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ABSTRACT

Due to the increasing number of cyber-attacks, the necessity to develop efficient intrusion detection systems (IDS)
is more imperative than ever. In IDS research, the most effectively used methodology is based on supervised
Neural Networks (NN) and unsupervised clustering, but there are few works dedicated to their hybridization with
metaheuristic algorithms. As intrusion detection data usually contains several features, it is essential to select the
best ones appropriately. Linear Discriminant Analysis (LDA) and t-statistic are considered as efficient conventional
techniques to select the best features, but they have been little exploited in IDS design. Thus, the research proposed
in this paper can be summarized as follows. a) The proposed approach aims to use hybridized unsupervised and
hybridized supervised detection processes of all the attack categories in the CICIDS2017 Dataset. Nevertheless,
owing to the large size of the CICIDS2017 Dataset, only 25% of the data was used. b) As a feature selection method,
the LDA performance measure is chosen and combined with the t-statistic. c) For intrusion detection, unsupervised
Fuzzy C-means (FCM) clustering and supervised Back-propagation NN are adopted. d) In addition and in order
to enhance the suggested classifiers, FCM and NN are hybridized with the seven most known metaheuristic
algorithms, including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE),
Cultural Algorithm (CA), Harmony Search (HS), Ant-Lion Optimizer (ALO) and Black Hole (BH) Algorithm.
Performance metrics extracted from confusion matrices, such as accuracy, precision, sensitivity and F1-score are
exploited. The experimental result for the proposed intrusion detection, based on training and test CICIDS2017
datasets, indicated that PSO, GA and ALO-based NNs can achieve promising results. PSO-NN produces a tested
accuracy, global sensitivity and F1-score of 99.97%, 99.95% and 99.96%, respectively, outperforming performance
concluded in several related works. Furthermore, the best-proposed approaches are valued in the most recent
intrusion detection datasets: CSE-CICIDS2018 and LUFlow2020. The evaluation fallouts consolidate the previous
results and confirm their correctness.
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BH Black Hole algorithm
BPNN, CNN, NN Back-propagation, Convolutional, Neural Network
CA Cultural algorithm
CICIDS2017 IDS Dataset created by the Canadian Institute for Cyber-security in 2017
CTree Conditional inference Tree
CSE-CICIDS2018 IDS Dataset created by the Communications Security Establishment (CSE)

and the Canadian Institute for Cyber-security in 2018
DE Differential Evolution algorithm
DL Deep Learning
DT Decision Tree
FCM Fuzzy C-means
FKNN, K-NN Fast, K-Nearest Neighbor Classifier
GA Genetic Algorithm
HS Harmony Search algorithm
IDS Intrusion Detection System
IG Information Gain
LDA, QDA Linear, Quadratic Discriminant Analysis
LUFlow2020 IDS Dataset created by Lancaster University in 2020
ML Machine Learning
MLP Multi-Layer Perceptron
PCA Principal Component Analysis
PSO Particle Swarm Optimization
RBF Radial Basis Function
RF Random Forest
SVM Support Vector Machines

Symbols

gi Centroid of class Ci

A
(
Aij

)
Confusion matrix

Wij
(l) Connection weight between the neurons i (in layer l) and j (in layer l-1)

V Covariance matrix
X Data instance
h1 Discriminant function
dij Euclidean distance between the ith data and the jth cluster center.
δi, δ False decision rate for class Ci, Global false decision rate
f, f i Fitness function
m Fuzziness index
F1i, F1 F1-score for class Ci, Global F1-score
ci ith cluster center
ri

(p) ith desired output value for data point p
oi

(p) ith effective neuron output value for data point p
μil Mean of feature xi for class Cl

ωij Membership of the ith data to jth cluster center
N(l) Number of neurons in the layer l
J Objective function
Y j

(1) Output of neuron j in layer (l)
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P(t) Population at iteration t
β i, β Precision for class Ci, Global precision (Accuracy)
E(p) Quadratic error for data point p
γi Sensitivity for class Ci, Global sensitivity
Nl Size of class Cl

σ il Standard deviation of feature xi for class Cl

θ (l)
i Threshold of the ith neuron in layer l

t(xi) t-statistic of feature xi

1 Introduction

Owing to an increasing proliferation of cyber-attacks, the requirement to develop high-
performance intrusion detection systems (IDS) is becoming more imperative than ever. In IDS
research, the most used methodology is based on anomaly detection, where normal activity is
compared with observed events in order to detect significant deviations. In recent works, most of
the IDS are created on machine-learning technologies using the CICIDS2017 Dataset. As intrusion
detection data usually contains numerous features, which strongly influence the learning phase,
degradation of speed and performance due to overfitting can occur. Consequently, it is essential
to select the best features appropriately through feature engineering.

The broad range of recently published works [1–33] has made it possible to develop IDS capable of
recognizing intrusions with great efficiency. The working hypotheses are different, whether it concerns
the datasets, the data reduction methods or the classification algorithms. The datasets used are diverse.
Generally, those who have used CICIDS2017 have only used part of these datasets, but not always the
same one. On the other hand, the attribute reduction techniques as well as the intrusion classification
algorithms are very extensive and cover almost all existing ML tools. In some works, all the features
were exploited, while in others, only a limited number of these attributes were used.

In addition, it can be noticed that NNs are among the most efficient methods, but there are
very few works dedicated to the hybridization of these NNs with metaheuristic algorithms. Clustering
methods are exploited in combination with other tools, but are little used as classification algorithms.
On the other hand, Linear Discriminant Analysis (LDA) and t-statistic are considered as efficient
conventional techniques for selecting the best features, but they have been little exploited. Thus, the
proposed contribution through this paper, as well as its novelty, can be summarized as follows:

a) Regarding the data, CICIDS2017 Dataset was chosen to implement the proposed approach,
because this dataset is realistic and exploits up-to-date attacks. Additionally, the proposed approach
suggests a hybridized detection procedure of all the attack categories. However, due to the high
dimension of the CICIDS2017 Dataset, only 25% of the data was used.

b) As feature selection method, LDA performance measure, as F1-score, is used in combination
with t-statistic.

c) For the detection of intrusions, unsupervised Fuzzy C-means (FCM) clustering and supervised
NN techniques are chosen.

d) In addition, the classifiers (FCM and NN) are hybridized by seven most known metaheuristic
methods.

e) The best approach developed will be confronted with two of the most recent datasets: CSE-
CICIDS2018 and LUFlow2020.
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Based on the CICIDS2017 Dataset, the goal was to implement intrusion detection solutions
using FCM and Back-propagation Neural Network (BPNN) techniques that detect and classify
with high accuracy each type of attack. Improved FCM and NNs by using hybrid metaheuristic
algorithms are then designed. As metaheuristic methods, the seven most known algorithms, including
Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Cultural Algorithm (CA), Differential
Evolution (DE), Black Hole (BH) Algorithm, Harmony Search (HS), and Ant-Lion Optimizer (ALO),
are chosen. To evaluate the proposed classifiers, performance metrics extracted from confusion
matrices, such as precision, accuracy, sensitivity and F1-score are employed.

The structure of this paper is as follows. Section 2 gives an overview of related work in the field
of IDS. Section 3 introduces the available datasets used for the implementation and evaluation of the
proposed approaches. In Section 4, a succinct description of the adopted methods and algorithms (as
LDA, BPNN, K-means, FCM, PSO, GA, DE, CA, HS, BH and ALO) as well as performance measure
parameters are provided. In Section 5, the experiment results on CICIDS2017 Dataset of the suggested
algorithms are detailed; an evaluation of CICIDS2018 and LUFlow2020 Datasets and a comparison
between state-of-the-art works and the proposed intrusion detection solutions are also outlined. Some
discussions close Section 5. Finally, the main conclusions and perspectives end this paper in Section 6.

2 Related Works

Recently, Machine Learning (ML) methods have been frequently adopted in IDS, as detection
or features selection tools. Ullah et al. [1] used a global approach to select significant features,
oversampling and cleaning the CICIDS2017 Dataset, achieving values for specificity, precision, recall
and F1-score of 100%. Vijayanand et al. [2] proposed an IDS centered on genetic algorithm (GA) and
Support Vector Machines (SVM) for feature selection and classification. To evaluate their approach,
a small percentage of instances from the CICIDS2017 Dataset were used. Zhang et al. [3] performed
an anomaly detection model, using Convolutional Neural Network (CNN) and Long Short-Term
Memory (LSTM), which reached good classification outcomes with an accuracy of about 99%.

