
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.027466

ARTICLE

Code Reviewer Intelligent Prediction in Open Source Industrial
Software Project

Zhifang Liao1, Bolin Zhang1, Xuechun Huang1, Song Yu1,* and Yan Zhang2

1School of Computer Science and Engineering, Central South University, Changsha, 410083, China
2Department of Computing, School of Computing, Engineering and Built Environment, Glasgow Caledonian University,
Glasgow, G4 0BA, UK

*Corresponding Author: Song Yu. Email: ys@csu.edu.cn

Received: 31 October 2022 Accepted: 22 December 2022

ABSTRACT

Currently, open-source software is gradually being integrated into industrial software, while industry protocols
in industrial software are also gradually transferred to open-source community development. Industrial protocol
standardization organizations are confronted with fragmented and numerous code PR (Pull Request) and informal
proposals, and different workflows will lead to increased operating costs. The open-source community maintenance
team needs software that is more intelligent to guide the identification and classification of these issues. To solve
the above problems, this paper proposes a PR review prediction model based on multi-dimensional features. We
extract 43 features of PR and divide them into five dimensions: contributor, reviewer, software project, PR, and
social network of developers. The model integrates the above five-dimensional features, and a prediction model is
built based on a Random Forest Classifier to predict the review results of PR. On the other hand, to improve the
quality of rejected PRs, we focus on problems raised in the review process and review comments of similar PRs. We
propose a PR revision recommendation model based on the PR review knowledge graph. Entity information and
relationships between entities are extracted from text and code information of PRs, historical review comments,
and related issues. PR revisions will be recommended to code contributors by graph-based similarity calculation.
The experimental results illustrate that the above two models are effective and robust in PR review result prediction
and PR revision recommendation.

KEYWORDS
Open source software; pull request; random forest; knowledge graph

1 Introduction

Software in open-source communities is gradually being integrated into complex industrial
software systems [1], and it has become the new norm in the Industry 4.0 mode to accept open-
source software and develop with it together. At the same time, some protocols and components in
industrial systems are also gradually open-sourcing, to embrace the development of the community [2],
promote open innovation and industrial synergy, and reduce the implementation threshold of multi-
system interfacing in the industrial production chain [3]. However, the development form of open

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.027466
https://www.techscience.com/doi/10.32604/cmes.2023.027466
mailto:ys@csu.edu.cn


688 CMES, 2023, vol.137, no.1

source software is different from industrial software, especially in areas like development tools and
organizational structure. The open-sourcing of industrial applications and protocols will increase the
human cost of maintaining the project itself, and its standardization organization will face a large
number of informal proposals, suggestions, and consultations.

In GitHub, an open-source social coding platform [4], suggestions and questions are submitted
as Issues, proposals for changes to the software project are submitted as PRs (Pull Requests), and
usually, a valid PR will fix the problem described in the Issue. However, the existing code PRs lack a
clearly defined scoring mechanism. Code reviewers have to manually check code changes in PRs to
make judgments. An automatic way to filter valuable PRs can save lots of time and effort for reviewers.
Therefore, we try to study the existing manual PR classification and review process, and construct an
automated PR classification and review prediction tool to help reviewers select more valuable PRs,
and help contributors solve low-level errors. In this way, both reviewers and contributors can improve
communication efficiency and promote the open-source development of industrial software.

To address these problems, this paper proposes a multi-dimensional feature-based PR review
result prediction method MFPRPre (Multi-dimensional feature PR prediction). MFPRPre regards
whether a PR will pass review as a dichotomous problem, and selects 43 features from five dimensions:
contributor, reviewer, project, PR, and social network of developers. A Random Forest classifier is
constructed to predict the result of the PR review. For the PRs that are not accepted, this paper also
proposes a knowledge graph-based modification suggestion recommendation method (KGMORec).
For the given PR, text and code information of PR, related issues, and review comments are analyzed
to find the most similar PR entities in the knowledge graph. Then, KGMORec will recommend the
most similar review comments to contributors, thus improving the passing rate of code review.

2 Related Work

The work related to the content of this paper focuses on two areas: the study of industrial software
and open source software practices, and the study of PR revision related to open source software
management practices.

The development practice and management experience of open source software is valuable for
the development and open sourceization of industrial software. Therefore, many studies focus on
the use of open source software in the development of industrial software. Linden et al. [1] found
that industrial software is growing relying on open source software projects for development. This
phenomenon implies that industrial software development requires knowledge of open source software
cooperation and also requires middleware suppliers to update their products based on open source
standards. Agerfalk et al. [5] proposed that lots of problems exist before open source projects being
applied to industrial projects, such as intellectual property rights, development modes, and the skills
required to participate in open source projects. Hunsen et al. [6] focused on the differences in the
application of C preprocessors (CPP) in the open source and industrial domains. They confirmed
that research on CPP can be effectively transferred from open source systems to industrial systems.
Ebert [7] believed that free and open source software (FOSS) simplifies the complexity of software
development. The development of industrial software will unavoidably use open source components
as the basis of its development. Software suppliers provide the stability of commercial software by
offering FOSS-based solutions to business users. Also, due to the FOSS-based project, this software
supply activity is not monopolized by a specific software vendor.

The current researches on PR review prediction in GitHub focus on the textual description
information of PRs. Marlow et al. [8] explored the main factors influencing the merging of PRs



CMES, 2023, vol.137, no.1 689

by comparing data and analyzing various characteristics of successful and failed merged PRs.
Soares et al. [9] found that the following factors have an impact on the merging of PRs: program-
ming language, number of commits, files added, external developers and the first PR submitted by
the contributor history. Ram et al. [10] conducted an empirical study and found that three main
factors influenced the reviewability of PR: code changes, change descriptions, and commit history.
Kim et al. [11] proposed a PR prioritization method-PRioritizer, which provides a prioritization
method for reviewers facing multiple PRs, taking into account dynamic and static information of
PRs. Jiang et al. [12] mainly considered modified code features, PR description text features, historical
developer behavior features and project features, and combined these features to propose a CTCPPre
method to predict the accepted PRs in GitHub. Studies on open source ecology have consistently
shown that the results of PR audits are also related to social relationships [13]. Core project team
members utilize social information when evaluating PRs [14], and regular developers can also generate
impressions of the project through comments, showing different emotions and behaviors that form the
potential personality of the user [8,14].

