4 0.9 3.669297E-00 3.669296E-00 3.669296E-00 4.685000E-07 9.370000E-07 6.625591E-07
0.45 1.0 4.263115E-00 4.263114E-00 4.263026E-00 8.879326E-05 1.775865E-04 1.255726E-04
0.5 1.1 4.953032E-00 4.952512E-00 4.952772E-00 2.599950E-04 5.199900E-04 3.676885E-04
0.55 1.2 6.685894E-00 6.683738E-00 6.684816E-00 1.078262E-03 2.156523E-03 1.524892E-03
0.6 1.3 7.389056E-00 7.386673E-00 7.387864E-00 1.191664E-03 2.383328E-03 1.685267E-03
0.65 1.4 7.767901E-00 7.765396E-00 7.766648E-00 1.252762E-03 2.505524E-03 1.771673E-03
0.7 1.5 9.025013E-00 9.018607E-00 9.021810E-00 3.203264E-03 6.406528E-03 4.530099E-03
0.75 1.6 1.048557E+01 1.047522E+01 1.048039E+01 5.177180E-03 1.035436E-02 7.321638E-03
0.8 1.7 1.218249E+01 1.216626E+01 1.217438E+01 8.118480E-03 1.623696E-02 1.148126E-02
0.85 1.8 1.415404E+01 1.412920E+01 1.414162E+01 1.242043E-02 2.484086E-02 1.756514E-02
0.9 1.9 1.644465E+01 1.640742E+01 1.642603E+01 1.861197E-02 3.722395E-02 2.632131E-02
0.95 2.0 2.008554E+01 2.001367E+01 2.004960E+01 3.593303E-02 7.186605E-02 5.081697E-02
1 2.1 2.219795E+01 2.211853E+01 2.215824E+01 3.971214E-02 7.942427E-02 5.616144E-02
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Table 3: Comparison of statistical data analysis presentations of the time-fractional nonlinear (2 +
1) heat system in Example 3 that depend on the fractional-order and averages such as mean, mean
deviation, semi-interquartile range, and standard deviation with different values of t, u and the results
proposed by [48]

t u Exact [47] �(u, t) Mean M.D S.I.R S.D

0 0.1 1.010050E-02 1.010055E-02 1.010053E-02 2.542000E-08 5.084000E-08 3.594931E-08
0.05 0.2 1.201334E-02 1.201404E-02 1.201368E-02 3.473400E-07 6.946800E-07 4.912129E-07
0.1 0.3 1.906505E-02 1.906755E-02 1.906630E-02 1.250750E-06 2.501500E-06 1.768828E-06
0.15 0.4 3.420281E-02 3.420853E-02 3.420567E-02 2.858695E-06 5.717390E-06 4.042805E-06
0.2 0.5 6.053467E-02 6.053522E-02 6.053994E-02 5.275635E-06 1.055127E-05 7.460875E-06
0.25 0.6 1.012546E-01 1.012717E-01 1.012632E-01 8.586400E-06 1.717280E-05 1.214300E-05
0.3 0.7 1.596683E-01 1.596941E-01 1.596812E-01 1.286555E-05 2.573110E-05 1.819464E-05
0.35 0.8 2.392202E-01 2.392566E-01 2.392384E-01 1.817890E-05 3.635780E-05 2.570885E-05
0.4 0.9 3.435201E-01 3.435693E-01 3.435447E-01 2.457595E-05 2.457595E-05 3.475564E-05
0.45 1.0 4.763717E-01 4.764359E-01 4.764038E-01 3.206875E-05 6.413750E-05 4.535206E-05
0.5 1.1 6.418016E-01 6.418828E-01 6.418422E-01 4.059165E-05 8.118330E-05 5.740526E-05
0.55 1.2 9.286358E-01 9.287375E-01 9.286867E-01 5.085205E-05 1.017041E-04 7.191566E-05
0.6 1.3 1.189691E-00 1.189810E-00 1.189751E-00 5.937750E-05 1.187550E-04 8.397247E-05
0.65 1.4 1.499376E-00 1.499508E-00 1.499442E-00 6.622050E-05 1.324410E-04 9.364993E-05
0.7 1.5 1.863159E-00 1.863298E-00 1.863229E-00 6.915400E-05 1.383080E-04 9.779852E-05
0.75 1.6 2.286926E-00 2.287055E-00 2.286990E-00 6.466750E-05 1.293350E-04 9.145366E-05
0.8 1.7 2.777010E-00 2.777105E-00 2.777058E-00 4.743350E-05 9.486700E-05 6.708110E-05
0.85 1.8 3.111651E-00 3.111757E-00 3.111704E-00 5.312550E-05 1.062510E-04 7.513080E-05
0.9 1.9 3.720056E-00 3.720078E-00 3.720067E-00 1.065150E-05 2.130300E-05 1.506350E-05
0.95 2.0 4.412800E-00 4.412666E-00 4.412733E-00 6.663150E-05 1.332630E-04 9.423117E-05
1 2.1 5.197677E-00 5.197607E-00 5.197872E-00 1.957552E-04 3.915103E-04 2.768396E-04