Binbusayyis et al. [4] suggested a feature selection method and established an IDS model by using
Random Forest (RF) algorithm. The results achieve 99.88% accuracy. Ahmim et al. [5] proposed a
novel IDS, conducted in CICIDS2017, using three different Machine Learning (ML) classifiers. The
performance metrics showed that they achieved an accuracy rate of 96.66% and detection rate of
94.47%. Krishna et al. [6] introduced a Fast K-Nearest Neighbor Classifier (FKNN), reaching great
precision with less computation time. Alrowaily et al. [7] experimented with seven ML algorithms using
CICIDS2017 Dataset, showing that the K-Nearest Neighbor (K-NN) method performed better than
other classifiers. Zhang et al. [8] introduced a real-time detection system, using a distributed Random
Forest (RF) algorithm, implemented on the CICIDS2017 Dataset. The experimental results revealed
that their suggested approach achieved higher accuracy with a shorter detection time. Using the
synthetic minority oversampling technique (SMOTE), Adaptive Boosting (AdaBoost) and principal
component analysis (PCA) on CICIDS2017, a F1-score of 0.8183 was obtained [9]. In [10], a Random
Forest Regressor is first used to select the best features, which is then exploited by K-NN, Multi-
Layer Perceptron (MLP), Iterative Dichotomiser 3 (ID3), Adaboost, Naïve Bayes, RF and Quadratic
Discriminant Analysis (QDA). The best accuracy value reached 0.98 with RF and ID3 [10].

In [11], the Fisher Score, SVM, K-NN and Decision Tree (DT) algorithms are proposed for
features selection and classification tasks to design a denial of service based IDS. With KNN, DT
and SVM, this IDS reached 99.7%, 57.76% and 99% success rates, respectively. Moreover, MLP and
CNN classifiers are implemented on the Packet CAPture file (PCAP) of CICIDS2017 [12]. The results
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attested the superiority of MLP, which distinguish network intrusion from benign traffic with an
average true positive rate of 94.5%.

A Data Dimensionality Reduction method based IDS has been proposed [13], where SVM,
CTree (Conditional inference Trees), XGBoost (Extreme Gradient Boosting) and Neural network
(NN) classifiers using 36 selected features were evaluated. The highest accuracy achieved was 98.93%
with XGboost, excluding Monday traffic (benign traffic) of the CICIDS2017 Dataset. In [14], the
CICIDS2017 Dataset was classified using the DT, naïve Bayes, RF and SVM methods. During this
experiment, the ten best features were extracted, allowing Naïve Bayes to provide the best result with
an F1-score of 0.92.

Studies using deep learning (DL) methods, such as deep neural network (DNN), recurrent neural
network and deep reinforcement learning, have been developed [15–17]. The information Gain (IG)
method is used to select appropriate and weighty features and ML algorithms as RF, Random Tree
(RT) and J48 are applied in the investigation on CICIDS2017 Dataset. Specifically, RF and J48 achieve
the highest accuracy values of 99.86% and 99.87%, respectively, using two different sets of selected
relevant features [18].

Ferriyan et al. [19] emphasized applying GA for selecting optimal features and RF for labels
classification. Vasan et al. [20] tried the convenience of PCA for intrusion detection. They found that
classification accuracy is improved by PCA, by using the optimal number of principal components.
Chabathula et al. [21] examined the effect of PCA, used to reduce the number of features, on many
ML algorithms as Voting Features Interval, SVM, Random Forest Tree, Naïve Bayes probabilistic
classifier, proving that tree algorithm yield the highest classification accuracy.

On the other hand, in IDS design, K-means and K-medoids clustering techniques have been
considered in combination with other machine learning methods [22–25]. In [22], K-means clustering
and KNN classifier were proposed to enhance the detection accuracy in the NSLKDD Dataset.
A hybrid technique merging K-means (for data mining) and RBF kernel function of SVM (for
classification) was applied to KDDCup99, achieving an accuracy of 88.70% [23]. An IDS using cluster
centers and nearest neighbors proposed and applied to the KDDCup99 Dataset reached an accuracy
of 99.9% [24]. In [25], anomalies were detected by using SVM classifier and k-Medoids clustering
technique. Ariafar et al. [26] presented a structure for detecting network attacks by means of DT
and K-means methods, where K-means parameters and DT confidence factor are adjusted by GA.
Peng et al. [27] have offered a PCA and K-means-based IDS, where PCA is used to reduce the data
size, and K-means are allowed to cluster the obtained data.

Thakkar et al. [28] considered, ML and DL algorithms, feature selection-based performance
evaluation, on the basis of the CICIDS2017 Dataset. In [29], the performance of DNN-based IDS was
enhanced by employing a novel fusion of statistical importance–based feature selection technique. A
fusion of L1, L2 and elastic net regularization techniques are applied in [30] for increasing a DNN-
based IDS performance, by using several datasets, including CICIDS2017.

Kanimozhi et al. [31] focused on detecting the botnet attacks in the CSE-CICIDS2018 Dataset
by means of ANN, achieving an accuracy of 99.97% and a false positive rate of 0.001. In [32],
Ferrag et al. showed that the DL models, based on Naïve Bayes, ANN, SVM and RF and applied
to the CSE-CICIDS2018 Dataset, achieved a 95% of detection rate. In [33], SVM, KNN and DT
performances were compared by using multiple datasets, including the CSE-CICIDS2018 Dataset,
showing that the IDS-based accuracy ranged from 95% to 100%.

The previous state of the art allows to better situate the problem treated in this paper. The richness
of works in the IDS field stimulates the attempt to improve NN and FCM by a metaheuristic-based
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hybridization. CICIDS2017 is chosen as a database for implementing the proposed approach. In
addition, CSE-CICIDS2018 and LUFlow2020 are adopted to assess the results obtained.

3 Datasets

This section provides an overview of the CICIDS2017, CSE-CICIDS2018 and LUFlow2020
Datasets used.

3.1 CICIDS2017 Dataset
CICIDS2017 produced by the Canadian Institute for Cyber-security IDS [34], includes up-to-

date network intrusions. Additionally, CICIDS2017 meets all real-world attack criteria. This dataset,
publicly available, shows the status of the network traffic, counting normal and attack traffic during
five days. The dataset consists of 2830743 instances with 79 features, corresponding to 15 unbalanced
traffic classes (one normal class and 14 attack traffic categories). As detailed in [35,36], this dataset is
unbalanced because classes are present with an abundant number of occurrences as DDos, PortScan
and Dos Hulk, and classes have few instances, such as Infiltration, Web Attack-Sql Injection and
Heartbleed.

In the proposed research, only 25% of the MachineLearningCSV version of the CICIDS2017
Dataset was considered, with 707686 observations (Table 1).

Table 1: Characteristics of the used CICIDS2017 and CSE-CICIDS2018 Datasets

CICIDS2017 Dataset CSE-CICIDS2018 Dataset

Class Class label [10] NCi Training Test NCi Training Test

C1 Benign 568019 397614 170405 120000 84000 36000
C2 DoS hulk 57684 40379 17305 40000 28000 12000
C3 PortScan 39550 27685 11865 – – –
C4 DDoS 32005 22404 9601 40000 28000 12000
C5 DoS GoldenEye 2670 1867 803 4000 2800 1200
C6 FTP-patator 2017 1412 605 10000 7000 3000
C7 SSH-patator 1525 1067 458 10000 7000 3000
C8 DoS slowloris 1448 1014 434 1000 700 300
C9 DoS slowhttptest 1336 935 401 5000 3500 1500
C10 Bot 478 335 143 10000 7000 3000
C11 Web attack–brute force 379 265 114 50 35 15
C12 Web attack–XSS 17 11 6 25 17 8
C13 Web attack–sql injection 7 5 2 7 5 2
C14 Infiltration 7 4 3 1000 700 300
C15 Heartbleed 4 3 1 – – –

All Ci 707146 495000 212146 241082 168757 72325

In the beginning, the dataset comprises 707686 observations on 79 features including category
attributes. In the pre-processing step, some records containing missing values and non-regular values
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are omitted. After cleaning up the initial dataset, the total number of remaining instances is 707146.
The distribution of the data used is shown in Table 1. For experimental purposes, the 25% cleaned
CICIDS2017 Dataset is divided with a lot of 70% for training data (with 495000 records) and 30% for
testing data (212146 records), as depicted in Table 1.

The two sets of data (training and test) both consist of 15 intrusion classes (normal and attack)
with high-class imbalance. The 79 features [34] will be the subject, in Subsection 5.1, of a search for
the best characteristics that will be used by the different approaches proposed in this work.

3.2 CSE-CICIDS2018 Dataset
CSE-CICIDS2018 Dataset is produced as part of a collaborative project between the Communi-

cations Security Establishment (CSE) and the Canadian Institute for Cybersecurity (CIC) [37]. This
dataset, identical to the CICIDS2017, except for the PortScan and Heartbleed attacks, includes 13
different attack scenarios and using the same features. For evaluation purposes, a reduced lot of this
dataset is used, after cleaning, with a 70%/30% ratio for the training/test sets, as shown in Table 1.