Current research works lack of content that is closely related to PR review comments in the open
source community [4]. Some researchers have worked around duplicate detection of defect reports.
Runeson et al. [15] was the first to address the problem of duplicate defect reports, he evaluated natural
language processing methods to achieve duplicate detection and used Jaccard distance to calculate
the similarity. Wang et al. [16] automatically detected duplicate reports by combining execution
information and textual content in the defect report, reducing the cost of software development
and maintenance. Nguyen et al. [17] modeled error reports as specific documents and resolved the
submission of duplicate error reports by detecting similarities between error reports. Sun et al. [18]
implemented a discriminative model to match similar defect reports and experimentally found that
the model improved compared to NLP in three large defect repositories.

From related works we can find that in the task of predicting PR review results, researchers have
disputed which features affect PR reviews. Also, there is a lack of focus on how to help contributors
modify their PRs. A large number of studies have focused more on code defects themselves rather
than PRs submitted by contributors. Our work focuses on the selection of PR features, PR review
knowledge graph construction and PR revision recommendations to improve the quality of PRs in
the open source community.

3 Approach

In this section, we will introduce the architecture for PR review result predication model and PR
revision suggestion model.

3.1 Research Questions
To solve the above problems, this paper first proposes a PR review result prediction method

called MFPRPre, which is based on a random forest classifier. To evaluate PR more comprehensively,
we collected opinions from 56 people on the factors affecting the PR by questionnaires, with the
opinions we selected 43 features from five dimensions. Secondly, for PRs that need to be modified, this
paper designs a review comments recommendation method called KGMORec. The method combines
domain knowledge mapping technology to effectively organize various entities such as textual and
code information of PRs, historical review comments of PRs, and related Issues, to explore potential
relationships among different knowledge entities and recommend review comments for defective PRs.
This paper focuses on the following three questions:



690 CMES, 2023, vol.137, no.1

Question 1: Do all the data dimension features affect the prediction of the prediction model? Which
data dimension features are more important for the results?

Question 2: How is the performance of MFPRPre in predicting PR review results compared to
existing models?

Question 3: How does KGMORec perform in recommending PR review comments compared to
traditional recommender systems?

3.2 The Architecture for Models
The architecture for the two models is shown in Fig. 1. The architecture consists of three parts. The

first part includes data collection and data procession, and it tries to collect the PR-related data. The
second part includes features extraction and prediction model training (MFPRPre). If the prediction
result is ‘accept’, the inspector will be prompted that the current PR is of high-quality. Otherwise, it is
assumed that the PR still needs to be modified. The third part is KGMORec construction. We need
to construct the PR knowledge graph and try to match the similar PRs in the knowledge graph by
calculating the similarity of both code and text. Valuable review comments of these similar PRs are
recommended to developers.

Figure 1: The model structure of MFPRPre and KGMORec

3.3 Prediction Model of PR Review Results
This section mainly describes the feature selection and construction process of the MFPRPre

model in Fig. 1. Based on previous studies [10,19] and a survey of GitHub developers [20,21] and the
survey of software engineers, we extract 43 features that may affect the review results of PR from 5
dimensions. A complete list of relevant features is presented in Table 1.

1. Contributor feature extraction. In this dimension, we mainly consider the user’s community
status and his or her activity in the project. In general, the community status of a contributor
consists of his or her attention and the amount of code sharing, and the contributor’s time and
recent activity in the project also influence the reviewer’s attitude. Based on existing studies
[13,22], we select contributors’ activity, contributor’s historical PR status, and contributor’s
identity in the project as the features in the contributor dimension.



CMES, 2023, vol.137, no.1 691

2. Reviewer feature extraction. In this dimension, we consider the impact of the project’s pop-
ularity and activity on the review results. In the calculation of project popularity, we mainly
consider the recent Star, Watch, and Fork counts of the project, and normalize the popularity.
In the calculation of project activity, we will mainly consider the frequency of recent PRs and
the PR response frequency of the project. Based on existing studies [8,23], we select part of the
features of the reviewers such as the number of PR comments, the number of PR participants,
and PR code tests. In addition, we add issue data (the number of associated Issues) as an
important feature.

3. Project feature extraction. In this dimension, we consider the impact of PR descriptions and
features in code changes on PR reviews, where PR descriptions help reviewers understand the
purpose and characteristics of PRs, and the number and scope of code changes significantly
affect the difficulty of the review and the review results. Based on existing studies, we select
programming language and domain [24], project age, team size, and project popularity [14] as
important project features. In order to better evaluate the popularity of projects, we incorporate
the number of Star, Watch and Fork as projects’ popularity features. In addition, we specifically
add PR Waiting Time, PR Submission Count, and PR Acceptance Rate as project features to
assess the overall work pace and style of the project.

4. PR feature extraction. During the code review process, the reviewers’ attitudes change as they
are discussed, and the PR will be approved or disapproved during multiple communications.
Based on existing studies, we select the number of deleted lines of code, the number of new lines
of code, and the number of modified files as code features of PR [9]. In addition, the similarity
of PR description information [10] and PR text information are selected as PR text features.
We believe that text similarity of PR can effectively express the personality of the reviewer and
better highlight important functions of project.

