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ABSTRACT

With the development of big data and social computing, large-scale group decision making (LGDM) is now merging
with social networks. Using social network analysis (SNA), this study proposes an LGDM consensus model that
considers the trust relationship among decision makers (DMs). In the process of consensus measurement: the social
network is constructed according to the social relationship among DMs, and the Louvain method is introduced to
classify social networks to form subgroups. In this study, the weights of each decision maker and each subgroup
are computed by comprehensive network weights and trust weights. In the process of consensus improvement:
A feedback mechanism with four identification and two direction rules is designed to guide the consensus of
the improvement process. Based on the trust relationship among DMs, the preferences are modified, and the
corresponding social network is updated to accelerate the consensus. Compared with the previous research, the
proposed model not only allows the subgroups to be reconstructed and updated during the adjustment process, but
also improves the accuracy of the adjustment by the feedback mechanism. Finally, an example analysis is conducted
to verify the effectiveness and flexibility of the proposed method. Moreover, compared with previous studies, the
superiority of the proposed method in solving the LGDM problem is highlighted.

KEYWORDS
Large-scale group decision making; social network updating; trust relationship; group consensus; feedback
mechanism

1 Introduction

Due to the increasing complexity of the social and economic environment, it is increasingly
difficult to rely on a single decision maker (DM) to make effective decisions. Therefore, many
organizations use multiple members in the decision-making process, which is called group decision
making (GDM). GDM is a participatory process, which selects the best solution from alternatives
by considering the personal opinions of multiple experts [1]. However, with the rapid development
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of technology and society [2], the group sizes have gradually become larger and more complex [3,4].
Generally, a group with more than 20 members is defined as a large-scale group.

In the background of LGDM, decision makers (DMs) may have diverse opinions because of the
different knowledge and experience. Therefore, how to help DMs reach consensus becomes a key issue.
In order to deal with the complexity and uncertainty of the LGDM problem, this study starts from
the following aspects: the dimensional reduction of large-scale DMs [5], the consensus measure and
the improving method.

The dimensional reduction of large-scale DMs. There are two main directions for reducing the
size of large-scale DMs. The one is based on the department or field in which the DM belongs.
For example, Liu et al. [6] classified the DMs according to the DMs’ school, and determined the
percentage distribution on evaluations of each group concerning each alternative. The characteristics
of this direction are simple and convenient. But in the real process, judgment information given by
the same type of DMs is not necessarily the same. Therefore, the clustering method based on the
evaluation value or preference value of DM is used to reduce the dimension of large-scale DMs.
For example, Wu et al. [7] used the k-means method to cluster a large amount of hesitant fuzzy
preference information and improved consensus level based on three-level consensus measures and
a local feedback strategy. Yang et al. [8] investigated the additive consistency of the intuitionistic
fuzzy preference relations in group decision making using T-normalized intuitionistic fuzzy priority
vectors. In the above studies, DMs are considered as independent individuals. However, there are social
relationships among DMs, especially the trust relationship which is clearly existed and important in
reality.

Social networking applications generate a huge amount of data daily. Meanwhile, social networks
(SNs) have become a growing field of research due to the heterogeneity of data and structures, as
well as their size and dynamics [9]. Some studies have proven the advantages of social networking,
such as social network-based recommendation systems [10–12], online review websites incorporating
the social-networking function [3,13], collaborative networks in the con53text of publications and
citations [14,15], preventing the spread of rumors and misinformation by identifying influencers [16–
19]. Information on SNs can not only enrich and improve the DMs’ preference information, promote
and accelerate consensus reaching process, but more importantly, reduce the dimension of large-scale
DMs. Trust is a special case in social relations, and some studies have also analyzed the impact of
trust relations on clustering [20,21]. Therefore, in the framework of social network-group decision
making (SN-GDM), it is novel and feasible to use trust relationship as a reliable source of member
weight information. However, most existing studies only consider the trust relationship between
nodes without considering the trust degree of different nodes; they also ignore the generation process
of relationship network, and cannot automatically cluster in the process of dimension reduction.
In addition, previous studies that applied SNA to large group networks did not consider network
construction and update based on DMs feedback, except for the trust relationship among DMs.

The consensus measure and improving method. On the one hand, an interesting issue within the
group decision theory is the consensus measure, and the key of the problem is how to determine
the DMs’ weight and subgroup weight in the process of decision matrix aggregation. In GDM,
the decision matrix is generally aggregated through subjective or objective weighting to perform
consensus measures. In particular, expert weights may be adjusted during the consensus reaching
process. Pang et al. [22] developed an extended TOPSIS method and aggregation-based method for
multi-attribute group decision making (MAGDM) with probabilistic linguistic information in the case
where the attribute weights are unknown and partially known. Wu et al. [23] used trust score values
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to assign importance weights to experts. For LGDM, the weight of individual DMs and the weight
of each subgroup need to be determined after clustering. For example, Wu et al. [5] determined the
expert weight through the centrality of the network. Wu et al. [7] determined the subgroup weight
based on the number of experts in the subgroup. Shi et al. [24] used a uniform aggregation operator to
update the weights in the consensus reaching process (CRP). According to the above research, group
consensus can be improved quickly by adjusting the weight of DMs and subgroups in the CRP. This is
also in line with reality. The influence of some DMs may increase in the process of DM interactions,
resulting in the corresponding changes in weights. Although the above studies involve weight changes
in the CRP, the trust relationship between DMs is rarely considered. Generally speaking, DM with
strong trust relationships has a greater influence. In the process of interaction, DMs with strong trust
relationships will affect the preferences of DMs with weaker trust relationships.

On the other hand, scholars have proposed consensus improvement methods for LGDM con-
sensus problems [7,25–28], which are mainly divided into automatic methods [29,30] and interactive
methods [31,32]. The automatic feedback mechanism saves time because it does not require additional
expert interaction to carry out the consensus-improving process. For example, Zhang et al. [33]
proposed an automatic feedback mechanism for group decision making based on the distribution
linguistic preference relations. Perez et al. [34] overcame the problem of the moderator, giving a way to
use an automatic system to compute and send customized advice to the experts if there is not enough
consensus. The interactive feedback mechanism requires expert interaction, which takes more time but
the results obtained are more accurate. For example, for the cooperative and noncooperative behaviors
of experts, Quesada et al. [35] introduced a method to deal with noncooperative behaviors, which
used an informal weighted scheme to assign weights to experts. Gou et al. [36] built a consensus-
reaching model of noncooperative behavior and deal with noncooperative behavior and preference
information. In addition, Gou et al. [37] used multi-stage interactive consensus reaching algorithms to
deal with multi-expert decision making problems with language preference ordering. For the dynamic
adjustment process of consensus reaching, in [1], a non-linear programming model was constructed
to dynamically adjust the experts’ weights in consensus reaching process. Wu et al. [7] proposed
an LGDM consensus model which allowed clusters change. And as the clusters changed in every
interactive consensus round, the consensus process evolution could be captured. Besides, some studies
have also considered social networks. For example, in [5], after the feedback mechanism is executed,
clustering and consensus measures are performed again, the process of consensus improvement is
not involved. However, the social network was applied in [5] which applied IT2-TOPSIS to obtain
the optimal solution directly. In the above research on consensus improving, social networks, trust
networks, interaction rules, and the update and optimization of the entire network structure in the
adjustment process are rarely considered. However, in the actual adjustment process, it is necessary
to consider the acceptability of information and let DMs with higher trust interact with each other.
The interaction process will inevitably lead to changes in the trust relationship among members of the
large group. Therefore, it is necessary to consider the update of the trust network in the process of
consensus improvement.