3.3 LUFlow2020 Dataset
The LUFlow Dataset [38] is one of the latest datasets for the domain of IDS, created by Lancaster

University in 2020. This huge dataset consists of two classes (benign and malicious), with 16 features.
Hence, only a reduced set of the samples, after cleaning, are randomly selected for this work, with
training/test proportions of 70%/30%, as given in Table 2.

Table 2: Characteristics of the used LUFlow2020 Dataset

Class label NCi Training Test

Benign 120000 84000 36000
Malicious 120000 84000 36000

All Ci 240000 168000 72000

4 Methodology

To train an ML algorithm, several techniques can be applied, such as supervised and unsupervised
learning. A classification based on labeled data instances in the learning phase, thus defines supervised
learning. LDA and NN represent two of the most well-known supervised learning methods. On the
other hand, during an unsupervised learning unlabeled data instances can be grouped into classes.
This clustering technique include K-means and FCM algorithms.

The use of an ML algorithm generally involves the minimization of a cost function. Metaheuristic
algorithms are strategies that guide the process of finding minima. In addition, before being processed,
the data must be reduced by first selecting the best features. For this purpose, LDA and t-statistic
are adopted in this work. This section briefly outlines the tools used in this work as LDA and t-
statistic–based selection method, FCM and NN-based algorithms, the metaheuristic algorithms and
the performance measurement parameters.
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4.1 LDA Principle
During a linear discriminant analysis (LDA), discriminant functions are sought [39,40]. In the

simple case of 2 classes (C1 and C2), the expression of the unique discriminant function h1, for a data
example x, is as given in Eq. (1), where g1 and g2 are class centroids and V a covariance matrix

h1 (x) = (g1 − g2)
t V−1x (1)

This discriminant function is computed, using the training set. An intrusion instance x0 is classified
as C1 or C2, according to the value of h1(x0), as proposed in System (2).{

if h1 (x0) ≥ 0 then x0 ∈ C1

else x0 ∈ C2
(2)

4.2 Basics of Fuzzy C-Means (FCM) Algorithm
K-means algorithm [41] is a familiar clustering technique distributing instances into K clusters by

updating the clusters centers iteratively. Similar instances are assigned to the same cluster and examples
with lower similitude are arranged in separate sets. The main K-means steps are shown in Algorithm 1.

Algorithm 1: K-means algorithm
1: Set K data instances as first centroids.
2: Repeat
3: Arrange K clusters by allotting all data instances to the nearest center.
4: Recompute the cluster centers.
5: Until stabilization of centroids
6: Return K clusters positions.

With K-means, the results obtained usually depend on the initial centroids’ positions. Few
alternatives are proposed to answer this initialization question. The main idea of FCM is to express the
membership of each instance to the different clusters by seeking to optimize the objective function [42].

At each iteration, the K cluster centroids ci(i ∈ {1, . . . , K}) are revised by using Eq. (3).

ci =
∑N

j=1 ωij
mxj∑N

j=1 ωij
m

(3)

where N is the number of data instances and m the fuzziness index (m ∈ [1, ∞]). ωij represents the
membership of the ith data to jth cluster center, as given by the Eq. (4).

ωij = 1

∑K

l=1

(
dij

dil

) 2
m−1

(4)

dij is the Euclidean distance between the ith data and the jth cluster center.

The FCM main goal is to minimize the objective function J (Eq. (5)).

J (U , V) =
∑N

i=1

∑k

j=1
ωij

mdij
2 (5)

The FCM steps are given in Algorithm 2.
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Algorithm 2: FCM algorithm
1: Choose arbitrarily K cluster centers.
2: i = 1
3: Repeat
4: Calculate ωij using Eq. (4).
5: Compute ci by Eq. (3).
6: i = i + 1
7: Until reaching a minimum of J or

∥∥U (i+1) − U (i)
∥∥ < u0, where: u0 ∈ [0, 1] and U = (ωij)N×k

is the fuzzy membership matrix.
8: Return K clusters positions.

4.3 Basics of BPNN
A multilayered neural network is structured into layers of neurons: one input layer, one output

layer and one or several hidden layers [39,43]. Each neuron i in a level l is directly connected to all
the neurons of the previous layer (l − 1) and yields a response Y i

(l), result of a nonlinear processing
through an activation function s (Eq. (6)).

Yi
(l) = s

(∑N(l−1)

j=1
Wij

(l)Yj
(l−1) − θi

(l)

)
(6)

where θ i
(l) and W ij

(l) are the threshold of the neuron i in layer l and its connection weight with neurons
j (in layer l − 1), N(l−1) the number of neurons in the layer l − 1.

Through supervised training, using the error back-propagation (BP) algorithm, the BPNN
attempts to minimize, on the output layer, for each data p, a quadratic error E(p) (Eq. (7)) subsisting
between the ith output effective value oi

(p) and the desired value ri
(p).

E =
∑

p
E(p) =

∑
p

∑q

i=1

(
oi

(p) − ri
(p)

)2
(7)

4.4 Metaheuristic Algorithms
This subsection will succinctly describe the metaheuristic algorithms adopted in this study as PSO,

GA, DE, CA, HS, BH and ALO.

4.4.1 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a metaheuristic algorithm founded on the swarm intelligence
concept [44]. A PSO procedure starts with a random population of solutions. In the search space, the
prospective solutions, called particles, have a fitness value to evaluate by the objective function, and a
velocity that directs their flying [45].

At each iteration, PSO updates the velocity and position of each particle, using the two best
attributes: pbest and gbest. The key points of PSO are shown in Algorithm 3.

Algorithm 3: PSO algorithm
1: Set initial population.
2: Repeat
3: Estimate fitness of each particle.
4: Revise pbest.

(Continued)
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Algorithm 3: (Continued)
5: Revise gbest.
6: Create a new population.
7: Revise velocity.
8: Update position.
9: Until the end criterion is meet.

4.4.2 Genetic Algorithm (GA)

The genetic algorithm (GA), developed by Holland [46], is centered on three main operators:
selection, crossover and mutation.

The GA process begins iterations with a generated random set of individuals and considered as
potential solutions. That set of individuals is then tested against the objective function. The selection
procedure retains then the best performing chromosomes, called parents, according to their fitness
values. GA operates on a population, denoted P(t), the tasks described by Algorithm 4.

Algorithm 4: GA algorithm
1: Randomly generate initial population P(0).
2: t = 1
3: Repeat
4: Calculate the chromosomes fitness and remember the highest fitness value.
5: Choose parents according to the roulette wheel mechanism.
6: Crossover the parent’s chromosomes.
7: Mutate the chromosomes.
8: t = t + 1
9: Until the end criterion is met.

4.4.3 Differential Evolution Algorithm (DE)

The differential evolution algorithm (DE) is a population-based metaheuristic search algorithm
[47]. In DE, solutions are identified as genomes or chromosomes. DE algorithm takes on a population
P(t), the operations of mutation, crossover, selection and calculates the fitness value of each solution
repeatedly, as illustrated by Algorithm 5.

Algorithm 5: DE algorithm
1: t = 0
2: Set initial P(t).
3: Calculate P(t) fitness.
4: While not termination-condition do
5: t = t + 1
6: For each parent P(t), choose best solutions.
7: Create descendants using the DE operators.
8: Evaluate P(t) fitness.
9: End while
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4.4.4 Cultural Algorithm (CA)

CA is based on the human cultural evolution process. CA works on two spaces, including
population and belief spaces [48]. The interaction between the population and belief spaces is provided
through the communication protocol (defined by acceptance and influence functions). The population
space (PS) of CA contains individual solutions, while the belief space (BS) represents the cultural
information gained during the evolution process. The main Cultural Algorithm steps are described in
Algorithm 6.

Algorithm 6: CA algorithm
1: t = 0
2: Initialize Population and Belief Spaces: P(t), B(t)
3: While the stopping criterion is met, do
4: t = t + 1
5: Evaluate the fitness of individuals in P(t)
6: Accept some elite individuals from the P(t) using Accept function
7: Update B(t)) using Update function
8: Produce new generation P(t + 1) using Influence function
9: End

4.4.5 Harmony Search Algorithm (HS)

Harmony Search (HS) Algorithm is a metaheuristic search algorithm which attempts to reproduce
the musicians creativity process in composing an agreeable harmony [49]. This algorithm considers
harmony memory using a process similar to choosing the best-fit individuals in other metaheuristic
techniques. In addition, a harmony memory-accepting factor (reaccept) is allocated. The main HS
steps are given in Algorithm 7.