5. Developer social network feature extraction. In this dimension, we mainly consider the activity
characteristics of contributors in the social network. We rely on PR and Issue data mining to
generate directed edges from reviewers to contributors to build a collaborative network [25].
We also calculate the social features of users in this collaborative network to measure the social
distance of developers in the project [26]. The feature vector centrality is calculated as shown in
Eq. (1). DN(ni) denotes the set of direct neighbors of node ni, and ni is the maximum eigenvalue
of the adjacency matrix.

Ec(ni) = 1
λ

∑

nj∈DN(ni)

Ec(nj) (1)

The construction process of the MFPRPre model consists of the following three main stages:

1. Data collection and pre-processing: Standard interface provided by GitHub is used to obtain
popular open-source software projects. The collected data includes the text description and
code of PR, contributors, reviewers, Issues and other related information. After that, a
series of data pre-processing steps are performed, such as data cleaning, normalization, data
transformation, feature selection and extraction.

2. Multi-dimensional feature extraction: We extract feature vectors of projects and their PRs in 5
dimensions.

3. The construction of PR review result prediction model: Features of 5 dimensions are used as
inputs to the Random Forest Classifier to predict the PR review results.



692 CMES, 2023, vol.137, no.1

Table 1: MFPRPre selected PR features

Feature Description Feature Description

ctr_followers Number of followers of a PR
contributor

ctr_role Whether the contributor is a
core member

ctr_repo_num Number of public repositories
for a PR contributor

ctr_issue_num Number of Issues submitted
by a contributor

ctr_pr_num Number of PRs submitted by a
contributor historically

ctr_github_age Length of time in GitHub

ctr_accept_rate Acceptance Rate of PRs
submitted by a contributor

ctr_first_step Whether a contributor
submits a PR for the first
time

rvr_commit_num Number of comments in PR ctr_active Whether the contributor has
participated in PRs in recent
three months

rvr_issues_fix Whether a PR fixs Issue net_connection Number of contributors
interacting with core
members

rvr_issue_num Number of comments of related
Issues

net_connection_rate Percentage of contributors
interacting with core
members

rvr_participant Number of reviewers net_centrality_measures Centrality Metric
rvr_reviewer_rate Percentage of reviewers

responding to comments
net_closeness_centrality Proximity Centrality

rvr_first_time Time of the first review net_betweenness_centrality Intermediacy centrality
rvr_test_code Does PR pass the code test net_eigenvector_centrality Feature vector metric
repo_age Age of project pr_contain_body Whether a PR contains body

content
repo_dev_num Number of project developers pr_changed_lines Number of changed rows
repo_star Number of Stars pr_files_add Number of added files
repo_watch Number of Watchs pr_files_deleted Number of deleted files
repo_fork Number of Forks pr_files_modified Number of modified files
repo_popularity Project Popularity pr_files_changed Number of changed files
repo_language Programming languages used in

the project
pr_src_files Number of source code files

involved in the PR
repo_field The field to which the project

belongs
pr_doc_files Number of documents

involved in PR
repo_open_time Average time for PR merge pr_other_files Number of non-structural

resources involved in PR
repo_commit Average number of submission pr_text_sim Similarity of text similarity of

PR within 3 months
repo_accept_rate Acceptance rate of PR

3.4 Recommendation Model for PR Revision Suggestions
The model proposed in this paper can be used to recommend revision suggestions for PRs that

fail to pass the review. Three modules of the KGMORec are: (1) the knowledge graph for PR revision;
(2) the similarity calculation module, (3) and the recommendation module, as shown in Fig. 2.

Complex entity relationship information involved in PR revision process is effectively organized
in the KG. The similarity calculation module is used to calculate the text similarity and code similarity
between a failed PR and PR entities in KG, respectively. Finally, suitable review comments of Top-k
similar PRs are listed as recommendations in the recommendation module.



CMES, 2023, vol.137, no.1 693

Figure 2: The overall structure of KGMORec

3.4.1 Definition of Ontology

The PR mechanism provided by GitHub encourages developers to submit PRs for Issues in
open-source projects. After reviewing, results and specific revision comments of PRs will be given
by reviewers. Developers can further modify and resubmit PRs according to revision comments. Core
entities involved in the PR mechanism ontology include developers, reviewers, Issues, PRs and related
comments. Source code contains a large number of code entities, which are interconnected based on
syntax rules of different programming languages.

This paper integrates these two ontologies based on the impact of submitted PRs on source code,
and the complete ontology is shown in Fig. 3.

Figure 3: The ontology of knowledge graph for PR revision



694 CMES, 2023, vol.137, no.1

3.4.2 Entity Extraction

Entities need to be extracted from both the source code and the PR mechanism. Take entity
extraction of source code as an example, we divide knowledge of source code into three categories in
this paper: (1) Code structure knowledge, such as class, interface, methods, etc. (2) Code description
knowledge like code comments, (3) Code update knowledge, referring to the change history of
source code.

In Table 2, we list entities involved in the source code ontology with their attributes. Specifically,
JavaParse is used to parse Java code and generate abstract syntax trees, and we get entities and
their attributes by traversing nodes of the tree. Core entities and their attributes involved in the PR
mechanism are extracted in a similar way.

Table 2: MFPRPre selected PR features

Source code knowledge entities and attribute

Entity set of source code = {package, class, interface, variable, method, comment}
Attribute set of package = {package name}
Attribute set of class = {class name, modifier, class template, inherited parent class, package}
Attribute set of interface = {interface name, fully qualified name, template of the interface, parent

interface, package}
Attribute set of variable = {variable name, class to which it belongs, modifier, type of variable}
Attribute set of method = {method name, class to which it belongs, modifier, parameter list, type

of return value}
Attribute set of comment = {comment description}

3.4.3 Establishment of Relations between Entities

Some discrete knowledge entities can be obtained after entity extraction. However, it is still
necessary to further establish the relationship between discrete knowledge entities to form a connected
network integrating PR mechanism and source code knowledge system to formally express the PR
revision scenario. This paper establishes relationships of code entities, relationships of PR mechanism
entities, and relationships between PRs and code entities. Taking relationships of PR mechanism
entities as an example, we carry out relationship extraction centered on 3 core entities, PR, Issue and
Comment. The two types of relationships extracted centered on PR are shown in Table 3, which are
Author relationship and Update relationship.