Trust relationships have been applied in various fields and have brought great benefits to various
industries. In the business field, marketing methods such as fan economy, word-of-mouth bonus, media
marketing, onlookers, and participation experience have brought unexpected dividends to enterprises
in the era of mobile internet. Among them, the cultivation of trust relationships is the key, and trust
is the core of this emotional marketing. Similarly, in academia, the citation relationship between
different scholars also reflects the trust between each other, which may further lead to collaboration
relationships. In politics, the trust relationship between voters will also greatly affect the election
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results. Therefore, it is necessary to consider the trust relationship and trust network in LGDM.
In addition, considering trust networks based on group classification of decision makers can better
reflect the trust relationship, and the trust degree and the degree of information difference can be
better reflected in the group consensus. Considering trust relationships can achieve more effective
interactions in the feedback adjustment process.

In view of the necessity of trust in decision making, this study will take the trust relationship
through the entire decision-making process, from social network construction and clustering to
weight determination and consensus measurement, as well as consensus reaching process and network
updating. In comparison with the previous consensus model, the consensus model proposed in this
study has some distinctive features:

First, in previous studies, the SNA was typically used to simply represent the relationship of
DMs. It did not really combine the actual social activities of the DMs. Considering the social trust
relationships between DMs for the LGDM, this study builds a social network between DMs and uses
the Louvain method to detect community based on the trust relationship.

Second, in the process of determining the weight of individual DMs and the weight of each
subgroup, the trust weight and the network weight are fully considered. Compared with weights
based on network degree centrality or subgroup size, it is more convincing to assign weights based
on trust relationships and to make corresponding weight changes in the feedback adjustment process.
In addition, the weight for individual DMs and the weight of each subgroup will update accordingly
in the consensus reaching process.

Third, the proposed model allows for changes in the trust network. Individuals are able to modify
their preferences in the reaching consensus process, so the trust relationship will change, which will
make the number of subgroups and members of each subgroup likely to change. In addition, the
consensus rules and adjustment rules proposed in the model are simple and can be used to guide
modifications.

The remainder of this study is organized as follows. Section 2 introduces related concepts, such as
social relationship and social impact analysis, possibility distribution based on hesitant fuzzy elements,
and probability distribution based on fuzzy preference relations. Section 3 presents the proposed SNA-
based LGDM method. In Section 4, an illustrative example is provided to show the applicability
of the proposed method. Section 5 compares and analyzes the similarities and differences between
the proposed method and the other methods in detail, cutting from the three perspectives of trust
relationship, social network and subgroup classification method. Finally, Section 6 concludes this
paper with future perspectives.

2 Preliminaries
2.1 Measurement of Trust among DMs

In this study, we distinguish senders and receivers of social ties, which means the DM’s online
network is directed. The in-degree of a DM refers to the social ties that the DM has received from
other DMs. The out-degree indicates the social ties that the DM has sent to other DMs [38]. The
definitions of in-degree centrality and out-degree centrality are described as follows.

Definition 1 [39]: Let G = (E, L) be a directed graph, E = {e1, e2, . . . , em} be the set of nodes and
L = {

l1, . . . , lr, . . . , lq

}
be the set of directed edge between pairs of nodes.
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(1) The number of edges originating from node er is called the out-degree centrality index of the
node er.

d+ (er) =
∑m

t=1
a (er, et) (1)

where d+ (er) represents the out-degree centrality of the DM er. If there is a link from er to et, then
a (er, et) = 1; Otherwise a (er, et) = 0.

(2) The number of edges terminating from the node er is called the in-degree centrality index of
the node er.

d− (er) =
∑m

t=1
a (et, er) (2)

where d− (er) represents the in-degree centrality of the DM er. If there is a link from et to er, then
a (et, er) = 1; otherwise a (et, er) = 0.

The relationship strength between members shows the level of trust between those members [38].
Within online social networks, members can declare friendship with one another by establishing social.
If two DMs have more common social connections in an online social network, we can conclude that
they have deeper social ties. This study uses degree centrality to calculate social connection strength
between er and eh [22]:

SCrh = nrh

d+ (er) + d+ (eh) − 2 − nrh

(3)

where nrh is the number of common social connections between er and eh, which is measured by the
number of common edges of er and eh. The more common social connections of er and eh are the
stronger the social tie between er and eh is.

Social interaction strength is a combination of time length, emotional intensity, intimacy (mutual
confiding), and reciprocal services that characterize the ties [40]. This study measures interaction
strength between er to eh by interaction frequency frh. Normalized interaction strength between er and
eh is calculated by:

SIrh = frh − f min
r

f max
r − f min

r

(4)

where f max
r and f min

r are the maximum interaction frequency and minimum interaction frequency from
er ∼ to other DM et, t ∈ {1, 2, . . . , m}, respectively. Interaction frequency SIrh is assumed to be fixed
during the decision-making process. Note that interaction strength SIrh may not be the same as SIhr.
The reason is that SIrh refers to interaction strength between er and eh evaluated by er, while SIhr is
interaction strength between eh and er evaluated by eh.

Let λ be a weight for balancing the importance of connection strength and interaction strength.
For example, λ < 0.5 reflects that the interaction strength is more informative than connection
strength. In this paper, λ takes 0.4. The strength of social ties between er and eh (evaluated by er) is
defined by aggregating the connection strength and interaction strength of er and eh:

TSrh = λSCrh + (1 − λ) SIrh (5)

2.2 Possibility Distribution Based Hesitant Fuzzy Element
Let X = {x1, x2, . . . , xn} (n ≥ 2) be a finite set of alternatives. E = {e1, . . . , er, . . . , em} is a set

of DMs.
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Each DM gives a judgment on the various alternatives. As we know, preference relations are a
classical and powerful preference structure to represent the preferences in GDM problems. Fuzzy
preference relations (FPR) have been found to be effective when dealing with uncertain information
[41–45]. Therefore, this study uses FPR to represent each DM’s opinion on alternatives X .

Definition 2 [7]: A FPR on X is represented by a matrix B = (
bij

)
n×n

⊂ X × X , where bij =
μB

(
xi, xj

) ∈ [0, 1] indicates the assessment for the pair
(
xi, xj

)
. In addition, the additive reciprocity

holds, that is, bij + bji = 1, i, j = 1, 2, . . . , n.

Definition 3 [7]: The possibility distribution-based hesitant fuzzy element (PDHFE) can be
expressed as follows:

h (p) = {hl (pl) |l = 1, 2, . . . , #h} (6)

where hl, l = 1, 2, . . . , #h are the membership degrees and #h is the cardinality of h. pl denotes the
possibility of hl. If there is only one membership value in a given PDHFE, then the bracket can be
dropped; for example, we have 0.5 = 0.5 = 0.5(1). For simplicity, h (p) = hp.

Definition 4 [7]: A PDFPR on X is given by the matrix H = (
hpij

)
n×n

⊂ X × X , where hpij ={
hl

ij

(
pl

ij

) |l = 1, 2, . . . , #hpij

}
is a PDHFE. Moreover, the hpij meets the following conditions:

hl
ij + h

#hpij−l+1

ji = 1, hij = 0.5 (7)

pl
ij = p

#hpij−l+1

ji , hl
ij ≤ hl+1

ij , i, j = 1, 2, . . . , n (8)

where hl
ij is the lth possible value of hij and pl

ij is the probability of hl
ij.