Algorithm 7: HS algorithm
1: Initialize randomly the first Harmony Memory (HM).
2: Repeat
3: Evaluate the HM.
4: Select the Best individuals from the HM.
5: Generate new Harmonics.
6: Evaluate the Harmonics.
7: Include the Best Harmonics in the HM.
8: Until the end criterion is met.

4.4.6 Black Hole Algorithm (BH)

The Black Hole algorithm (BH) is motivated by the phenomenon of the black hole and tries to
reproduce its rule of attracting other stars in space [50]. Black holes symbolize solution with best fitness
and other candidate solutions as star. All stars explore new best positions while moving towards black-
hole. When a star reaches better fitness than black hole, its position is swapped. Star too close to black
hole (pass event horizon) will be replaced by new random solution, as explained in Algorithm 8.
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Algorithm 8: BH algorithm
1: Set randomly an initial population of stars in the search space.
2: t = 0
3: While (t < MaxIteration) or (stop criterion) do
4: Evaluate the fitness fi of each star.
5: fBH> = Best fi

6: For each ith star do
7: xi = xi + rand (xBH – xi)
8: if f i > f BH then swap (ith, BH)

9: if dist (ith, BH) ≤ R then move the ith star to a random position, where R = fBH∑
i fi

10: End for
11: t = t + 1
12: End while

4.4.7 Ant Lion Optimization (ALO)

Ant lion optimization (ALO) algorithm uses ant lions hunting technique [51]. ALO comprises five
main hunting steps: random walk, construction traps, entrapment of ants in the trap, catching prey
and reconstruction traps. The main ALO steps are given in Algorithm 9.

Algorithm 9: ALO algorithm
1: Arbitrarily initialization of the first population of Ants and Ant lions.
2: Calculation of the fitness of Ants and Ant lions and determination of elite (best Ant-lion).
3: While (t < MaxIteration)
4: For each Ant
5: Select an Ant lion based on Roulette wheel.
6: Revise parameters.
7: Random walk creation and normalization.
8: Revise the ant position.
9: End for
10: Calculate the fitness of all Ants.
11: Substitute a fitter Ant lion as elite.
12: Update elite if Ant lion is better than elite.
13: t = t + 1
14: End while

4.5 Performance Metrics
Performance metrics regarding intrusion detection can be defined from a confusion matrix,

such as accuracy, precisions, sensitivities and F1-score. On the other hand, and before applying a
classification method, it is essential to select the best features. The following subsections summarize
how to compute these metrics.
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4.5.1 Confusion Matrix Based Parameters

IDS effectiveness is estimated according to its ability to classify intrusion traffic into a correct
type. Table 3 displays all possible cases of classification, where Aij denote the number of examples of
genuine class Ci categorized as class Cj and Ni is the size for class Ci.

Table 3: Confusion matrix

Actual class Predicted class

C1 C2 . . . C15

C1: N1 A11 A12 . . . A1,15

C2: N2 A21 A22 . . . A2,15

. . . . . . . . . . . . . . .

C15: N15 A15,1 A15,2 . . . A15,15

To evaluate the proposed classifiers (FCM, BPNN, hybrid based FCM and hybrid based NN), two
parameter sets are used. The first set includes specific metrics of each type of attack, as the Detection
Rate or Precision, the True Positive Rate (recall or sensitivity), the False Decision Rate (or False Alarm
Rate) and F1-score. The second one consists of global metrics as global sensitivity, global false decision
rate, global F1-score and accuracy.

For each predicted class Ci, precision rate βi , sensitivity rate γi , false decision rate δi and F1i -score
are computed according to Eq. (8).

βi = Aii

Ni

, γi = Aii∑
j Aji

, δi =
∑

j �=i Aji∑
j Aji

= 1 − γi, F1i = 2βiγi

βi + γi

(8)

Thus, the global rates as accuracy β, the global sensitivity (γ ), the global false decision rate (δ)
and the global F1-score, become as specified in Eq. (9).

β =
∑

i Niβi∑
i Ni

, γ =
∑

i Niγi∑
i Ni

, δ = 1 − γ , F1 =
∑

i NiF1i∑
i Ni

(9)

It is also essential to note that for all the metaheuristic based approaches (hybridized FCM and
NNs), and to maximize accuracy β, global sensitivity γ and F1-score (or to minimize False Decision
Rate δ), the identical fitness function f was considered (Eq. (10)).

f = 1 − F1 (10)

4.5.2 T-Statistic Based Features Ranking

As feature selection technique, the t-statistic method [52] is applied in this work. For each
characteristic xi, a univariate Discriminant Function is calculated on data belonging a priori to two
classes Cj and Cl. t-statistic, t(xi) is obtained according to Eq. (11).

t (xi) =
∣∣μij − μil

∣∣√
σij

2

Nj

+ σil
2

Nl

(11)

where μik, σ ik and Nk signify respectively the mean, the standard deviation of ith feature xi and the size
for class Ck, for k = {j, l}. The best features are those with the highest t-statistic values.
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5 Implementation of the Proposed Methodology

As earlier presented, the aim of this work is to improve the detection of intrusions in 25% of
CICIDS2017 Dataset, by using a hybridized detection process of all the attack families. To this end,
this work was carried out in three main steps:

i) To select the best features, a combination between F1-score, extracted from LDA, and t-statistic
method was adopted.

ii) For the detection of intrusions, unsupervised Fuzzy C-means (FCM) and hybrid FCM
clustering using seven metaheuristic algorithms (GA, PSO, CA, DE, HS, BH and ALO) are
performed after the designation of the finest number of clusters by Elbow technique.

iii) To improve performance parameters of intrusion detection, supervised NNs (a Back-
propagation Neural Network and seven hybrid NNs, using the above-cited metaheuristic
algorithms) are achieved.

To finalize this analysis, two further steps are achieved:

iv) The best approaches, proven during the two previous steps, are reassessed using data from
CICDS2018 and LUFlow2020 Datasets.

v) Performance regarding the suggested approaches and state of the art works are displayed.

In this section, the different steps of the suggested approach are detailed. In addition, the overall
results are discussed.

Notice that the various analyzes achieved in this work have been developed under the Matlab
environment, R2017b, with an Intel Core i7 3.0 GHz processor, 16 GB of RAM.

5.1 Features Selection
As introduced above, the used CICIDS2017 Dataset contains observations on 79 features counting

category attribute [34]. In this work, and to select the best features, two techniques are used, namely
F1-score extracted from LDA and t-statistic.

Indeed, a univariate discriminant analysis was developed, allowing to calculate the Discriminant
Functions (DF) by considering one variable xi at a time and a couple of classes at a time as well.
This allowed to establish the confusion matrix for each DF (and for each feature), and to deduce the
F1-score value (F1i).

In the same way, the t-statistic function t(xi) was calculated, for all the features xi and for all class
pairs, as given in Eq. (11). Thus, considering all classes, each feature xi has an average value for F1i,
noted (F1mi) and for t(xi), noted tm(xi). The sum (0.5 F1m i + 0.5 tm(xi)) is used to rank the features in
decreasing order. Thus, the 24 best uncorrelated attributes, ranked by decreasing value of the sum (0.5
F1m i + 0.5 tm(xi) ≥ 0.5) on the basis of the previously obtained results and for all intrusion classes, are
illustrated in Table 4.

To test the discriminating power of these 24 selected features to detect normal traffic or attacks,
a complete LDA is performed. Thus, by exploiting the 24 variables listed in Table 4, and the first nine
most frequent classes (C1 to C9) of Table 1, eight discriminant functions, DF, (h1, h2, . . . , h8) were
calculated for eight pairs of classes. To carry out the designs, we chose 1200 instances per intrusion
class and a decision rule as given in System (12).
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⎧⎪⎪⎨
⎪⎪⎩

if h1 (x) ≥ 0 then x ∈ C1

else if hi (x) ≥ 0 then x ∈ Ci for i = {2, 3, . . . , 7}
else if h8 (x) ≥ 0 then x ∈ C8

else x ∈ C9

(12)

Table 4: The 24 selected features for CICIDS2017 Dataset

Rank 1 2 3 4 5 6 7 8 9 10 11 12

Feature ID [10] 41 13 65 63 66 12 40 42 18 39 52 67

Rank 13 14 15 16 17 18 19 20 21 22 23 24

Feature ID [10] 54 20 14 8 55 9 22 26 25 24 36 21

The best DFs allow to establish the confusion matrix, from which the performance rates (preci-
sions βi , sensitivities γi and F1i) are extracted and illustrated in Fig. 1. In the search for the best DFs,
various combinations of the 24 features are operated. The precisions of these DFs as a function of the
number of features they contain are shown in Fig. 1.