Table 4: Comparison of statistical data analysis presentations of the time-fractional nonlinear (3 + 1)

wave-like system in Example 4 that depend on the fractional-order and averages such as mean, mean
deviation, semi-inter quartile range, and standard deviation with different values of t, u with v = w =
0.1 and the results proposed by [48,49]

t u Exact [47] �(u, t) Mean M.D S.I.R S.D

0 0.1 −1.970033E-
04

−1.970972E-
04

−1.970972E-
04

4.695340E-08 9.390680E-08 9.390680E-08

0.05 0.2 6.127318E-04 6.127827E-04 6.127572E-04 2.545110E-08 5.090220E-08 3.599329E-08
0.1 0.3 6.710589E-03 6.702677E-03 6.706633E-03 3.955988E-06 7.911975E-06 5.594611E-06
0.15 0.4 2.194014E-02 2.187288E-02 2.190651E-02 3.363096E-05 6.726192E-05 4.756136E-05
0.2 0.5 5.031395E-02 5.003262E-02 5.017328E-02 1.406631E-04 2.813261E-04 1.989276E-04
0.25 0.6 9.624144E-02 9.540298E-02 9.582221E-02 4.192266E-04 8.384532E-04 5.928760E-04
0.3 0.7 1.645621E-01 1.625251E-01 1.635436E-01 1.018510E-03 2.037020E-03 1.440391E-03

(Continued)
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Table 4 (continued)

t u Exact [47] �(u, t) Mean M.D S.I.R S.D

0.35 0.8 2.605814E-01 2.562710E-01 2.584262E-01 2.155220E-03 4.310441E-03 3.047942E-03
0.4 0.9 3.901091E-1 3.818569E-01 3.859830E-01 4.126096E-03 8.252193E-03 5.835181E-03
0.45 1.0 5.595004E-01 5.448596E-01 5.521800E-01 7.320432E-03 1.464086E-02 1.035265E-02
0.5 1.1 7.757012E-01 7.512359E-01 7.634686E-01 1.223262E-02 2.446524E-02 1.729954E-02
0.55 1.2 1.046295E-00 1.007345E-00 1.026820E-00 1.947473E-02 3.894946E-02 2.754143E-02
0.6 1.3 1.379554E-00 1.319976E-00 1.349765E-00 2.978913E-02 5.957826E-02 4.212819E-02
0.65 1.4 1.784497E-00 1.696375E-00 1.740436E-00 4.406114E-02 8.812227E-02 6.231186E-02
0.7 1.5 2.270945E-00 2.144281E-00 2.207613E-00 6.333178E-02 1.266636E-01 8.956466E-02
0.75 1.6 3.127613E-00 2.911992E-00 3.019803E-00 1.078105E-01 2.156209E-01 1.524670E-01
0.8 1.7 3.862072E-00 3.570003E-00 3.570003E-00 1.218731E-01 2.437462E-01 1.723546E-01
0.85 1.8 4.719973E-00 4.335886E-00 4.527929E-00 1.920436E-01 3.840872E-01 2.715907E-01
0.9 1.9 6.194920E-00 6.194920E-00 6.194908E-00 1.249617E-05 2.499233E-05 1.767225E-05
0.95 2.0 6.334165E-00 5.839840E-00 6.087003E-00 2.471625E-01 4.943250E-01 3.495405E-01
1 2.1 7.569550E-00 7.569550E-00 7.569535E-00 1.444928E-05 2.889856E-05 2.043437E-05