Table 3: Relationship table of PR mechanism entities

Relationship set of PR mechanism entities

Relationship set = {Author, Update}
Author = {Developer, Pull Request}
Update = {Pull Request, resubmited Pull Request}



CMES, 2023, vol.137, no.1 695

3.4.4 The Similarity Calculation Module

We calculate the explicit text similarity and topic similarity of PRs based on the BM25 algorithm
and the LDA model, and combine the two as the final text similarity SimText(pri, prj).

We consider semantic structure of code as well as the code comments when calculating the code
similarity. The semantic structure similarity is calculated based on AST, and the node representation
is first generated by the feature vector method. Then, the edit distance between feature vectors is
calculated using a locally sensitive hashing algorithm, as shown in Eq. (2). T1 and T2 denote the
vectors of AST of pri and prj. SimText(T1, T2) denotes the number of similar nodes in T1 and T2.
T1 × Size + T2 × Size is the number of all nodes in two ASTs.

SimCodeNode(pri, prj) = 2 ∗ Sim(T1, T2)

T1 ∗ Size + T2 ∗ Size
(2)

For code comments, we use the LDA model to generate topic probability distribution and then
calculate the topic similarity Comment(pri, prj) of code comments. As shown in Eq. (3), the final code
similarity is the weighted sum of the two, where γ and δ are weighting factors.

SimCodeNode(pri, prj) = γ × SimCodeNode(pri, prj) + δ × Comment(pri, prj) (3)

3.4.5 The Recommendation Module

As shown in Eq. (4), the final similarity score of pri and prj is obtained by fusing the text similarity
and the code similarity with a certain factor α. The Top-k PR entities in the knowledge graph are
selected based on similarity ranking, suitable review comments of which will be organized as the final
recommending list of the KGMORec model.

Similarity(pr1, pr2) = α × SimText(pr1, pr2) + (1 − α) × SimCode(pr1, pr2) (4)

4 Experiment and Analysis

In order to verify the performance of the MFPRPre prediction model and KGMORec recommen-
dation model proposed in this paper, a large amount of open source project data was collected from
the GitHub platform, and an experimental environment was configured for training and testing the
model.

4.1 Description of Data Sets and Indicators
We have selected the 20 most popular GitHub open source projects, and they all use PR as the

main development method.

(1) Dataset for MFPRPre. We collected information related to project PRs through the GitHub
API to form a dataset for the MFPRPre prediction model study. The dataset contains 20 large
software projects and 216,920 PRs, of which 128,326 were accepted. Nine projects in the dataset
have an acceptance rate of more than 0.7 and 5 projects have an acceptance rate of less than
0.5. Among the 20 research projects, reactiveX/RxJava and elastic/elasticsearch projects have
the highest acceptance rate of 0.85, indicating that these two projects are more likely to accept
PRs, while the acceptance rate of nodejs/node project is only 0.07, indicating that the project
reviewers rarely accept external contributions. The basic statistics of the projects in the dataset
are shown in Table 4.

(2) Dataset for KGMORec. In order to keep the consistency of our experiment, we use the same
dataset as MFPRPre. Based on the possibility that the differences in syntax structure of



696 CMES, 2023, vol.137, no.1

different program languages may have an impact on data processing and final recommendation
results, we select 6 projects using Java from the whole dataset. Statistics of the selected Java
projects are shown in Table 5. PR and issue stand for the number of PRs and Issues submitted
to the project by contributors, respectively. PR Comment stands for the number of comments
that developers and reviewers discuss on the submitted PR. Revised PR stands for the number
of PRs that was not accepted the first time, was modified and then resubmitted. Accepted PR
stands for the number of PRs that were accepted after the second modification. Obviously, the
modification of PRs is frequent development behavior.

Table 4: Statistic of MFPRPre dataset

Projects PR AC PR pass rate

Scala/scala 8775 6756 0.77
Facebook/react 9381 6640 0.71
Tensorflow/tensorflow 13919 9566 0.69
Twbs/bootstrap 10744 5651 0.53
Ohmyzsh/ohmyzsh 5025 2220 0.44
Cocos2d/cocos2d-x 15559 12320 0.63
Flutter/flutter 19517 14388 0.74
Nodejs/node 20643 2282 0.07
Alibaba/nacos 1518 1133 0.75
Ant-design/ant-design 6504 5180 0.80
Angular/angular.js 7829 770 0.10
Keras-team/keras 3822 2402 0.63
Mockito/mockito 1052 810 0.77
Bitcoin/bitcoin 12706 8635 0.68
Pytorch/pytorch 21932 4079 0.19
Square/okhttp 2832 2347 0.83
Apache/dubbo 3150 1944 0.62
Elastic/elasticsearch 43825 37179 0.85
Reactivex/RxJava 3553 3020 0.85
Apache/spark 5100 1376 0.27
Total 217386 128698 0.59

Table 5: Statistic of selected Java projects

Project PR Issue PR comment Revised PR Accepted PR

Alibaba/nacos 1518 3440 5160 349 216
Mockito/mockito 1052 1177 2945 252 163
Square/okhttp 2832 3354 5947 1099 267
Apache/dubbo 3150 936 7135 1320 570

(Continued)



CMES, 2023, vol.137, no.1 697

Table 5 (continued)

Project PR Issue PR comment Revised PR Accepted PR

Elastic/elasticsearch 43825 26599 77265 14812 9539
Reactivex/rxJava 3553 3022 6920 906 543
Total 55930 38528 105373 18738 11298

4.2 Multidimensional Feature Validity Analysis
To explore whether all data dimension features affect the model prediction, this paper constructs

prediction models based on five single feature dimensions: contributor features, reviewer features,
software project features, PR features, and developer social network. The accuracy and AUC values
of the prediction results based on single dimensional features are presented in Table 6. We find that
the combined set of five dimensions outperforms the contributor-only features, with accuracy rates of
0.02, 0.02, 0.06, 0.02, and 0.07 higher than the five single-dimension features, respectively.