Definition 5 [7]: The expected value or mean for hp can be defined as follows:

Expect (hp) =
∑#hp

l=1
hlpl (9)

Definition 6 [7]: The distance between hp(1) and hp(2) is defined as follows:

d
(
hp(1), hp(2)

) =
∑#hp(1)

l1=1

∑#hp(2)

l2=1
p(1)

l1
× p(2)

l2
|h(1)

l1
− h(2)

l2
| (10)

where hp(1) = {
h(1)

l p(1)

l |l = 1, 2, . . . , #hp(1)
}

and hp(2) = {
h(2)

l p(2)

l |l = 1, 2, . . . , #hp(2)
}

are two PDHFEs. It
is easy to see that 0 ≤ d

{
hp(1), hp(2)

} ≤ 1.

3 Consensus Framework and Model for the LGDM
3.1 Problem Description and Consensus Framework

Suppose that there are m DMs who provide their preferences for n alternatives, and the preference
relations of DMs can be expressed by FPR. Where E = {e1, e2, . . . , em} represents m DMs, X =
{x1, x2, . . . , xn} represents n alternatives. The pairwise comparison matrix given by the decision maker
is denoted as Bk = (

bk
ij

)
n×n

, k = 1, 2, . . . , m. This study also collects the number of likes and reviews
that the DMs interact with other members in their daily lives, and counts the frequency of interaction
between DMs. A trust network is constructed by calculating the degree of trust by the interaction
frequency between DMs. For the three aspects mentioned in the introduction, the paper will take the
following solutions, and Fig. 1 illustrates the overall solution clearly:



CMES, 2024, vol.138, no.1 435

(1) Firstly, according to the social relations between DMs, a directed social relationship network
can be constructed. Then the trust relationships among the members are calculated. Using the Louvain
method which has been widely used in large-scale network community detection [46], the large-scale
social network is divided into several subgroups. This part is detailed in Section 3.2.

(2) Secondly, the weight of the DMs in the subgroup and the weight of each subgroup based
on trust relationships are calculated by combining the SNA and the Louvain method, then the
consensus index is obtained. Details of trust weight determination and consensus measure are given
in Section 3.3.

(3) Thirdly, if the group consensus does not reach the predefined threshold, the feedback
mechanism considering the trust relationship between the members is used to adjust the consensus
until the threshold is reached, and the network will change during this process. Details of the consensus
reaching process are given in Section 3.4.

(4) Finally, the DMs’ preferences are aggregated according to the network relations, and the
alternatives are sorted to select the best ones.

Social relations between DMs
�Directed trust network

The end

Select the best alternative(s)
Louvain method

��Community detection

The feedback mechanism and 
changeable network

The DMs weight and subgroup 
weight considering trust
�Consensus index

Figure 1: The overall solution for LGDM problems based on trust relation and changeable network

3.2 Trust Weight Determination and Consensus Measure
In determining the weight of individual DM and the weight of each subgroup, compared with

weighting based on network degree centrality or subgroup size, the trust weight and the network weight
are fully considered. Firstly, this study uses the Louvain method to classify DMs, and obtains the
comprehensive weight of each DM by the network weights and trust weights. Then, based on the
reciprocal of the distance from each subgroup to the network center, the weight of each subgroup is
calculated. Finally, based on the work of Herrera-Viedma et al. [47], the main steps of the consensus
measure are listed. In addition, the weights for individual DM and the weight of each subgroup will
change accordingly in the consensus reaching process.

3.2.1 Trust Network and Louvain Method in Community Detection

Community, also called a cluster or module, is a group of vertices which probably share common
properties. Community detection refers to the recognition of modules and their boundaries based on
the structural positions of vertices and the classification of vertices [48]. The community detection
method is the key based on a trust network for DMs to reduce dimensionality clustering. Some
methods have been developed, such as the GN method [49], the spin-glass method [50], the random
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walk community detection [51], the label propagation method [52] and so on. The Louvain method is
a commonly used community detection method, which is based on the modularity theory proposed by
Blondel et al. [46]. This method is an agglomerative clustering algorithm, which reveals the complete
hierarchical community structure of the network and can cluster subgroups automatically without
setting the initial number of subgroups. Therefore, this study uses the Louvain method for DMs in
LGDM problems.

Assuming that a network has t nodes, the algorithm of the Louvain method can be expressed as
follows [39]:

Step 1: Each node in the network is treated as a separate community. In the beginning, the number
of communities is the same as the number of nodes.

Step 2: Assign each node to the community according to the node near each node, calculate the
value of ΔQ before and after the module allocation, and record the maximum ΔQ value of the node.
If maxΔQ > 0, then the node d̂α is assigned to the community where the node with the maximum ΔQ
value is located, otherwise, it will remain unchanged.

The definition of ΔQ is as follows:

ΔQ =
[∑

in + 2êr,in

2m
−

(∑
tot + êr

2m

)]
−

[∑
in

2m
−

(∑
tot

2m

)2

−
(

êr

2m

)2
]

where
∑

in is the total degree of all edges in the community c,
∑

tot is the total degree of all
edge associated to the node in the community c, êr,in is the number of edges of the node from node
er (r = 1, 2, . . . , m) to all nodes in the community c, m is the number of all edges in the network.

Step 3: Repeat Step 2 until the network in the community no longer changes.

Step 4: Streamline the entire network and treat the nodes in a community as a new node. The
weights between nodes within the community are converted to the weights of the new nodes. The
weights between the edges of the community are converted to weights between the edges of the new
nodes. The boundary value of the weight is 1.

Step 5: Repeat Steps 1–4 until the modules of the entire network no longer change.

3.2.2 The Comprehensive Weight of Each Decision Maker

(1) Network weights of each DM

Set V nodes in the network. Firstly, the degree centrality CD (er) and the eigenvector centrality
CE (er) of each node er (r = 1, 2, . . . , m) are calculated by using Pajek software, and then they are
standardized [5]:

C ′
D(er) = CD (er)∑m

r=1 CD (er)
(11)

C ′
E (er) = CE (er)∑m

r=1 CE (er)
(12)

Combining the normalized degree centrality C ′
D(er) with the eigenvector centrality C ′

E (er), calcu-
late the mixed center degree CF (er) of the node er (r = 1, 2, . . . , m):

CF (er) = σC ′
D

(
er

) + (1 − σ) C ′
E (er) (13)

According to [49], the value of σ is generally 0.5.
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Suppose that m nodes in the network are divided into p subgroups, and there are s nodes in the
subgroup Gk (1 ≤ k ≤ p), the network weight of the node er (er ∈ ck, 1 ≤ r ≤ s) can be calculated as:

wr1
= CF (er)∑s

r=1 CF (er)
(14)

(2) Trust weights of each DM

Assigning weight to each DM is an important part of the decision-making process and plays a key
role in obtaining the final solution. For online social networks, historical interaction information can
provide a reliable source for accessing DMs.

Social influence is defined as the individual’s thoughts, feelings, attitudes or behaviors can affect
others when interacting with other individuals or groups. DMs with higher social impact have the
ability to influence the opinions of other members [47]. Using social network analysis techniques,
the social impact of each DM in the group can be obtained. The more social relations a person has
with others, the more influence the decision maker will be. In the social network analysis method,
the centrality of the in-degree is used to quantify the social influence of DM in a network, and the
social influence can reflect the importance of DM to a certain extent. Therefore, the social impact of
er, r = 1, 2, . . . , m is defined by Eq. (15), and the trust weight is determined by Eq. (16).

d ′− (er) = 1
m − 1

∑m

h=1
TShr, ∀r = 1, 2, . . . , m (15)

wr2
= d ′− (er)∑m

h=1 d ′− (er)
, ∀r = 1, 2, . . . , m (16)

Then the comprehensive weight of each DM can be calculated as w = θwr2
+ (1 − θ) wr1

.