Table 5: Comparison of statistical data analysis presentations of the time-fractional nonlinear wave-
like system in Example 5 that depend on the fractional-order and averages such as mean, mean
deviation, semi-inter quartile range, and standard deviation with different values of t, u with v = 0.2
and the results proposed by [47]

t u Exact [47] �(u, t) Mean M.D S.I.R S.D

0 0.1 1.020104E-00 1.020105E-00 1.020103E-00 2.511500E-06 5.023000E-06 3.551797E-0
0.05 0.2 1.069915E-00 1.069932E-00 1.069923E-00 8.207000E-06 1.641400E-05 1.160645E-05
0.1 0.3 1.128180E-00 1.128205E-00 1.128193E-00 1.229350E-05 2.458700E-05 1.738563E-05
0.15 0.4 1.184660E-00 1.184690E-00 1.184675E-00 1.454750E-05 2.909500E-05 2.057327E-05
0.2 0.5 1.239171E-00 1.239202E-00 1.239186E-00 1.548500E-05 3.097000E-05 2.189910E-05
0.25 0.6 1.291529E-00 1.291560E-00 1.291545E-00 1.536600E-05 3.073200E-05 2.173081E-05
0.3 0.7 1.341554E-00 1.341583E-00 1.341568E-00 1.435750E-05 2.871500E-05 2.030457E-05
0.35 0.8 1.389067E-00 1.389092E-00 1.389080E-00 1.259200E-05 2.518400E-05 2.518400E-05
0.4 0.9 1.433893E-00 1.433913E-00 1.433903E-00 1.019000E-05 2.038000E-05 1.441084E-05
0.45 1.0 1.475859E-00 1.475874E-00 1.475866E-00 7.284500E-06 1.456900E-05 1.030184E-05
0.5 1.1 1.514798E-00 1.514806E-00 1.514802E-00 4.033500E-06 8.067000E-06 5.704230E-06
0.55 1.2 1.550547E-00 1.550548E-00 1.550548E-00 6.435000E-07 1.287000E-06 9.100464E-07
0.6 1.3 1.571905E-00 1.571899E-00 1.571902E-00 2.596000E-06 5.192000E-06 E3.671298-06
0.65 1.4 1.611844E-00 1.611834E-00 1.611839E-00 5.374000E-06 1.074800E-05 7.599984E-06
0.7 1.5 1.637094E-00 1.637080E-00 1.637087E-00 7.151500E-06 1.430300E-05 1.011375E-05
0.75 1.6 1.658555E-00 1.658541E-00 1.658548E-00 7.309500E-06 1.461900E-05 1.033719E-05
0.8 1.7 1.676095E-00 1.676085E-00 1.676090E-00 5.008500E-06 1.001700E-05 7.083089E-06
0.85 1.8 1.689589E-00 1.689591E-00 1.689590E-00 8.185000E-07 1.637000E-06 1.157534E-06
0.9 1.9 1.698919E-00 1.698942E-00 1.698931E-00 1.153700E-05 2.307400E-05 1.631578E-05

(Continued)
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Table 5 (continued)

t u Exact [47] �(u, t) Mean M.D S.I.R S.D

0.95 2.0 1.703977E-00 1.704035E-00 1.704006E-00 2.885400E-05 5.770800E-05 4.080572E-05
1 2.1 1.430530E-00 1.431059E-00 1.430794E-00 2.645520E-04 5.291040E-04 3.741330E-04

The accuracy, exactness, and efficacy of the interconnected supercomputing algorithms of
ARARPSMA for tackling the nonlinear wave-likeand heat-like systems are further indicated by
standard measures such as G-TIC, G-MAD, and G-EVAF that are similar to their optimal setting.