Figure 1: Performance measures obtained by LDA

These results show acceptable precisions, sensitivities as well as F1-scores, with an average value
of these three parameters around 85.83%, because the selected features are sufficient and relevant to
characterize the attack patterns. In addition, the experiment results illustrate the fact that through
LDA, identification of the different classes is possible with reasonable accuracy and global F1-score
(improvable by non-linear methods like those proposed in the following subsections).

5.2 FCM and Hybrid FCM Based Detection of Intrusion
The considered data (707146 intrusion instances of Table 1, split into a training set (70%) and test

set (30%), with 24 features listed in Table 4) will be classified using FCM and hybridized FCM. Let
us start first by determining the exact number of clusters existing in the used CICIDS2017 Dataset by
the elbow method.
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5.2.1 Finest Number of Clusters (K) Using Elbow Method

Before clustering the data using K-means or FCM methods, it is necessary to know the exact
number of clusters (K) present in the dataset. The elbow method gives an interpretation to the
evolution of the variance regarding the number of clusters [53]. In fact, Within-Cluster Sum of Square
(WCSS) is calculated as a function of the number of clusters (K), WCSS is the sum of the squared
distance between each instance and the cluster centroid (Fig. 2). According to Fig. 2, the curves
(obtained by K-means and FCM clustering designs) decrease to the elbow point (K = 13–15), from
which the curve decreases no more or very little. This observation brings us closer to the actual number
of classes (K = 15), contained in the used CICIDS2017 Dataset. However, from clustering point of
view, if the class size is negligible (as for classes C12–C15 in Table 1), it is immersed by the other classes.
Finding K∼13 is not surprising; this reflects one of the intrusion classes’ realities.

Figure 2: Within clusters sum of squared distances (WCSS) vs. K

5.2.2 FCM Based Detection of Intrusion

Each instance is labeled according to the type of intrusion to which it belongs. Since FCM is an
unsupervised procedure, the instance label is not used during clustering, but as validation information
and to calculate performance metrics. Intrusion data defined by the 24 most informative features, as
defined in Table 4, are considered as input for the FCM algorithm. According to Algorithm 2, all
data in the training set are grouped into 15 clusters (K = 15). After an initial random choice of 15
clusters centers, FCM assigns to each intrusion instance a membership score for each of the clusters.
By minimizing the adopted objective function, FCM updates, at each iteration, clusters centers and
membership levels for each instance. FCM ends by producing a list of cluster centers and multiple
membership levels. This allows for establishing the confusion matrix, based on the knowledge of
the real membership of each instance, and from which the performance parameters are deduced and
reported in Table 5.
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Table 5: Unsupervised detection performance (Accuracy β, global sensitivity γ , global F1-score F1

and execution time, in seconds) for FCM and Hybrid FCM

Unsupervised detection performance

Method β (%) γ (%) F1 (%)

FCM 86.95 ± 1.03 87.03 ± 0.89 86.91 ± 1.04
PSO-FCM 90.86 ± 1.01 90.37 ± 1.11 90.76 ± 0.91
GA-FCM 90.19 ± 0.94 89.64 ± 1.03 89.88 ± 1.01
DE-FCM 89.76 ± 0.96 89.05 ± 1.07 89.38 ± 1.04
CA-FCM 89.56 ± 1.09 89.11 ± 0.92 89.27 ± 1.01
HS-FCM 89.36 ± 0.97 88.80 ± 1.13 89.14 ± 0.99
BH-FCM 88.93 ± 1.06 88.83 ± 0.91 88.81 ± 1.05
ALO-FCM 90.18 ± 0.88 90.01 ± 0.96 90.04 ± 0.97

5.2.3 Hybrid FCM Based Detection of Intrusion

Metaheuristic algorithms as PSO, GA . . . are powerful and stochastic non-linear optimization
tools. To find the optimum fuzzy partitions of intrusion types, a new metaheuristic based FCM
clustering method has been proposed. Clustering using PSO-FCM, GA-FCM, DE-FCM, CA-FCM,
HS-FCM, BH-FCM and ALO-FCM can be achieved using the Algorithm 10.

Algorithm 10: Metaheuristic based FCM algorithm
1: Setting the FCM clustering parameters (as the number of clusters K , fuzzy index m . . . )

Setting metaheuristic algorithms parameters (population size, number of runs, maximum of
iterations, fitness function and other factors as given in Table 6).

2: Initialize the population P(0), corresponding to N × K cluster centroids.
3: Computing Fitness function of each K clusters combination.
4: Best-fitted solutions are selected after having being developed according to the PSO, GA, DE, . . .

or ALO algorithm (Algorithms 3–9 described in Subsection 4.4).
5: Check the end condition, if satisfied then stop, otherwise go to Step 3.
6: The finest K clusters generated by the metaheuristic algorithm correspond to global optimized

cluster centers.
7: These K clusters represent an initialization and will be used for final processing according to FCM

Algorithm (Algorithm 2 outlined in Subsection 4.2).

This algorithm comprises two parts. In the first step, the K clusters (K = 15) are developed
according to the metaheuristic algorithm concerned by using the tuning parameters exposed in Table 6.
The best result obtained is then readapted, during the second stage, according to FCM clustering
Algorithm.
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Table 6: Algorithms parameters tuning

Algorithm Parameters tuning

All algorithms Number of features = 24, Population size = 10–100,
Maximum number of iterations = 1000, Number of runs = 50,
Fitness function: f = 1 − F1 (Eq. (10))

PSO Personal learning coefficient = 1.49, Global learning coefficient = 1.49,
Inertia weight damping ratio = 0.99, Inertia weight = 0.72

GA Crossover probability = 0.8, Mutation rate = 0.02,
Mutation probability = 0.3, Selection pressure = 8

DE Differential Mutation factor = 0.75,
Crossover probability = 0.85,

CA Constant parameter = 0.2,
Acceptance rate = 0.35

HS Pitch-adjusting rate = 0.3, Harmony memory rate = 0.95,
Fret width or bandwidth = 0.2

BH Translation probability = 0.75,
Translation parameter = 0.25

ALO Number of search agents = 1000

As observed for FCM design, the instance label is not used during clustering, but as validation
information and to calculate confusion matrices and their corresponding performance metrics as
achieved and illustrated in Table 5 and Fig. 3. FCM and Hybrid FCM being unsupervised approaches
design, only the CICIDS2017 training Dataset was used, acting also as a test set. Thus, the results
provided in Table 5 represent the test performance rates (Accuracy β, global sensitivity γ and global
F1-score).

Because the results of the proposed algorithms depend on random initializations, the FCM-based
approaches were repeated 50 times. The results illustrated in Table 5 represent the mean values with
the standard deviations of the performance parameters obtained. These results can be shortened
as follows. The best accuracy rates are (in %) 87.98, 91.87, 91.13, 90.72, 90.53, 90.33, 89.99 and
91.06 for FCM, PSO-FCM, GA-FCM, DE-FCM, CA-FCM, HS-FCM, BH-FCM and ALO-FCM,
respectively. The best global sensitivity rates are (in %) 87.92, 91.48, 90.67, 90.12, 90.03, 89.93, 89.74
and 90.97 for the previous eight FCM-based algorithms, respectively, while the best global F1 values
reach (in %) 87.95, 91.67, 90.89, 90.42, 90.28, 90.13, 89.86 and 91.01 for the eight FCM-based
algorithms mentioned above, respectively.

The best performance rates obtained are summarized in Fig. 3. As proved by these last results,
PSO-FCM, GA-FCM, ALO-FCM and DE-FCM outweigh the rest of the FCM-based algorithms.
Fig. 3 presents also the best precisions, sensitivities and F1-scores of these last 4 algorithms, with regard
to the intrusion classes C1 to C15 (as defined in Table 1).
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Figure 3: Best performance measures for FCM-based algorithms and intrusion categories (C1 to C15

are attack classes defined in Table 1)

5.3 BPNN and Hybrid NN-Based Detection of Intrusion
As dealt with in the previous section, the considered CICIDS 2017 intrusions will be detected using

BPNN, followed by processing through seven metaheuristic-based NN as expressed in Algorithm 11
and based on parameters shown in Table 6. However, before proceeding with the detection of these
intrusions, it would be wise to seek the best NN architecture.

5.3.1 Optimal NN Search

It should be noted that regardless of the adopted architecture, the NN model consists of one input
layer including 24 neurons, corresponding to selected features in Table 4. The input layer is followed by
several hidden layers, whose exact number and sizes are to be determined. The output layer consists of
15 neurons, where each neuron is dedicated to a class. The desired response ri of the ith output neurons
(i = 1, . . . , 15), for each instance x, is coded according to Eq. (13).
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{
ri (x) = 1 for x ∈ Ci

ri (x) = −1 for x /∈ Ci
(13)

For every intrusion instance x0, a decision rule is proposed, for the 15 intrusion classes, depending
on the ith neural output oi (i = 1, . . . , 15) as specified in System (14).{

if oi (x0) ≥ 0 then x0 ∈ Ci

else x0 /∈ Ci
(14)

In the search of the best NN, all structures with 1 to six hidden layers, containing between 10 and
100 neurons each, are considered.