Table 6: Accuracy and AUC of prediction results based on single features

Project Contributors Projects PR Reviewer Social
networking

All
features

Scala 0.92/0.81 0.89/0.81 0.88/0.80 0.90/0.83 0.80/0.78 0.92/0.86
React 0.80/0.71 0.80/0.70 0.78/0.69 0.80/0.70 0.74/0.65 0.83/0.71
Tensorflow 0.71/0.72 0.72/0.71 0.70/0.71 0.71/0.74 0.66/0.70 0.73/0.77
Bootstrap 0.72/0.70 0.72/0.70 0.75/0.69 0.75/0.70 0.69/0.71 0.75/0.74
Ohmyzsh 0.92/0.85 0.91/0.81 0.90/0.80 0.90/0.84 0.90/0.78 0.92/0.85
Cocos2d-x 0.78/0.76 0.80/0.71 0.77/0.70 0.80/0.71 0.78/0.67 0.81/0.76
Flutter 0.76/0.62 0.76/0.60 0.75/0.59 0.74/0.65 0.77/0.60 0.79/0.69
Node 0.86/0.66 0.86/0.66 0.84/0.60 0.84/0.66 0.82/0.59 0.88/0.68
Alibaba/nacos 0.77/0.66 0.74/0.74 0.77/0.69 0.74/0.71 0.71/0.70 0.80/0.75
Ant-design 0.88/0.75 0.88/0.75 0.81/0.73 0.88/0.75 0.80/0.70 0.89/0.76
Angular.js 0.92/0.80 0.92/0.82 0.90/0.80 0.93/0.84 0.93/0.78 0.93/0.84
Keras 0.75/0.72 0.74/0.76 0.68/0.77 0.72/0.77 0.73/0.77 0.76/0.78
Mockito 0.80/0.80 0.81/0.86 0.70/0.80 0.82/0.81 0.78/0.80 0.83/0.86
Bitcoin 0.71/0.78 0.78/0.77 0.63/0.72 0.77/0.77 0.76/0.74 0.80/0.79
Pytorch 0.85/0.80 0.90/0.78 0.85/0.77 0.89/0.79 0.85/0.78 0.91/0.81
Okhttp 0.86/0.92 0.89/0.91 0.80/0.89 0.90/0.90 0.78/0.89 0.90/0.93
Dubbo 0.80/0.70 0.78/0.72 0.77/0.68 0.78/0.71 0.71/0.71 0.81/0.72
Elasticsearch 0.91/0.78 0.90/0.79 0.80/0.69 0.87/0.78 0.77/0.78 0.91/0.80
RxJava 0.80/0.82 0.77/0.84 0.72/0.78 0.76/0.80 0.70/0.82 0.80/0.86
Spark 0.78/0.71 0.85/0.66 0.81/0.66 0.84/0.70 0.71/0.68 0.85/0.71
Average 0.82/0.75 0.82/0.76 0.78/0.73 0.82/0.76 0.77/0.73 0.84/0.78



698 CMES, 2023, vol.137, no.1

At the same time, we believe that selecting features of all five dimensions is more beneficial to
obtain accurate prediction results, so we designed a set of experiments in which we cyclically remove
one dimension of data and train. Predict in the selected code repository. As it can be seen from Table 7,
the results of the experiments in which all five dimensions are selected are better than the experiments
in which some dimensions are missing in terms of accuracy and AUC, so it shows that all the features
selected by MFPRPre have a positive effect on the results.

Table 7: Accuracy and AUC of prediction results based on part of features

Project Del contributors Del projects Del PR Del reviewer Del SNS All features
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Scala 0.97 0.82 0.9 0.82 0.88 0.79 0.93 0.86 0.7 0.75 0.92 0.86
React 0.82 0.74 0.82 0.71 0.77 0.69 0.82 0.71 0.68 0.6 0.83 0.71
Tensorflow 0.72 0.72 0.74 0.7 0.7 0.7 0.72 0.77 0.61 0.68 0.73 0.77
Bootstrap 0.71 0.7 0.71 0.7 0.78 0.68 0.78 0.7 0.64 0.72 0.75 0.74
Ohmyzsh 0.94 0.89 0.92 0.8 0.89 0.78 0.89 0.87 0.89 0.74 0.92 0.85
Cocos2d-x 0.77 0.82 0.82 0.71 0.75 0.69 0.82 0.71 0.77 0.62 0.81 0.76
Flutter 0.76 0.63 0.76 0.58 0.74 0.56 0.72 0.7 0.79 0.58 0.79 0.69
Node 0.88 0.69 0.88 0.69 0.84 0.56 0.84 0.69 0.79 0.53 0.88 0.68
Alibaba/nacos 0.8 0.61 0.73 0.79 0.8 0.68 0.73 0.72 0.66 0.7 0.8 0.75
Ant-design 0.92 0.77 0.92 0.77 0.76 0.72 0.92 0.77 0.74 0.65 0.89 0.76
Angular.js 0.92 0.79 0.92 0.84 0.88 0.79 0.94 0.88 0.94 0.75 0.93 0.84
Keras 0.78 0.67 0.76 0.76 0.63 0.78 0.72 0.78 0.74 0.78 0.76 0.78
Mockito 0.82 0.78 0.85 0.92 0.6 0.78 0.87 0.81 0.78 0.78 0.83 0.86
Bitcoin 0.68 0.81 0.84 0.79 0.51 0.67 0.82 0.79 0.8 0.72 0.8 0.79
Pytorch 0.83 0.82 0.94 0.77 0.83 0.75 0.92 0.8 0.83 0.78 0.91 0.81
Okhttp 0.88 0.94 0.94 0.92 0.74 0.88 0.97 0.9 0.7 0.88 0.9 0.93
Dubbo 0.84 0.7 0.8 0.74 0.77 0.65 0.8 0.72 0.64 0.72 0.81 0.72
Elasticsearch 0.98 0.8 0.96 0.82 0.74 0.6 0.89 0.8 0.67 0.8 0.91 0.8
RxJava 0.86 0.83 0.8 0.87 0.68 0.74 0.77 0.79 0.64 0.83 0.8 0.86
Spark 0.76 0.74 0.91 0.63 0.83 0.63 0.89 0.72 0.6 0.68 0.85 0.71
Average 0.84 0.76 0.84 0.78 0.75 0.71 0.84 0.78 0.73 0.71 0.84 0.78