Eventually, the major aspects of the ARA-PSM are as follows, as shown by the numerical,
graphically and statistical outcomes: The suggested approach is a methodical, potent, and essential
component for fractional-order PDEs estimated and exact solutions. The resilience of the mechanism
lies in the fact that the presented strategy requires very few estimations than established computational
models and is therefore more precise and cost-effective. In comparison to the variational iteration
mechanism and the Adomian decomposition technique, the envisaged technique has the opportunity
that it can help address computational complexity avoiding the He’s polynomials or Adomian
polynomials. The proposed method is founded on a latest iteration of Taylor’s series that yields a
convergent series as a solution. When determining the coefficient values for a succession such as the
RPSM, the fractional derivatives must be calculated every time. We only require to perform a handful
calculations to obtain the coefficients because ARARPSM only necessitates the idea of an infinite
threshold. The relatively high level of exactness has been affirmed by the statistical analysis. To lesser
estimations and iterative process actions, we came to the conclusion that the envisaged methodology
is a practical and effective approach for tackling some categories of fractional-order PDEs.

Table 6: Complex nonlinear system’s objective measurements for Examples 1–5 statistical data analysis
comparison

(G-TIC) (G-TIC) (G-MAD) (G-MAD) (G-EVAF) (G-EVAF)
Mean S.I.R Mean S.I.R Mean S.I.R

Example 1 1.67345E-05 2.87591E-06 2.84167-10 5.020103E-09 1.511500E-08 2.023000E-07
Example 2 1.78320E-06 2.4356E-07 3.55324E-09 5.069923E-09 1.207000E-08 2.641400E-07
Example 3 1.80000E-05 2.19945E-06 3.87954E-09 5.128193E-09 3.229350E-09 3.458700E-08
Example 4 1.88040E-05 3.87045E-06 3.18490E-09 7.184675E-09 2.454750E-08 3.909500E-08
Example 5 1.93220E-05 3.96513E-06 3.239202E-09 8.239186E-09 2.548500E-08 2.097000E-07

6 Conclusion

In this paper, we presented a novel methodology for addressing fractional-order PDEs with
variable coefficients in the context of a Caputo fractional derivative employing the ARA Ts and
RPSM. Using the ARARPSM, we were able to address several dynamical fractional PDEs as well
as illustrate a novel algorithm regarding them. Statistical or mathematical outcomes serve as evidence
of the ARARPSM’s effectiveness. Complex nonlinear systems’ objective measurements for Examples
1–5 statistical data analysis comparison have been provided in Table 6, which shows how the measure
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of dispersion has a significant impact on the proposed findings. These graphs and tables show that the
ARARPSM’s approximations and the corresponding exact solutions are in good accordance with each
other. Additionally, the MAD, TIC and EVAF formulation significance levels confirm the effectiveness
of tackling the multidimensional fractional-order PDEs. Its accuracy and value are verified by
assertions made utilizing statistical identifiers for various independent implementations employing
the suggested ARARPSM predicted on the mean, mean deviation, S.I.R and S.D infiltrators. The
error estimates for the projected framework range from 10−6 to 10−9. The supremacy and efficacy
of the comprehensive simulation for ARARPSM addressing the fractional PDES are also revealed
by global measures such as G-TIC, G-MAD, and G-EVAF that are connected to their simultaneous
optimization. The most important aspect of this procedure is that there are no minor or major tangible
parameterized assumptions in the concern. Finally, it is applicable to both tenuous and powerfully
multidimensional challenges, tackling several of the underlying limitations of classical variational
methods. Based on the consequences obtained, we deduced that our proposed methodology is easy
to execute, reliable, versatile and convenient. In the future, the algorithmic ARARPSM functionalities
will be capable of tackling epidemiological research [16], complex nonlinear PDES [31,44] and fluid-
flow problems [50].
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