During the BPNN classification, the NN weights and thresholds are computed using the formula-
tion given in Subsection 4.3. In the case of hybrid-NN using GA, PSO, DE, BH, CA, HS and ALO, the
weights and thresholds are the metaheuristic components to be handled until the end of the iterations.
Additionally, runs with 10 to 1000 iterations and populations ranging from 10 to 100 individuals were
explored.

Algorithm 11: BPNN and metaheuristic-NN implementation
1: Adoption of NN Architecture.
2: For the BPNN case, update weights and thresholds according to the formulation given in
Subsection 4.3, using the training dataset.
3: Return the results of BPNN with weights, threshold and BPNN training performances (precision,
sensitivity, F1-score and accuracy of classifications).
4: Create the confusion matrix-based on the test set, compute test performances.
5: For the hybrid NN (GA-NN, PSO-NN, CA-NN, HS-NN, ALO-NN, BH-NN or DE-NN), improve
thresholds and weights based on the corresponding metaheuristic procedure.
6: Repeat Steps 3 and 4 for each metaheuristic-based NN and return training and test performances
(precision, sensitivity, F1-score and accuracy).

The key points to note, in NN designs, are the reliance of accuracy rates with the NN size
(regardless of the neurons spreading in the network), the training number of iterations and the
population’s size. The Accuracy-Number of neurons dependency is shown in Fig. 4, where accuracy
rates are schemed regarding the number of hidden nodes for BPNN and PSO-NN. This first result is
probed thanks to architectures with 5 hidden layers, using BPNN and PSO-NN (with 200 iterations
and a population size of only 40 individuals). After a lot of experimentation, and as shown in Fig. 4,
the finest architecture attained is (24, 40, 60, 40, 20, 30, 15).

Regarding the contribution of the Number of Iterations in improving accuracies, Fig. 4, produced
on the same NN architecture (24, 40, 60, 40, 20, 30, 15), shows that accuracies can be improved by 3–4
points if the number of iterations is increased to 1000. It can be perceived that the PSO-NN, GA-NN
and ALO-NN algorithms are more efficient.

Fig. 4 illustrates the best accuracy rates found for different population’s size values and produced
on the same NN architecture (24, 40, 60, 40, 20, 30, 15). The last result again explains the advantage
of the PSO-NN approach. Moreover, satisfactory results are provided with an average population of
50 individuals.
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Figure 4: Accuracies vs. number of hidden neurons n for BPNN and PSO-NN and accuracy vs. number
of iterations and accuracy vs. population’s size

5.3.2 Intrusion Detection by Using Hybrid NN

Because the proposed metaheuristic algorithms are initialized in a random way, the hybrid NN-
based approaches were re-executed 50 times. Notice that, for each run, a confusion matrix is established
allowing to extract the global results. The best results on the 50 adopted runs, obtained with the eight
NN-based algorithms for both training and testing datasets, are shown in Table 7.

The best training performance measures by the eight NN-based algorithms can be summarized as
follows. The best training accuracy rates correspond (in %) to 96.88, 99.99, 99.56, 99.13, 98.87, 98.97,
99.12 and 99.25 for BPNN, PSO-NN, GA-NN, DE-NN, HS-NN, BH-NN and ALO-NN, respectively.
The best global training sensitivity rates are (in %) 96.34, 99.97, 99.45, 99.09, 98.68, 99.13, 98.94
and 99.41 for the previous eight NN-based algorithms, respectively. The best training F1-values cover
the range (in %) of 96.11, 99.98, 99.50, 99.11, 98.77, 99.05, 99.03 and 99.33 for the eight NN-based
algorithms mentioned above, respectively.
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Table 7: Intrusion detection performance by using BPNN and metaheuristic-based NN on training
and test datasets

Training performance rates Test performance rates

Method β (%) γ (%) F1 (%) β (%) γ (%) F1 (%)

BPNN 95.76 ± 1.12 95.41 ± 0.93 95.13 ± 0.98 95.77 ± 0.97 95.74 ± 1.09 95.75 ± 1.03
PSO-NN 99.10 ± 0.89 98.99 ± 0.98 99.04 ± 0.94 98.96 ± 1.01 99.02 ± 0.93 98.99 ± 0.97
GA-NN 98.49 ± 1.07 98.47 ± 0.98 98.44 ± 1.06 98.52 ± 0.99 98.19 ± 1.07 98.35 ± 1.03
DE-NN 98.22 ± 0.91 98.07 ± 1.02 98.14 ± 0.97 98.03 ± 0.98 97.82 ± 1.11 97.93 ± 1.04
CA-NN 97.71 ± 1.16 97.70 ± 0.98 97.69 ± 1.08 97.64 ± 1.08 97.68 ± 1.01 97.66 ± 1.04
HS-NN 98.03 ± 0.94 98.14 ± 0.99 98.08 ± 0.97 98.00 ± 0.98 97.92 ± 0.99 97.96 ± 0.98
BH-NN 98.09 ± 1.03 97.93 ± 1.01 98.01 ± 1.02 98.01 ± 1.02 97.87 ± 1.05 97.94 ± 1.03
ALO-NN 98.26 ± 1.09 98.49 ± 0.92 98.42 ± 1.91 98.24 ± 0.99 98.06 ± 1.05 98.15 ± 1.02

Additionally and in conjunction with the four best NN-based algorithms, the greatest test
accuracy rates are (in %) 99.97, 99.51, 99.01 and 99.23 for PSO-NN, GA-NN, DE-NN and ALO-
NN, respectively. The highest global test sensitivity rates reach the following values (in %): 99.95,
99.26, 98.93 and 99.11 for the previous four best NN-based algorithms, respectively. The highest test
F1-values extend over the interval (in %) of 99.96, 99.38, 98.97 and 99.17 for the four best NN-based
algorithms mentioned above, respectively.

Fig. 5 displays the best test global performance measures attained by the eight NN-based
algorithms and examples of test precision, sensibility and F1-score rates, obtained by the four best
NN-based algorithms (PSO-NN, GA-NN, ALO-NN and DE-NN) with respect to intrusion category.

Figure 5: (Continued)
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Figure 5: Test performance measures with respect to NN-based algorithms and intrusion detection
performance comparing of NN-based algorithms for accuracy, sensitivity and F1-score

As shown by the previous results, PSO-NN is the best algorithm among the eight metaheuristic-
based NNs. Details about the distribution of PSO-NN performance rates with respect to the 15
intrusion classes, given in Table 8, for training and test datasets, show excellent performance, situating
thus accuracies, sensitivities and F1 rates, for all classes, between 99.32% and 99.99%.

Table 8: Detection performance rates for all CICIDS2017 classes by using PSO-NN

Training performance rates Testing performance rates

Attack class β (%) γ (%) F1 (%) β (%) γ (%) F1 (%)

C1 99.04 ± 0.95 98.94 ± 1.03 99.01 ± 0.97 99.00 ± 0.98 98.90 ± 1.05 99.01 ± 0.94
C2 98.94 ± 1.04 99.05 ± 0.89 98.92 ± 1.04 99.04 ± 0.92 99.05 ± 0.90 99.01 ± 0.93
C3 98.90 ± 1.07 98.98 ± 0.96 98.95 ± 0.99 99.09 ± 0.88 98.90 ± 1.04 98.95 ± 0.99
C4 98.92 ± 1.05 98.99 ± 0.95 99.00 ± 0.93 98.93 ± 1.03 99.01 ± 0.94 99.02 ± 0.93
C5 98.97 ± 0.92 99.05 ± 0.89 98.86 ± 1.02 98.96 ± 0.94 99.01 ± 0.95 98.90 ± 1.05
C6 99.04 ± 0.92 98.84 ± 1.04 98.92 ± 0.88 98.89 ± 0.97 99.05 ± 0.88 99.05 ± 0.84
C7 98.98 ± 0.90 99.02 ± 0.89 98.84 ± 1.04 98.91 ± 0.94 98.93 ± 1.04 98.98 ± 0.93
C8 98.74 ± 1.04 98.94 ± 0.87 98.75 ± 1.05 98.61 ± 0.87 99.02 ± 0.93 98.81 ± 0.96
C9 98.73 ± 1.04 98.90 ± 0.94 98.89 ± 0.89 98.74 ± 1.05 98.94 ± 0.98 98.68 ± 1.02
C10 98.71 ± 1.02 98.75 ± 0.87 98.59 ± 1.04 98.83 ± 0.95 99.02 ± 0.89 98.83 ± 0.93
C11 98.82 ± 0.94 98.93 ± 0.88 98.46 ± 1.05 98.61 ± 1.02 99.03 ± 0.89 98.76 ± 1.03
C12 98.76 ± 1.03 98.73 ± 0.92 98.79 ± 0.94 98.51 ± 1.03 99.03 ± 0.90 98.79 ± 0.91
C13 98.68 ± 0.89 98.58 ± 0.91 98.48 ± 1.02 98.37 ± 0.95 98.88 ± 1.04 98.75 ± 0.88
C14 98.86 ± 0.92 98.60 ± 1.03 98.76 ± 0.93 98.73 ± 0.88 98.98 ± 0.91 98.85 ± 0.91
C15 98.48 ± 1.04 98.62 ± 0.89 98.52 ± 0.97 98.60 ± 1.02 98.91 ± 0.89 98.68 ± 1.03
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The execution times, achieved offline during the learning phase, for FCM-based algorithms and
NN-based techniques with (24, 40, 60, 40, 20, 30, 15) architecture, using 1000 iterations, are collected
in Table 9. From Table 9 and previous results, the PSO-NN approach provides the best efficiency-
computational cost.