3.2.3 The Weight of Each Subgroup

The network weight between subgroups can be calculated from the reciprocal of the distance from
each subgroup to the network center. The further the distance, the smaller the weight. The main steps
for calculating weights are shown below [5]:

Step 1: Calculate the fusion centrality of the network.

CF = 1
|M|

∑
r∈M

CF (er) (17)

where M = {e1, e2, . . . , er, . . . , et} represents all nodes of the network.

Step 2: Calculate the fusion centrality of each subgroup.

Ck
F = 1

|Sk|
∑
r∈Sk

CF (er) (18)

where M = {
S1 ∪ S2 ∪ . . . ∪ Sk ∪ . . . ∪ Sp

}
, Sk = {e1, e2, . . . , er, . . . , es}, |Sk| represents the number of

all nodes of the subgroup ck, er is the nodes in the subgroup ck.

Step 3: Calculate the relative distance λ′
k of CF (ck) and CF in community ck.

λ′
k = 1

|Ck
F − CF | (19)
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Step 4: Standardize the weight λ′
k.

λ′
k = λ′

k∑p

k=1 λ′
k

(20)

The trust relation between subgroups can be reconstructed by treating all nodes in a subgroup as
a new node, and then calculating the trust weights between subgroups. Finally, the network weights
and trust weights of the subgroups are integrated, and the comprehensive weights of the subgroups
are obtained.

Next, the consensus measure will be computed based on Ht, t = 1, 2, . . . , K . Based on the work of
Herrera-Viedma et al. [47], the main steps of the consensus measure are as follows:

Step 1: Calculate the similarity matrix. Let Hk = (
hpij,k

)
n×n

and Ht = (
hpij,t

)
n×n

correspond
to the probability distribution of subgroup Gk and Gt based on the fuzzy preference relationship.
Where hpij,k = {

hl
ij,k

(
pl

ij,k

) |l = 1, 2, . . . , #hpij,k

}
or hpij,t = {

hl
ij,t

(
pl

ij,t

) |l = 1, 2, . . . , #hpij,t

}
is a probability

distribution based on hesitant fuzzy elements. For each pair of subgroups Gk and Gt(k < t, t ∈
{1, 2, . . . , K}), the similarity matrix SMkt = (

smkt
ij

)
n×n

is calculated as follows:

SMkt =
⎛
⎜⎝

− · · · smkt
1n

...
. . .

...
smkt

n1 · · · −

⎞
⎟⎠ (21)

where smkt
ij is the similarity of the subgroups Gk and Gt with respect to the alternatives

(
xi, xj

)
, i, j =

1, 2, . . . , n. According to definition 6, smkt
ij can be expressed as follows:

smkt
ij = 1 − d

(
hpij,k, hpij,t

) =
∑#hpij,k

l1=1

∑#hpij,t

l2=1
pij,k

l1
× pij,t

l2
|hij,k

l1
− hij,t

l2
| (22)

Step 2: Calculate the consensus matrix. By aggregating the similarity matrix of each pair of
subgroups (Gk, Gt), a consensus matrix CM = (

cmij

)
n×n

can be obtained. Then this study normalizes
the weights of the subgroup pairs (Gk, Gt), ωkt is defined as follows:

ωkt = wGk
wGt∑K−1

k=1

∑K

t=k+1 wGk
wGt

(23)

cmij can be expressed as follows:

cmij =
∑K−1

k=1

∑K

t=k+1
ωktsmkt

ij (24)

Step 3: Calculate the large-scale group consensus index (LGCI).

(1) Calculate the consensus degree of the pair of alternatives. The consensus degree cpij of the
alternatives pair

(
xi, xj

)
can be obtained from the consensus matrix CM = (

cmij

)
n×n

. cpij can be
expressed as follows:

cpij = cmij, i, j = 1, 2, . . . , n, i 
= j (25)

(2) Calculate the consensus degree of the alternatives. The consensus degree cai, i = 1, 2, . . . , n of
each alternative xi can be calculated as follows:

cai =
∑n

j=1,j 
=i cpij

n − 1
(26)
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(3) Calculate the consensus degree of the preference relationship. This study refers to the consensus
degree of the large group preference relationship as the consensus index LGCI, and the formula is as
follows:

LGCI =
∑n

i=1 cai

n
(27)

3.3 Consensus Reaching Process Based on Social Network Updating
Based on the above discussion, this study can get consensus at different levels. Assume LGCI

is a predefined threshold. If LGCI ≥ LGCI , all DMs reach a higher level of consensus and the
consensus adjustment process ends. Otherwise, this study will adjust the preference values of DMs
with low consensus. In this section, this study proposes a feedback mechanism to help DMs in each
subgroup change their preferences based on [37]. The mechanism consists of four identification rules
and two direction rules to detect which subgroups need to change their preferences, and the DMs’
preference relations will change during identification, clustering, and location.

Moreover, the strength of ties between members shows the trust degree between those members.
DMs with strong trust relationships have a greater impact. In the process of interaction, DMs with
strong trust relationships will affect the preferences of DMs with weaker trust relationships. At the
same time, the trust relation between DMs will also change. Therefore, this study will reflect the results
of the feedback in the social network and change the connection between DMs to achieve a higher
consensus faster according to the trust relationship between DMs.

3.3.1 Identification Rules

The identification rules can obtain alternative comparison pairs, subgroups, and DMs continu-
ously and accurately. Therefore, DMs can change their preferences in a precise way.

Identification Rule 1: Identify alternatives whose preferences need to be changed. The identified
alternatives can be expressed as follows:

ALT =
{

xi|cai < LGCI , i = 1, 2, . . . , n
}

(28)

Identification Rule 2: Identify the locations that need to be changed. For any xi ∈ ALT , the
identified set of locations can be expressed as follows:

Posi =
{
(i, j) |xi ∈ ALT ∧ cpij < LGCI , i < j

}
(29)

Identification Rule 3: Determine the ideal and non-ideal sets for each identified part. For (i, j) ∈
Posi, ideal set CLU+

ij and non-ideal set CLU−
ij can be expressed as follows:

CLU+
ij =

{
Gk+

(
xi, xj

) |k+ =argmax
k

{∑K

t=1,t
=k
smtk

ij

}}
(30)

CLU−
ij = {G1, G2, . . . , Gk}\CLU+

ij (31)

Identification Rule 4: Identify the DMs who need to change their preferences. For the identified
non-ideal set Gk−

(
xi, xj

)
, this study can use a deeper consensus measure to determine the DMs with

only the lowest level of consensus.
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The DMs in the non-ideal set Gk−
(
xi, xj

)
can be expressed as

{
ek1

, ek2
, . . . , ek

G(k−)

}
. G (k−) =

#Gk−
(
xi, xj

)
is the number of DMs in Gk−

(
xi, xj

)
. Note that the FPR of eky is Bky = (

bij,ky

)
n×n

. Similarly,

the DMs in Gk+
(
xi, xj

)
can be represented as

{
et1

, et2
, . . . , et

G(k+)

}
. G (k+) = #Gk+

(
xi, xj

)
is the

number of DMs in Gk+
(
xi, xj

)
. The preference of Gk+

(
xi, xj

)
is a PDHFE, which can be expressed

by hpij,k+ = {
hl

ij,k + (
pl

ij,k+
) |l = 1, 2, . . . , #hpij,k+

}
. The average preference for hpij,k+ can be calculated as

follows:

Expect
(
hpij,k+

) =
#hpij,k+∑

l=1

hl
ij,k + pl

ij,k+ (32)

Set thresholds β. The DMs who need to change their preferences
(
xi, xj

)
in Gk−

(
xi, xj

)
can calculate

as follows:

EXPS−
ij =

{
eky |bij,ky − Expect

(
hpij,k+

) | > β, ky ∈
{

k1, k2, . . . , kG(k−)

}}
(33)

3.3.2 Directions Rules and Network Adjustment

For each eky ∈ EXPS−
ij , there are two directions rules as follows [10]:

Directions Rule 1: If bij,ky < Expect
(
hpij,k+

)
, then eky needs to increase the preference value of(

xi, xj

)
.