4.3 MFPRPre Prediction Model Analysis
To obtain the best prediction models, we experimented with five different machine learning models

in a selection of 20 Github projects. A more uniform performance fluctuation in accuracy occurred
for all classifiers across projects, but the random forest model always had a significant advantage. In
Table 8, by calculating the mean values of the performance indicators, we can find that the accuracy of
the random forest model is 0.85. The average accuracies of SVM, Decision Tree, Naive Bayesian and
Logistic Regression were 0.81, 0.77, 0.73, 0.71, respectively. In the AUC performance index, the average
AUC of random forest is 0.78, and the other models are 0.77, 0.74, 0.70, and 0.69 in that order. We can
find that the prediction model based on random forest has more advantages in various indexes over
other machine learning algorithm models through comparison experiments, so the MFPRPre model
uses the random forest method as the base model.



CMES, 2023, vol.137, no.1 699

Table 8: Performance of five model classifications

Precision Accuracy Recall F-score AUC

Random 0.85 0.85 0.84 0.84 0.78
SVM 0.81 0.81 0.82 0.82 0.77
Decision 0.77 0.79 0.78 0.79 0.74
Bayesian 0.73 0.75 0.73 0.74 0.70
Logistic 0.71 0.71 0.7 0.71 0.69

In order to compare the performance of MFPRPre prediction model with other prediction
models, two models, PRioritizer [27] and CTCPPre [12], are selected for comparison experiments.
The PRioritizer model builds prediction models based on PR developer information, PR project
information and PR content information, and the CTCPPre model mainly considers the code in
PR modification features and PR text description features. Fig. 4 compares the data of MFPRPre,
Prioritizer and CTCPPre in terms of Accuracy, AUC value, Precision, Recall and F1-score. The
comparison revealed that CTCPPre outperformed the Prioritizer model, while our MFPRPre model
outperformed CTCPPre by 0.01, 0.02, 0.01, 0.03, 0.03 on average. The experiments showed that the
MFPRPre model was better than Prioritizer and CTCPPre in PR outcome prediction.

Figure 4: MFPRPre and Prioritizer and CTCPPre performance evaluation curves



700 CMES, 2023, vol.137, no.1

4.4 KGMORec Prediction Model Analysis
Based on the dataset consisting of 6 Java projects, we construct the PR revision knowledge graph.

Tables 9 and 10 list the types and corresponding number of entities in the knowledge graph. A total
of 11 types, 1,107,305 entities, 14 relationships, and 345,445 edges are extracted.

Table 9: Type and number of entities

Type Number Type Number Type Number

Class 88920 Method 177602 Interface 54738
Parameter 193839 Annotation 159302 Package 87321
PR 55930 Issue 38528 Commit 88928
Contributor 55930 Reviewer 106267

Table 10: Type and number of relationships

Type Between Number

AuthorOf (Contributor, PR) 55930
Review (Reviewer, PR) 89271
Make (Contributor, Comment) or (Reviewer, Comment) 30052
HasComment (Issue-Comment) or (PR-Comment) 27920
Update (PR, PR) 8903
Fix (Issue, PR) 23798
Affect (PR, code elements) 12148
Extend (Class, Class) 13928
Implement (Class, Interface) 12819
Invoke (Method, Method) 15988
Include (Package, Class) or (Package, Interface) 10392
HasParameter (Method, Parameter) 14739
HasMethod (Class, Method) 16647
HasAnnotation (Method, Parameter) 12910

The key parameters of this experiment are the fusion factor α of text similarity and code similarity
of the similarity calculation module, and the parameter K recommended by Top-K [28,29]. The value
of the fusion factor α ranges from the interval [0,1], with a taken interval of 0.2. When α = 0, the
similarity calculation is based entirely on text similarity; when α = 1, the similarity calculation is based
entirely on code similarity. Fig. 5 gives a partial example of the knowledge graph that we constructed.

With different values of the fusion factor α, the experiments of PR modification recommendation
for Top-5, Top-10, Top-15, Top-20 and Top-25 were conducted in this paper in turn, and the
experimental results are shown in Fig. 6. From the information in the figures, we can see that the
accuracy and recall rate reach the peak when the fusion factor α = 0.6; and the best recommendation
effect of the model is achieved when the K value of Top-K is 15.