Table 9: Average run times in seconds for all FCM and NNs approaches (learning with 1000 iterations)

Method FCM PSO-FCM GA-FCM DE-FCM

CPU time (s) 4.31 201.34 264.67 297.35

Method CA-FCM HS-FCM BH-FCM ALO-FCM

CPU time (s) 362.54 432.76 356.82 1399.45

Method BPNN PSO-NN GA-NN DE-NN

CPU time (s) 254.14 645.15 592.75 579.77

Method CA-NN HS-NN BH-NN ALO-NN

CPU time (s) 756.34 732.11 472.45 1956.32

5.4 Approach Evaluation by Using CSE-CICIDS2018 and LUFlow2020 Datasets
After ensuring that the PSO, GA and ALO-based FCM and NN have achieved good accuracy,

the models are tested using the CSE-CICIDS2018 [37] and LUFlow2020 Datasets [38].

Regarding the CSE-CICIDS2018 Dataset, the training and test data given in Table 1 were used.
As this dataset has the same features as the CICIDS2017 Dataset, the same selected attributes (Table 4)
are retained.

For the LUFlow2020 Dataset, the training and testing of the proposed approaches are performed
on the data set in Table 2. The features of this dataset have been reduced from 16 to 10, based on the
same features selection approach employed for the CICIDS2017 Dataset, described in Subsection 5.1.
The features selected are shown in Table 10.

Table 10: Features selected for the LUFlow2020 Dataset

Rank 1 2 3 4 5 6 7 8 9 10

Feature ID [38] 4 7 11 2 8 15 12 10 6 9

For the hybridization of FCM or NN by the three metaheuristics chosen (PSO, GA and ALO),
the same procedures defined in Algorithms 10 and 11 are used and keep the same tuning parameters
of Table 6. The results obtained during the training phase, with 1000 iterations and after 50 runs,
are summarized in Table 11. The best test performance rates are shortened in Table 12. Based on
these results, PSO-NN, GA-NN and ALO-NN, as well as the FCM-based approaches, keep the same
efficiencies as those reached for CICIDS2017. Moreover, PSO-NN and GA-NN show excellent test
accuracies, reaching 99.77 % and 99.31%, respectively, for the CSE-CICIDS2018 Dataset, (99.97%
and 99.72%, respectively for the LUFlow2020 Dataset).
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Table 11: Training results using PSO-, GA- and ALO-based FCM and NN

CSE-CICIDS2018 Dataset LUFlow Datasets

Method β (%) γ (%) F1 (%) β (%) γ (%) F1 (%)

PSO-FCM 90.52 ± 1.04 90.31 ± 1.01 90.46 ± 0.96 92.16 ±1.05 91.97 ± 1.03 92.04 ± 0.93
GA-FCM 90.21 ± 0.98 89.76 ± 1.02 90.11 ± 1.03 91.69 ± 0.96 91.13 ± 1.08 91.38 ± 1.01
ALO-FCM 90.29 ± 1.02 90.19 ± 0.97 90.23 ± 1.03 91.24 ± 0.99 90.99 ± 1.07 91.13 ± 1.04

NN architecture NN architecture

(24, 40, 60, 40, 20, 30, 13) (10, 35, 45, 40, 20, 2)

β (%) γ (%) F1 (%) β (%) γ (%) F1 (%)

PSO-NN 99.05 ± 0.91 98.92 ± 0.99 99.01 ± 0.95 98.97 ± 1.01 99.05 ± 0.94 99.01 ± 0.97
GA-NN 98.65 ± 1.01 98.39 ± 0.97 98.46 ± 1.01 98.56 ± 0.98 98.53 ± 1.05 98.45 ± 1.05
ALO-NN 98.53 ± 1.05 98.41 ± 0.98 98.47 ± 1.04 98.43 ± 0.97 98.28 ± 1.03 98.33 ± 1.04

These results are illustrated in another way, with the Receiver Operating Characteristic (ROC)
curves, given in Fig. 6. The area under the curve (AUC) values are also provided in Table 12, once
again proving the correctness of the proposed approach.

Table 12: Best test performance rates and AUC values using PSO-, GA- and ALO- based FCM and
NN algorithms

CSE-CICIDS2018 Dataset LUFlow2020 Datasets
Method β (%) γ (%) F1 (%) AUC (%) β (%) γ (%) F1 (%) AUC (%)

PSO-FCM 91.44 90.98 91.21 91.11 91.86 91.37 91.76 91.82
GA-FCM 91.11 90.71 90.97 90.87 91.19 90.64 90.97 90.67
ALO-FCM 90.97 90.41 90.63 90.34 90.86 90.79 90.83 90.54
PSO-NN 99.77 99.65 99.73 99.64 99.97 99.98 99.97 99.95
GA-NN 99.31 98.96 99.24 99.26 99.72 99.61 99.69 99.58
ALO-NN 99.11 98.91 99.02 99.03 99.52 99.32 99.43 99.37
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Figure 6: ROC curves for FCM- and NN-based approaches using CSE-CICIDS2018 and LUFlow2020
Datasets

5.5 Comparison with State-of-the-Art Works
Performance evaluation regarding the suggested approaches and published works [9,54–69] is

displayed in Table 13. Despite the fact that the comparison with related work is not a straight forward
process, the established results show that the three algorithms PSO-NN, GA-NN and ALO-NN
are very efficient in the intrusion detection task. Moreover, PSO-NN algorithm provides improved
performance than state-of-the-art studies concerning accuracy (β), sensibility (γ ) and F1-score.

Table 13: Comparison with previous works on CICIDS2017, CSE-CICIDS2018 and LUFlow2020
Datasets

Reference Year Method Dataset β (%) γ (%) F1 (%)

[9] 2019 Adaboost

CICIDS2017

81.83 100 90.01
[54] 2019 AE and PCA 99.60 98.80 98.80
[55] 2020 IGAN-IDS 84.45 84.45 84.17
[56] 2021 NSA – 97.00 97.00
[57] 2019 RF 96.20 – –
[58] 2019 LSTM, CNN 98.00 – –
[59] 2021 IG + RF (1) 99.83 99.80 99.90
[59] 2021 IG + RF (2) 99.79 99.90 99.90
[60] 2022 RF 99.92 99.92 99.91
[61] 2022 LDA 88.10 88.33 89.21
[61] 2022 MLP 99.10 99.79 99.11

Proposed
approach

PSO-NN
CICIDS2017

99.97 99.95 99.96
2022 GA-NN 99.51 99.26 99.38

ALO-NN 99.13 99.11 99.12

(Continued)
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Table 13 (continued)

Reference Year Method Dataset β (%) γ (%) F1 (%)

[62] 2019 DBN

CSE- CICIDS2018

95.00 – –
[63] 2020 DNN 90.25 – –
[64] 2020 DL 95.00 – –
[65] 2019 LSTM 96.20 – –
[66] 2019 DL 96.00 – –
[67] 2019 CNN 96.00 – –
[68] 2021 HCRNN 97.75 – –
[60] 2022 RF 99.04 99.04 98.83

Proposed
approach 2022

PSO-NN
CSE- CICIDS2018

99.77 99.65 99.73
GA-NN 99.31 98.96 99.24
ALO-NN 99.11 98.91 99.02

[69] 2022
RF

LUFlow2020
99.94 – –

ANN 99.60 – –
DNN 99.82 – –

Proposed
approach

PSO-NN 99.97 99.98 90.98
2022 GA-NN LUFlow2020 99.72 99.61 99.69

ALO-NN 99.52 99.32 99.43

5.6 Discussion
In this subsection, the results obtained are commented on by raising issues related to the

interpretation of the False decision rate, the evaluation of the approaches proposed by recent datasets,
the comparison with state-of-the-art works, and the implementation and deployment of real-time IDS.