Directions Rule 2: If bij,ky > Expect
(
hpij,k+

)
, then eky needs to decrease the preference value of(

xi, xj

)
.

One way to achieve the direction rule is to provide a set of values for eky ∈ EXPS−
ij . Since each

element in the initial eky belongs to S[0.1,0.9], it is better to set the range of values of all recommended
values in this interval.

Let Rndij,k+ = Round
(
Expect

(
hpij,k+

))
, where Round is a method to find the nearest discrete

membership in the range of S[0.1,0.9]. Then the recommended set eky can be expressed as follows:

RSeky

(
xi, xj

) =
{

b′
ij,ky

|b′
ij,ky


= bij,ky ∧ b′
ij,ky

∈ (
S[0.1,0.9] ∧

[
min

{
bij,ky , Rndij,k+

}
, max

{
bij,ky , Rndij,k+

}])}
By the opposite nature of each other, the preference eky and

(
xi, xj

)
can be automatically adjusted

and updated.

After completing the above adjustment process, the final step is to modify the original social
network.

Step 1: Let (i, j) be the position that needs to be modified, E ′ = {
e′

1, e′
2, . . . , e′

v

}
is a set of DMs

whose opinions need to be modified.

Step 2: Calculate the TSrh value according to Eq. (5), and use it as an index to evaluate the trust
degree between members. Find the most trusted member E ′ = {

e′
1, e′

2, . . . , e′
v

}
in the ideal set CLU+

ij ,
denoted as F ′ = {

f ′
1 , f ′

2 , . . . , f ′
v

}
.

Step 3: Modify the original social network. According to E ′ = {
e′

1, e′
2, . . . , e′

v

}
and F ′ ={

f ′
1 , f ′

2 , . . . , f ′
v

}
, connect e′

i and f ′
i , where i = 1, 2, . . . , v.
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3.4 The Procedure of the Proposed Method
The main steps of the LGDM consensus problem are summarized below. Fig. 2 shows the

framework of the proposed method.

Decision matrices
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The trust network and 
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Construct trust network
16

15

19
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19
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the corresponding 
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Higher than 
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Consensus measure

Calculate large-scale 
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on PDFPR

Select the best 
alternative(s)

G1 G2

G3

Adjust trust network

Yes

No

Yes

No

Decision makers

Figure 2: The framework of the proposed method

Part 1: Determine the network structure of the LGDM problem.

(1) The set of DMs and alternatives are represented by
{
eGt

1 , eGt
2 , . . . , eGt

mt

}
and X = {x1, x2, . . . xn},

respectively.

(2) For each DM, a fuzzy preference matrix Bk = (
bk

ij

)
n×n

, k = 1, 2, . . . , m is established. DMs tend

to use fuzzy preference relationships to express their opinion. Next, the consensus threshold LGCI ,
parameter β and the maximum number of iterations Maxround are set.

(3) The Louvain method is used to determine subgroups of large-scale networks. Suppose this
study gets Kr subgroups, denoted by

{
G1, G2, . . . , GKr

}
.

Part 2: Calculate the trust weight and consensus measure.

(1) Calculate the weights of the tth (1 ≤ i ≤ m) DM and the tth (1 ≤ t ≤ Kr) subgroups.

(2) Calculate the PDFRP for each subgroup.
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(3) Calculate the consensus of each subgroup.

Subgroup consensus can be obtained according to Section 3.3. Set the consensus is LGCIr in the
current round. If LGCIr ≥ LGCI or r > Maxround, go to Part 4; otherwise, proceed to Part 3.

Part 3: Consensus reaching process.

(1) Determine the identified DM as the corresponding new collection.

According to the four identification rules proposed in Section 3.3.1, the set of non-ideal DM can
be expressed as EXPS−

ij,r.

(2) Direct the DMs in EXPS−
ij,r to modify their preferences.

Modify the FPR of the DM in EXPS−
ij,r based on the two direction rules in Section 3.3.2. Next, let

r = r + 1, the modified FPR is still represented byBk,r, k = 1, 2, . . . , m.

(3) Modify the social network.

Part 4: Select the best alternative(s).

(1) Based on the final adjusted network, the weight of each DM within the subgroup and subgroup
weights are recalculated, and then the final pairwise comparison matrix is obtained by aggregating the
preference matrix of all subgroups for each pair of alternatives according to Eqs. (21)–(24).

(2) After obtaining the final pairwise comparison matrix, the final ranking result is obtained by
subtracting the sum of each column value from the sum of each row value of each alternative [53].

(3) Rank all alternatives in descending order by the gap between the column value and row value
and choose the alternative with the smallest gap as the best alternative.

4 Case Study
4.1 Case Description

Twenty travel enthusiasts with certain social connections are denoted as E = {e1, e2, . . . , e20}. They
are going to choose the best destination for vacation travel. After pre-evaluation, the following four
alternatives are selected, denoted as X = {x1, x2, x3, x4}, where x1 = Gulangyu Islet; x2 = Suzhou
Gardens; x3 = Lijiang Ancient City; x4 = Dujiang Dam. Each member evaluates and judges the four
alternative tourist destinations by the way of pairwise comparison. This study obtains the pairwise
judgment matrix Bk, k = 1, 2, . . . , 20 as shown below [7]:

B1 =

⎛
⎜⎜⎜⎜⎜⎝

0.5 0.9 0.9 0.8

0.1 0.5 0.7 0.8

0.1 0.3 0.5 0.4

0.2 0.2 0.6 0.5

⎞
⎟⎟⎟⎟⎟⎠, B2 =

⎛
⎜⎜⎜⎜⎜⎝

0.5 0.3 0.7 0.8

0.7 0.5 0.3 0.6

0.3 0.7 0.5 0.3

0.2 0.4 0.7 0.5

⎞
⎟⎟⎟⎟⎟⎠, . . . , B20 =

⎛
⎜⎜⎜⎜⎜⎝

0.5 0.6 0.4 0.1

0.4 0.5 0.3 0.4

0.6 0.7 0.5 0.7

0.9 0.6 0.3 0.5

⎞
⎟⎟⎟⎟⎟⎠

The social network relations between the 20 travel enthusiasts as shown in Fig. 3.

In Fig. 3, each travel enthusiast is represented in the network as a node with different colors and
used to distinguish the number of ingress connections of the DMs. For example, the DM e18 has the
largest indegree in the group, so the color of node 18 is dark blue. In contrast, node 13 is colored
yellowish because it has only one ingress connection from e2.
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Figure 3: DMs’ social network

4.2 Method Application
4.2.1 Classification of Network Using Lauvain Method

A network corresponding to Fig. 3 is constructed in the complex network analysis tool Pajek, as
shown in Fig. 4, where nodes v1 − v20 correspond to nodes 1–20 in Fig. 3, respectively.

Using the Lauvain package included in the Pajek software, automatic classification is per-
formed to form the classification results as shown in Fig. 5. The subgroup is represented by the set{
G1, G2, . . . , GKr

}
, which is divided into three subgroups. The subgroup consisting of yellow nodes is

G1, the subgroup consisting of green nodes is G2, and the subgroup consisting of red nodes is G3, i.e.,
G1 = {v1, v3, v5, v6, v9, v10, v11, v18}, G2 = {v2, v12, v14, v15, v16, v19}, G1 = {v4, v7, v8, v13, v17, v20}.