CMES, 2023, vol.137, no.1 701

Figure 5: Example of KGMORec mapping structure

Figure 6: The relationship between recall and precision and factor

In order to verify the effectiveness of KGMORec method, the traditional collaborative filtering
recommendation algorithm is selected for comparison in this paper, and the experimental results of
the two methods are shown in Table 11. The experimental results demonstrate that the performance
of the KGMORec method proposed in this paper on the Java dataset is significantly higher than that
of the traditional collaborative filtering recommendation method, with significant improvements in
accuracy, recall and F1-score [30].

Table 11: Hit rate of Top-K experiment

Top-5 Top-10 Top-15 Top-20 Top-25

Item-CF 0.649 0.693 0.708 0.679 0.674
KGMORec 0.674 0.705 0.712 0.682 0.684



702 CMES, 2023, vol.137, no.1

5 Conclusion

In this paper, we first investigate the process of filtering high-quality PR by open-source project
reviewers and propose a PR review result prediction method, MFPRPre. The method was developed by
selecting 43 valid features from the five dimensions of activity that received more attention in the review
activity. We experimented with two independent experiments on dimensional validity to show that
all selected features are beneficial to get better prediction results. Also, we experimentally compared
multiple data mining classification algorithms to select the most appropriate classifier. With the help
of the experimental data, we selected the random forest classifier as the basis of MFPRPre. In the
baseline comparison experiments, the selection of multiple features and the random forest classifier
enable us to achieve better performance advantages.

In the second model of this paper, we specifically focus on PR that is not approved during PR
review activities, tracking the recommitting activities of this PR after the review. Through our research,
this paper proposes a PR revision recommendation model based on the PR revision knowledge graph,
KGMORec. This model mines the correlation between multiple PR knowledge entities and constructs
a PR review knowledge graph. And then, it recommends PR revisions to contributors by graph-
based similarity calculations. By comparing with traditional recommendation models, we showed that
KGMORec has better performance in recommendation activities and it better exploits the potential
relationships between knowledge entities to provide interpretable recommendation results.

Knowledge mapping technology is the key technology of the model described in this paper, which
helps us to mine the data in PR review activities. However, the definition of entities and relationships
in the knowledge graph proposed in this paper still differs from the objective world. Also, there are
still many shortcomings to be improved in terms of the method of entity identification. More in-depth
research and exploration are needed to obtain better results.

Acknowledgement: The authors wish to express their appreciation to the Central South University
and the reviewers for their helpful suggestions which greatly improved the presentation of this paper.

Funding Statement: The authors thank the financial support of National Social Science Fund (NSSF)
under Grant (No. 22BTQ033).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. van der Linden, F., Lundell, B., Marttiin, P. (2009). Commodification of industrial software: A case for

open source. IEEE Software, 26(4), 77–83. https://doi.org/10.1109/MS.2009.88
2. Palm, F., Grüner, S., Pfrommer, J., Graube, M., Urbas, L. (2015). Open source as enabler for OPC UA

in industrial automation. 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation
(ETFA), pp. 1–6. Luxembourg, Luxembourg. https://doi.org/10.1109/ETFA.2015.7301562

3. Hunsen, C., Zhang, B., Siegmund, J., Kästner, C., Leßenich, O. et al. (2016). Preprocessor-based variability
in open-source and industrial software systems: An empirical study. Empirical Software Engineering, 21(2),
449–482. https://doi.org/10.1007/s10664-015-9360-1

4. Liao, Z., Zhao, B., Liu, S., Jin, H., He, D. et al. (2019). A prediction model of the project life-span in
open source software ecosystem. Mobile Networks and Applications, 24(4), 1382–1391. https://doi.org/
10.1007/s11036-018-0993-3

https://doi.org/10.1109/MS.2009.88
https://doi.org/10.1109/ETFA.2015.7301562
https://doi.org/10.1007/s10664-015-9360-1
https://doi.org/10.1007/s11036-018-0993-3


CMES, 2023, vol.137, no.1 703

5. Agerfalk, P. J., Deverell, A., Fitzgerald, B., Morgan, L. (2005). Assessing the role of open source software
in the European secondary software sector: A voice from industry. 1st International Conference on Open
Source Software, Genoa, Italy.

6. Hunsen, C., Zhang, B., Siegmund, J., Kästner, C., Leßenich, O. et al. (2016). Preprocessor-based variability
in open-source and industrial software systems: An empirical study. Empirical Software Engineering, 21(2),
449–482. https://doi.org/10.1007/s10664-015-9360-1

7. Ebert, C. (2008). Open source software in industry. IEEE Software, 25(3), 52–53. https://doi.org/
10.1109/MS.2008.67

8. Marlow, J., Dabbish, L., Herbsleb, J. (2013). Impression formation in online peer production: Activity traces
and personal profiles in Github. Proceedings of the 2013 Conference on Computer Supported Cooperative
Work, New York, NY, USA, Association for Computing Machinery.

9. Soares, D. M., de Lima Júnior, M. L., Murta, L., Plastino, A. (2015). Acceptance factors of pull requests in
open-source projects. Proceedings of the 30th Annual ACM Symposium on Applied Computing, New York,
NY, USA, Association for Computing Machinery.

10. Ram, A., Sawant, A. A., Castelluccio, M., Bacchelli, A. (2018). What makes a code change easier to review:
An empirical investigation on code change reviewability. Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
New York, NY, USA, Association for Computing Machinery.

11. Kim, D., Nam, J., Song, J., Kim, S. (2013). Automatic patch generation learned from human-written patches.
2013 35th International Conference on Software Engineering (ICSE), pp. 802–811. San Francisco, CA, USA.
https://doi.org/10.1109/ICSE.2013.6606626

12. Jiang, J., Zheng, J. T, Yang, Y., Zhang, L. (2020). CTCPPre: A prediction method for accepted pull requests
in GitHub. Journal of Central South University, 27(2), 449–468. https://doi.org/10.1007/s11771-020-4308-z

13. Dabbish, L., Stuart, C., Tsay, J., Herbsleb, J. (2012). Social coding in GitHub: Transparency and collabora-
tion in an open software repository. Proceedings of the ACM Conference on Computer Supported Cooperative
Work, New York, NY, USA, Association for Computing Machinery.