5.6.1 General Comments

Firstly, it is important to remember that the results provided are articulated around the three
parameters accuracy, sensitivity and F1-score. The results of the fourth parameter (the false decision
rate) can be deduced from the sensitivity (its complement). On the basis of the experimental outcomes
(Table 5), by means of training the CICIDS2017 Dataset, with the 24 selected features (Table 4),
FCM and Hybrid FCM algorithms can detect all attack categories with acceptable performance rates.
Indeed, the detection accuracy of FCM-based algorithms increases from 88% for FCM to 91.87%,
91.13% and 91.06% for PSO-FCM, GA-FCM and ALO-FCM, respectively. The same observation
is made for sensitivity measurements, where this parameter rises from 87.92% for FCM to 91.48%,
90.67% and 90.97% for ALO-FCM, GA-FCM and ALO-FCM, respectively.

The performance of BPNN and metaheuristic-based NNs in detecting intrusions, as presented in
Table 7 (for the training and test used ICICIDS2017 data), greatly improved accuracy, sensitivity and
F1 rates. The three performance parameters range from 96% for BPNN to 99.99% for PSO-NN. The
accuracy of PSO-NN approach in detecting intrusion families is excellent, reaching a value of 99.99%
using the training Dataset and 99.97% using testing dataset. In the same way, the test-sensitivity and
test-F1 rates are worth 99.95% and 99.96%, respectively. Since the PSO-NN based overall sensitivity
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is 99.95%, the false decision rate is 0.05%. In other words, out of a decision regarding 212146 test-
instances (defined in Table 1), only 106 intrusions would be false alarms.

It should be noticed that the NN-based results are linked to the decision rules established in
(System 14). Thus to reduce the False decision rate, these decision rules must be modified by exploiting
the histograms of the 15 PSO-NN training responses. For example, by exploiting the histogram of o4

(the output reserved to the C4 class or the DDos intrusion category), shown in Fig. 7, and calculated
for all the training instances, the DDos detection sensitivity obtained by PSO-NN can reach the value
of 100% (and the false detection rate can be 0%), if the rule defined in (System 15) is applied.

Figure 7: Distribution of intrusions with respect to the PSO-NN output o4 (by using 22400 C4-training
instances and 22400 training instances belonging to All Ci, (i �= 4){

if o4 (x0) ≥ 0.12 then x0 ∈ C4

else x0 /∈ C4
(15)

Thus by applying the rules (14 and 15) to 9600 test instances belonging to C4 (DDos class) and
9600 test instances randomly combining all other classes Ci, i �= 4 (all classes except DDos), detection
rates were obtained as illustrated in Table 14. PSONN’s results for the 15 intrusion classes, provide
a sensitivity of 99.95% for DDos-intrusions. The Sensitivity (or False detection) rates concerning the
detection of DDos-intrusions thus go from 99.95% (or 0.05%) with the initial rule given in System 14
to 100% (or 0%) with the modified rule (System 15).

Table 14: Test detection rates for C4 or DDos intrusions obtained by PSO-NN algorithm

Predicted class according to
rule Eq. (14)

Predicted class according to
rule Eq. (15)

Actual class C4 All Ci, i �= 4 C4 All Ci, i �= 4

C4: 9600 9595 5 9595 5
All Ci, i �= 4: 9600 5 9595 0 9600



CMES, 2023, vol.137, no.1 293

The same technique can be generalized for all PSO-NN outputs oi (i = 1, . . . , 15) to reduce, or
even nullify the Ci False decision rates.

The evaluation of approaches based on PSO, GA and ALO on the CSE-CICIDS2018 and
LUFlow2020 Datasets shows their efficiency. The results obtained with LUFlow2020 even exceed
those obtained with CICIDS2018. This can be interpreted by the fact that in LUFFlow2020, the
number of attack classes (equal to 2) allows PSO-NN algorithm to learn features better.

Regarding the comparison with the state-of-the-art works, Table 13 allows appreciating the
efficiency of the proposed approach. The results obtained generally exceed those obtained in the recent
works [9,54–69], and this is for the three datasets considered (CICIDS2017, CSE-CICIDS2018 and
LUFlow2020).

The majority of the ML published methods are valid for a network-based IDS implementation.
Existing datasets also provide a reference for the intrusions categories that may be encountered.
Updating these datasets is more than imperative. Moreover, merging these datasets would be a great
asset, at least those described by the same features. The interest in selecting the best features is well
established. Today, a variety of features selection techniques exists, combining conventional and new
approaches or introducing novel concepts [1,20,28–30,56,60]. This research axis is predestined for
further development.

5.6.2 Real Time Deployment

IDS is not a laboratory matter only since most techniques proven by research teams end up in
products delivered by service providers and commercials.

Despite the abundance of publications in the field of IDS, the treatment of certain key points
related to the deployment and real-time implementation of network-based IDS remains rare. Indeed,
few documents address this issue [70–74].

For the deployment, several solutions exist and must be adapted to the network environment.
For efficient use of IDS, the combination of both a network- and host-based IDS is recommended. A
network-based IDS secures the network by monitoring all traffic on specific segments, while a host-
based IDS is deployed on devices.

From a professional point of view, the problem of detection time by an IDS does not arise, given
the panoply of existing information technology solutions, regardless of the size of intrusion packets.
The plethora of commercial IDS solutions can analyze and record network data packets in real-time,
as reported for several IDS deployment [70–74].

As indicated in Table 9, training an IDS algorithm consumes a lot of computation time because
for NN optimization requirements, for example, the number of iterations, the size of the NN, the
parameters of the metaheuristics must be appropriate to achieve the expected performance. For an
architecture of (24, 40, 60, 40, 20, 30, 15), PSO-NN requires more than 645 s for its optimization (with
1000 iterations, population size equal to 100 and 495000 instances). Running an IDS, like the test
operation, consumes very little time. For the same PSONN architecture, on average, more than 76500
intrusions can be processed per second.

For a 10 Gbps link, PSO-NN-based IDS will give near real-time results as it can be combined
with threads. Threads and asynchronized calculation are essential to maintain all the traffic passed to
PSONN, where detections are instant and do not need a powerful CPU or a large memory.
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6 Conclusion

This paper aims to improve FCM- and NN-based Intrusion Detection performance on
CICIDS2017 Dataset by using the seven most known metaheuristic algorithms. To achieve this
objective, the proposed approach focused on the following major directions:

a) First of all, 25% used in this dataset have been cleaned and the attributes reduced to 24 features
only, as a result of a combination of LDA performance parameter with t-statistic. The interest in the
selected features has also been demonstrated through the results obtained.

b) New hybridizations of FCM and NN are suggested and applied for the first time in intrusion
detection research.

c) To confirm the truthfulness of the proposed approach, several performance indices as accuracy,
sensibility, and F1-score are exploited.

The unsupervised approach to detect intrusions via FCM, showed its validity, especially after
hybridization with PSO, GA, and ALO. Through PSO-FCM, for example, the accuracy, global
sensitivity, and F1 have reached the values of 91.87%, 91.48%, and 91.67%, respectively.

On the other hand, NNs and their metaheuristic-based hybridizations have greatly improved the
detection of intrusions in the CICDS2017 Dataset. PSO-NN offered tested accuracy, sensitivity and
F1-score of 99.97%, 99.95%, and 99.96%, respectively, improving hybrid FCM and other hybrid NN.

d) The best approaches based on PSO, GA, and ALO methods are reassessed using intrusion
instances from CICDS2018 and LUFlow2020 Datasets. The results obtained further confirmed the
correctness of the proposed approaches.

e) On the other hand, the comparison of the proposed approaches with the state-of-the-art works
proved that PSO-NN outperforms some recently published results and this is for the three datasets
considered.

Although the training of the IDS algorithms requires a long calculation time, the real-time
processing of the attacks is instantaneous and does not generally require special hardware or additional
memory.

Future studies should extend the work to the following key points:

i) Data mining: data may be reduced by assembling attack classes into similar groups or by
merging several datasets, simplifying the analysis and further increasing performance rates. Moreover,
a Dataset is better when it is described with a minimum of very relevant features. This can be achieved
by sightseeing new tools.

ii) IDS design: other Artificial Intelligence-based methods, not yet sufficiently covered, can be
combined or hybridized.

iii) In addition to improving the performance of IDS by ML methods, more interest should be
given to the implementation and deployment aspects.
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