4.2.2 Calculate the Trust Weight and Consensus Measure

For the subgroup G1, the network is shown in Fig. 6.

According to the original data required by the software and the original data required for the
centrality of the feature vector, the network weight of each node in the subgroup G1 can be obtained
according to the Eq. (14), as shown in Table 1.

According to the network weights and trust weights, the weight of each DM is aggregated. And
this study takes θ = 0.2, then, the comprehensive weights of the nodes in the subgroup G1 are shown
in Table 1.
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Figure 4: Network constructed in Pajek software

Figure 5: Social network clustering analysis results

According to the calculation results by Pajek software and Section 3.2, the network weight of each
subgroup is {0.05, 0.04, 0.19}.
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Figure 6: Network of subgroup G1

Table 1: Weights of nodes in subgroup G1

Nodes v1 v3 v5 v6 v9 v10 v11 v18

Weights 0.12 0.15 0.12 0.12 0.11 0.12 0.12 0.15
Trust weights 0.13 0.14 0.09 0.09 0.12 0.13 0.16 0.13
Comprehensive weights 0.13 0.14 0.10 0.10 0.12 0.13 0.15 0.13

Considering each subgroup as a node, Fig. 3 can be abstracted into the structure shown in Fig. 7,
where the direction of the edge represents the relationship between nodes, and the thickness of the
edge represents the connection strength.

G1

G3

G2

3

7

12 14
86

Figure 7: Directed social relationship network between subgroups

The trust weights between subgroups are {0.40, 0.26, 0.34}.
Similarly, by aggregating the network weights and trust weights of each subgroup, the compre-

hensive weight of each subgroup can be obtained {0.33, 0.22, 0.45}.
According to their preference for alternatives provided by the 20 DMs through FPR, the pref-

erence relationship of each subgroup also forms a probability distribution based on fuzzy preference
relations [51]. According to Section 3.4, the corresponding Gk, k = 1, 2, 3 has three PDFPRs, which
can be expressed as Hk = (

hpij,k

)
n×n

, k = 1, 2, 3.
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For the subgroup G1, the PDFPR can be expressed as follows:

hp12,1 = {0.1 (0.14) , 0.3 (0.10) , 0.4 (0.25) , 0.6 (0.25) , 0.7 (0.13) , 0.9 (0.13)}
hp13,1 = {0.4 (0.38) , 0.6 (0.49) , 0.9 (0.13)},
hp14,1 = {0.2 (0.13) , 0.4 (0.10) , 0.6 (0.29) , 0.7 (0.22) , 0.8 (0.26)},
hp23,1 = {0.1 (0.10) , 0.3 (0.28) , 0.6 (0.27) , 0.7 (0.13) , 0.8 (0.10) , 0.9 (0, 12)}
hp24,1 = {0.4 (0.29) , 0.5 (0.10) , 0.7 (0.26) , 0.8 (0.23) , 0.9 (0.12)},
hp34,1 = {0.3 (0.14) , 0.4 (0.23) , 0.6 (0.13) , 0.7 (0.15) , 0.9 (0.35)}.
For the subgroup G2, the PDFPR can be expressed as follows:

hp12,2 = {0.3 (0.29) , 0.4 (0.15) , 0.6 (0.21) , 0.7 (0.15) , 0.9 (0.20)},
hp13,2 = {0.2 (0.21) , 0.4 (0.30) , 0.6 (0.18) , 0.7 (0.31)},
hp14,2 = {0.2 (0.15) , 0.3 (0.21) , 0.4 (0.18) , 0.5 (0.15) , 0.8 (0.31)},
hp23,2 = {0.1 (0.30) , 0.3 (0.11) , 0.4 (0.21) , 0.6 (0.18) , 0.8 (0.20)},
hp24,2 = {0.2 (0.30) , 0.3 (0.21) , 0.6 (0.29) , 0.7 (0.20)},
hp34,2 = {0.1 (0.20) , 0.3 (0.11) , 0.4 (0.51) , 0.6 (0.18)}.
For the subgroup G3, the PDFPR can be expressed as follows:

hp12,3 = {0.1 (0.17) , 0.2 (0.17) , 0.4 (0.38) , 0.6 (0.27)},
hp13,3 = {0.2 (0.08) , 0.4 (0.35) , 0.6 (0.17) , 0.7 (0.22) , 0.8 (0.17)},
hp14,3 = {0.1 (0.35) , 0.3 (0.08) , 0.4 (0.17) , 0.6 (0.39)},
hp23,3 = {0.3 (0.19) , 0.4 (0.30) , 0.5 (0.16) , 0.6 (0.17) , 0.8 (0.17)},
hp24,3 = {0.3 (0.08) , 0.4 (0.35) , 0.6 (0.17) , 0.8 (0.39)},
hp34,3 = {0.4 (0.08) , 0.6 (0.17) , 0.7 (0.57) , 0.8 (0.17)}.
According to Section 3.4, the consensus degree of the three subgroups can be calculated. First,

the similarity matrixes between subgroups are calculated, and the results are as follows:

SM12 =

⎛
⎜⎜⎜⎜⎝

− 0.7395 0.7990 0.7384

0.7395 − 0.6992 0.7204

0.7990 0.6992 − 0.6935

0.7384 0.7204 0.6935 −

⎞
⎟⎟⎟⎟⎠ ,

SM13 =

⎛
⎜⎜⎜⎜⎝

− 0.7458 0.8115 0.7032

0.7458 − 0.7594 0.7911

0.8115 0.7594 − 0.7898

0.7032 0.7911 0.7898 −

⎞
⎟⎟⎟⎟⎠ ,
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SM23 =

⎛
⎜⎜⎜⎜⎝

− 0.7274 0.7874 0.7224

0.7274 − 0.7412 0.7385

0.7874 0.7412 − 0.6866

0.7224 0.7385 0.6866 −

⎞
⎟⎟⎟⎟⎠ .

According to Eq. (13), the normalized weights between subgroups are {0.22, 0.47, 0.31}.
Second, the consensus of the group is calculated, and the consensus matrix is as follows:

CMround1
=

⎛
⎜⎜⎜⎜⎝

− 0.7387 0.8013 0.7169

0.7387 − 0.7404 0.7592

0.8013 0.7404 − 0.7366

0.7169 0.7592 0.7366 −

⎞
⎟⎟⎟⎟⎠

The consensus degree between alternative pairs is cpij = cmij, i, j = 1, 2, 3, 4.

Third, the consensus degree at the level of the alternative is ca1 = 7523, ca2 = 7461, ca3 = 7594,
ca4 = 7376.

Finally, the consensus degree of the group is LGCI = 0.7488.

4.2.3 Consensus Reaching Process

Set LGCI = 0.8. Because LGCI < LGCI , the feedback adjustment mechanism can be activated.
According to Rule 1 and Rule 2 in Section 3.3.1, the preference relationship on (x2, x3) needs to be
modified. According to Rule 3, ideal subgroups and non-ideal subgroups can be obtained:

CLU+
23 = {G3}, CLU−

23 = {G1, G2}.
Let the parameter β = 0.3 and calculate Expect

(
hp23,3

) = 0.495, then this study can identify the
DMs that need to readjust the preference value in subgroup G1 and subgroup G2.

DMs in subgroup G1 : e5, e9,

DMs in subgroup G2 : e15, e16.