14. Tsay, J., Dabbish, L., Herbsleb, J. (2014). Influence of social and technical factors for evaluating contribution
in GitHub. Proceedings of the 36th International Conference on Software Engineering, New York, NY, USA,
Association for Computing Machinery.

15. Runeson, P., Alexandersson, M., Nyholm, O. (2007). Detection of duplicate defect reports using natural
language processing. 29th International Conference on Software Engineering (ICSE’07), pp. 499–510.
Minneapolis, MN, USA. https://doi.org/10.1109/ICSE.2007.32

16. Wang, X., Zhang, L., Xie, T., Anvik, J., Sun, J. (2008). An approach to detecting duplicate bug reports using
natural language and execution information. Proceedings of the 30th International Conference on Software
Engineering, New York, NY, USA, Association for Computing Machinery.

17. Nguyen, A. T., Nguyen, T. T., Nguyen, T. N., Lo, D., Sun, C. (2012). Duplicate bug report detection
with a combination of information retrieval and topic modeling. 2012 Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, pp. 70–79. Essen, Germany. https://doi.org/
10.1145/2351676.2351687

18. Sun, C., Lo, D., Wang, X., Jiang, J., Khoo, S. C. (2010). A discriminative model approach for accurate
duplicate bug report retrieval. Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering, vol. 1. New York, NY, USA, Association for Computing Machinery.

19. Gousios, G., Pinzger, M., van Deursen, A. (2014). An exploratory study of the pull-based software
development model. Proceedings of the 36th International Conference on Software Engineering. New York,
NY, USA, Association for Computing Machinery.

20. Gousios, G., Zaidman, A., Storey, M. A., van Deursen, A. (2015). Work practices and challenges in pull-
based development: The integrator’s perspective. 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1, pp. 358–368. Florence, Italy. https://doi.org/10.1109/ICSE.2015.55

https://doi.org/10.1007/s10664-015-9360-1
https://doi.org/10.1109/MS.2008.67
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1007/s11771-020-4308-z
https://doi.org/10.1109/ICSE.2007.32
https://doi.org/10.1145/2351676.2351687
https://doi.org/10.1109/ICSE.2015.55


704 CMES, 2023, vol.137, no.1

21. Gousios, G., Storey, M. A., Bacchelli, A. (2016). Work practices and challenges in pull-based development:
The contributor’s perspective. 2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE), pp. 285–296. Austin, TX, USA. https://doi.org/10.1145/2884781.2884826

22. Ford, D., Behroozi, M., Serebrenik, A., Parnin, C. (2019). Beyond the code itself: How programmers
really look at pull requests. 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Society (ICSE-SEIS), pp. 51–60. Montreal, QC, Canada. https://doi.org/10.1109/
ICSE-SEIS.2019.00014

23. Lenarduzzi, V., Nikkola, V., Saarimäki, N., Taibi, D. (2021). Does code quality affect pull request
acceptance? An empirical study. Journal of Systems and Software, 171(1), 110806. https://doi.org/10.1016/
j.jss.2020.110806

24. Rahman, M. M., Roy, C. K. (2014). An insight into the pull requests of Github. Proceedings of the 11th
Working Conference on Mining Software Repositories, New York, NY, USA, Association for Computing
Machinery.

25. Zhou, M., Mockus, A. (2015). Who will stay in the floss community? Modeling participant’s initial behavior.
IEEE Transactions on Software Engineering, 41(1), 82–99. https://doi.org/10.1109/TSE.2014.2349496

26. Zanetti, M. S., Scholtes, I., Tessone, C. J., Schweitzer, F. (2013). Categorizing bugs with social networks:
A case study on four open source software communities. 2013 35th International Conference on Software
Engineering (ICSE), pp. 1032–1041. San Francisco, CA, USA. https://doi.org/10.1109/ICSE.2013.6606653

27. van der Veen, E., Gousios, G., Zaidman, A. (2015). Automatically prioritizing pull requests. 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories, pp. 357–361. Florence, Italy.
https://doi.org/10.1109/MSR.2015.40

28. Yang, P., Luo, X., Sun, J. (2022). A simple but effective method for balancing detection and re-
identification in multi-object tracking. IEEE Transactions on Multimedia, 2022, 1–13. https://doi.org/
10.1109/TMM.2022.3222614

29. Li, J., Luo, X., Ma, H., Zhao, W. (2022). A hybrid deep transfer learning model with kernel metric for
COVID-19 pneumonia classification using chest CT images. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 2022, 1–12. https://doi.org/10.1109/TCBB.2022.3216661

30. Liao, Z., Song, T., Wang, Y., Fan, X., Zhang, Y. (2018). User personalized label set extraction algorithm
based on lda and collaborative filtering in open source software community. 2018 International Conference
on Computer, Information and Telecommunication Systems (CITS), pp. 1–5. Alsace, Colmar, France.
https://doi.org/10.1109/CITS.2018.8440167

https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1109/ICSE-SEIS.2019.00014
https://doi.org/10.1016/j.jss.2020.110806
https://doi.org/10.1109/TSE.2014.2349496
https://doi.org/10.1109/ICSE.2013.6606653
https://doi.org/10.1109/MSR.2015.40
https://doi.org/10.1109/TMM.2022.3222614
https://doi.org/10.1109/TCBB.2022.3216661
https://doi.org/10.1109/CITS.2018.8440167

	Code Reviewer Intelligent Prediction in Open Source Industrial Software Project
	1 Introduction
	2 Related Work
	3 Approach
	4 Experiment and Analysis
	5 Conclusion
	References