Find the most trusted person for DMs e5, e9, e15, e16 in subgroup G3. The most trusted persons
for e5, e9, e15, e16 are e8, e17, e8, e8, respectively. The new preference value of the DM is changed to the
preference value of the most trusted person [52].

First round of adjustment:

According to Section 3.2.1, this study can get a new social network based on the Louvain method
and a new subgroup classified as shown in Figs. 8 and 9.

As can be seen from the Fig. 9, three new subgroups can be obtained in this adjustment: G1 =
{v1, v3, v5, v8, v18}, G2 = {v2, v6, v12, v14, v15, v16, v19}, G3 = {v4, v7, v9, v10, v11, v13, v17, v20}. Then the trust
weight and the network weight are integrated to determine the relative weight between the subgroups
as shown in Table 2. And the weight of each subgroup is {0.21, 0.25, 0.54}.
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Figure 8: Network in the first round of adjustment

Figure 9: Classification result

Table 2: Weight of each node in subgroup

G1

v1 v3 v5 v8 v18

0.17 0.16 0.18 0.24 0.25

G2

v2 v6 v12 v14 v15 v16 v19

0.09 0.14 0.15 0.17 0.13 0.12 0.19

G3

v4 v7 v9 v10 v11 v13 v17 v20

0.12 0.13 0.10 0.14 0.15 0.07 0.14 0.16
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For the subgroup G1, the PDFPR can be expressed as follows:

hp12,1 = {0.1 (0.16) , 0.4 (0.42) , 0.6 (0.25) , 0.9 (0.17)},
hp13,1 = {0.4 (0.43) , 0.6 (0.16) , 0.7 (0.24) , 0.9 (0.17)},
hp14,1 = {0.2 (0.25) , 0.4 (0.18) , 0.6 (0.40) , 0.8 (0.17)},
hp23,1 = {0.3 (0.25) , 0.4 (0.42) , 0.6 (0.16) , 0.7 (0.17)},
hp24,1 = {0.4 (0.16) , 0.5 (0.18) , 0.7 (0.25) , 0.8 (0.41)},
hp34,1 = {0.3 (0.16) , 0.4 (0.35) , 0.6 (0.25) , 0.7 (0.24)}.
For the subgroup G2, the PDFPR can be expressed as follows:

hp12,2 = {0.3 (0.38) , 0.4 (0.12) , 0.6 (0.19) , 0.7 (0.13) , 0.9 (0.17)},
hp13,2 = {0.2 (0.19) , 0.4 (0.25) , 0.6 (0.29) , 0.7 (0.26)},
hp14,2 = {0.2 (0.12) , 0.3 (0.19) , 0.4 (0.15) , 0.5 (0.13) , 0.7 (0.14) , 0.8 (0.26)},
hp23,2 = {0.3 (0.09) , 0.4 (0.44) , 0.6 (0.15) , 0.8 (0.31)},
hp24,2 = {0.2 (0.25) , 0.3 (0.19) , 0.6 (0.24) , 0.7 (0.17) , 0.8 (0.14)},
hp34,2 = {0.1 (0.17) , 0.3 (0.09) , 0.4 (0.44) , 0.6 (0.15) , 0.9 (0.14)}.
For the subgroup G3, the PDFPR can be expressed as follows:

hp12,3 = {0.1 (0.12) , 0.2 (0.13) , 0.4 (0.29) , 0.6 (0.33) , 0.7 (0.14)},
hp13,3 = {0.2 (0.07) , 0.4 (0.45) , 0.6 (0.37) , 0.8 (0.12)},
hp14,3 = {0.1 (0.30) , 0.3 (0.07) , 0.4 (0.12) , 0.6 (0.28) , 0.7 (0.10) , 0.8 (0.14)},
hp23,3 = {0.3 (0.31) , 0.4 (0.07) , 0.5 (0.24) , 0.6 (0.26) , 0.8 (0.13)},
hp24,3 = {0.3 (0.07) , 0.4 (0.45) , 0.6 (0.12) , 0.7 (0.14) , 0.8 (0.13) , 0.9 (0.10)},
hp34,3 = {0.4 (0.07) , 0.6 (0.13) , 0.7 (0.45) , 0.8 (0.12) , 0.9 (0.24)}.
The new similarity matrixes between subgroups are:

SM12 =

⎛
⎜⎜⎜⎜⎝

− 0.7351 0.7856 0.7519

0.7351 − 0.8058 0.7390

0.7856 0.8058 − 0.7753

0.7519 0.7390 0.7753 −

⎞
⎟⎟⎟⎟⎠,

SM13 =

⎛
⎜⎜⎜⎜⎝

− 0.7487 0.7988 0.7260

0.7487 − 0.8192 0.7801

0.7988 0.8192 − 0.7547

0.7260 0.7801 0.7547 −

⎞
⎟⎟⎟⎟⎠,

SM23 =

⎛
⎜⎜⎜⎜⎝

− 0.7492 0.8090 0.7127

0.7492 − 0.7935 0.7439

0.8090 0.7935 − 0.6612

0.7127 0.7439 0.6612 −

⎞
⎟⎟⎟⎟⎠.

The normalized weights between pairs of subgroups are {0.17, 0.38, 0.45}.
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Then the consensus of the group is calculated, and the consensus matrix is as follows:

CMround2
=

⎛
⎜⎜⎜⎜⎝

− 0.7466 0.8010 0.7246

0.7466 − 0.8053 0.7567

0.8010 0.8053 − 0.7164

0.7246 0.7567 0.7164 −

⎞
⎟⎟⎟⎟⎠.

ca1 = 0.7574, ca2 = 0.7695, ca3 = 0.7742, ca4 = 0.7325.

The consensus degree of the large group LGCI = 0.7584.

The preference pairs that need to be modified are (x1, x2) , (x1, x4). According to the above method,
after three more modifications, the consensus degree of the large group is LGCI = 0.7976. Since 0.7976
is very close to the set threshold of 0.8, the adjustment is considered to be over.

4.2.4 Select the Best Alternative(s)

The network obtained at the end of the final adjustment is shown in Fig. 10.

Figure 10: Classification network in the last round of adjustment

According to the network structure, the network weights and trust weights of the nodes are
obtained, and the relative weights of the nodes in each subgroup are shown in Table 3. And the relative
weights between the subgroups are {0.22, 0.33, 0.20, 0.25}.

According to Eqs. (21)–(24), the preference of each DM is gathered within the subgroup, as shown
below:

B =

⎛
⎜⎜⎜⎜⎝

0.50 0.47 0.53 0.48

0.53 0.50 0.50 0.57

0.47 0.50 0.50 0.58

0.52 0.43 0.42 0.50

⎞
⎟⎟⎟⎟⎠.

After obtaining the final pairwise comparison matrix, the final ranking result is obtained by
subtracting the sum of each column value from the sum of each row value of each alternative [53].
According to the calculation, this study obtains |x1| = 0.04, |x2| = 0.2, |x3| = 0.1, |x4| = 0.26|, thus
x1 � x3 � x2 � x4, x1 = Gulangyu Islet is the best alternative.
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Table 3: Relative weight of each node in subgroup

G1

v1 v5 v7 v8

0.20 0.19 0.26 0.35

G2

v2 v4 v12 v13 v14 v17 v20

0.09 0.17 0.13 0.08 0.17 0.16 0.19

G3

v3 v9 v10 v11

0.24 0.18 0.25 0.33

G4

v6 v15 v16 v18 v19

0.19 0.14 0.17 0.28 0.23

5 Comparative and Experiment Analysis
5.1 Comparative Analysis

The proposed model considers the trust relationship between DMs, and daily social data are
combined when calculating trust weights. The novel Louvain method is adopted in the classification
of large groups, which has certain advantages compared with the traditional clustering method.
In addition, this study also fully integrates real life when designing the feedback mechanism, and
reconstructs the network through trust relations. This section compares the proposed method with
other methods, as shown in Table 4.

Table 4: Comparison of different methods for LGDM

Methods Considering
social
network
information

Clustering
method

Considering
how to
determine
the DMs’
weights

Improving
group
consensus

Considering
interaction
with DMs

Some
changes in
the adjust-
ment
process

The
proposed
method

Yes, trust
SNs

Louvain
method

Yes Yes Yes Updating
weight and
change-
able trust
network

Wu et al. [5] Yes, commu-
nication
SNs

Louvain
method

No No No Have not

Akram
et al. [4]

No Fuzzy
c-means

Yes Yes No Have not

Liu et al. [6] No According to
the DMs’
school

No Yes No Have not

Wu et al. [7] No K-means Yes Yes Yes Changeable
clusters

(Continued)
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Table 4 (continued)

Methods Considering
social
network
information

Clustering
method

Considering
how to
determine
the DMs’
weights

Improving
group
consensus

Considering
interaction
with DMs

Some
changes in
the adjust-
ment
process

Xu et al. [54] No Self-
organizing
maps

Yes Yes No Have not

Wu et al. [55] No PCA and
Fuzzy
equivalence
clustering

No No No Have not

Wu et al. [56] No Fuzzy
equivalence
clustering

No Yes No Have not

(1) Comparison with the LGDM with the clustering methods.

Akram et al. [4] used fuzzy c-means to cluster the fuzzy preferences, computed the consensus
degree and improved consensus. But Akram et al. [4] did not consider the social network information.
Liu et al. [6] classified the DMs according to the practical situation (DMs’ school). According to the
percentage distribution and the decision weights, the dominance degrees on pairwise comparisons of
alternatives are calculated, and a ranking of alternatives can be determined. However, Liu et al. [6]
did not involve consensus improvement and interaction with DMs. A two-stage method to support
the consensus-reaching process for large-scale multi-attribute group decision making was presented
by Xu et al. [54]. The first stage classified the group into sub-subgroups by using the SOM in order to
obtain preference of each sub-cluster. Wu et al. [55] developed a solution for LGDM, which used
linguistic principal component analysis to reduce the dimensions of the attributes and used fuzzy
equivalence clustering with linguistic information aggregate the preferences of the DMs, respectively.
Wu et al. [56] incorporated clustering analysis and information aggregation operator into LGDM with
interval type-2 fuzzy sets and used fuzzy equivalence clustering analysis to classify DMs to reduce the
dimension of the DMs. However, [6] and [55] did not consider the consensus and interaction with DMs.
At the same time, they all did not consider the relationship among DMs, such as communication, trust
or cooperation.

Wu et al. [5] have built a large-scale undirected and unweighted network of 50 people. The
relationship among DMs in the network is communication relationship and the Louvain method is
also applied. The objective relationship of trust in the real world is very important in decision-making,
but Wu et al. [5] did not take it into consideration. Moreover, it is not involved in the consensus
measure and CRP. This study takes the trust relationship through the entire decision-making process,
from social network construction and clustering, to weight determination and consensus measure, and
finally to CRP and changeable networks.
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(2) Comparison with the LGDM with the changeable cluster.

Some existed studies have considered the changeable cluster for LGDM. For example,
the k-means clustering method based on Euclidean distance under possibility information was
extended to classify the whole group into manageable subgroups [7]. The results showed that the
twenty DMs were clustered into three clusters {G1, G2, G3}, where G1 = {e1, e3, e5, e6, e9, e10, e11, e18}
G2 = {e2, e12, e14, e16, e19} , G3 = {e4, e7, e8, e13, e17, e20} in the first round. Moreover, the number of clusters
K needs to be set artificially. Consensus measures based on the distance measure were computed
and the clusters in each interactive round were allowed to change. Although the subgroup changes
during each round of adjustment, the number of subgroups does not change. And the consensus level
increased from 0.6925 to 0.7861 and then to 0.7970.

Due to the low initial consensus of [7], the consensus is improved quickly after three rounds
of adjustment; The initial consensus of this study is higher, after three rounds of adjustment, the
predefined consensus level is also reached. Compared with the results of [7], The final consensus of
this study is higher, which illustrates the effectiveness of the proposed method. In addition, since the
decision preference information used by the two methods is the same, the different results of the two
methods indicate that the SN information can amplify the difference between the alternatives, which
means that social information about the DM does affect the outcome of the LGDM problem. When
DM has similar preferences, it is reasonable to consider social information, which will be beneficial
to SNA.

The proposed model in this study not only combines social network information, but also the
number of subgroups is determined automatically. At the same time, in each round of adjustment
process, not only the number of subgroups changes, but also the internal network structure of
subgroups changes, which can more realistically aggregate the preference matrix of DMs, the optimal
solution can be obtained in a simpler and more efficient way.

5.2 The Experiment Analysis
In order to determine the appropriate coefficient θ , a simulation analysis is required. When the

value of θ are different, the consensus reached later will be different [57], as shown in Fig. 11. When θ is
0.2, the consensus index is obtained. Therefore, this study takes θ = 0.2 In the future case application,
the coefficient can be selected according to the actual situation.

Figure 11: Simulation analysis of θ
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6 Conclusions

In previous studies, DMs were independent of each other in the GDM problems. However, in
most practical decision situations, DMs are socially related to each other rather than independent
of each other. Moreover, consensus improvement is becoming increasingly important for DMs and
stakeholders. This study provides a new perspective on LGDM problems and the main contributions
are as follows:

First, this study considers the social trust relationship between DMs for the LGDM problems,
builds the social network between DMs, and uses the Louvain method to detect community based on
the trust relationship. Social networks built on trust relationships are more convincing than building
networks based solely on DMs.

Second, this study fully considers the trust weight and the network weight in the process of
determining the weight of individual DMs and the weight of each subgroup. Compared with weighting
based on network degree centrality or subgroup size, it is more convincing to assign weights based on
trust relationships and to make corresponding changes in weights in the feedback adjustment process.
In the process of obtaining the final weight, the parameter θ is simulated and analyzed. Finally, a value
of θ which is most suitable for the example is selected.

Third, the trust network in the proposed model allows for changes. Individual DMs are able to
modify their preferences in the CRP, so the trust relationship will change, which will make the number
of subgroups and members of each subgroup likely to change. And the interaction of trust relations
is fully considered in the adjustment process. This is more in line with the reality that the influential
DMs in the network will influence the opinions of the surrounding DM and enhance their trust.

Some significant opportunities for future work should be pointed out.

Firstly, this study determines the social network, trust weights and network weights by organizing
social connections between DMs and the interaction frequency on social platforms. How to more
scientifically measure the relationship between DMs is worth studying and improving. Secondly,
although the Louvain method has realized automatic classification of the network, the constructed
network diagram is still an undirected graph. In fact, a directed network is more reasonable and
applicable to represent the social connection between people, and the classification results may differ
from undirected networks. If the automatic classification method of directed networks can be added
to future research, it will be a good innovation. Finally, the two parameters are fixed in this study: the
predefined threshold of LGCI and parameter β. The specific values of these parameters depend on
the actual situation. In most studies, these two parameters are also set to a fixed value. If a reasonable
algorithm can be designed to adjust these parameters in the consensus reaching process, the model will
be more flexible. Considering non-cooperative behavior [58] and individual satisfaction [59] to extend
our methods is also an interesting work in the future.
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