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ABSTRACT

GitHub repository recommendation is a research hotspot in the field of open-source software. The current problems
with the repository recommendation system are the insufficient utilization of open-source community information
and the fact that the scoring metrics used to calculate the matching degree between developers and repositories
are developed manually and rely too much on human experience, leading to poor recommendation results. To
address these problems, we design a questionnaire to investigate which repository information developers focus on
and propose a graph convolutional network-based repository recommendation system (GCNRec). First, to solve
insufficient information utilization in open-source communities, we construct a Developer-Repository network
using four types of behavioral data that best reflect developers’ programming preferences and extract features of
developers and repositories from the repository content that developers focus on. Then, we design a repository
recommendation model based on a multi-layer graph convolutional network to avoid the manual formulation of
scoring metrics. This model takes the Developer-Repository network, developer features and repository features as
inputs, and recommends the top-k repositories that developers are most likely to be interested in by learning their
preferences. We have verified the proposed GCNRec on the dataset, and by comparing it with other open-source
repository recommendation methods, GCNRec achieves higher precision and hit rate.
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1 Introduction

In recent years, the open-source software (OSS) community represented by GitHub has gradually
emerged. More and more developers are joining the ranks of OSS development and contributing their
code to the open-source software ecosystem. According to Developer Report1 published by GitHub,
GitHub has a large number of developers and open-source repositories, with 56 million users, over
3.1 million enterprise accounts, and over 100 million repositories by the end of 2020. GitHub is so
popular because its social programming features allow developers to Star or Fork repositories they are
1https://octoverse.github.com/
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interested in, discuss problems with other developers, or participate in developing other open-source
repositories.

In GitHub, there are many repositories with similar functions. When developing new repositories,
developers tend to add new features directly to existing repositories or reuse the code of existing
repositories. A repository recommendation system can help developers discover similar repositories
and reduce the time and workload of developing new repositories. In addition, the study [1] has shown
that many repositories in the OSS community are difficult to maintain due to the lack of developers,
which eventually leads to repository failure. One reason for this situation is that there are a large num-
ber of repositories in GitHub, which makes it difficult for developers to find interesting repositories
from a large number of repositories. A survey shows that nearly 50% of developers believe a repository
recommendation system is necessary [2]. Therefore, open-source repository recommendation methods
enable developers to find more repositories of interest, increase the possibility of their participation in
open-source repositories and extend the life of open-source repositories.

At present, many researchers have studied the recommendation methods of open-source reposito-
ries, which can be classified into three categories: developer behavior-based [3,4], repository content-
based [5], and hybrid methods [6–8]. The developer behavior-based recommendation methods use
the data of developer behavior, such as Star and Fork, to calculate the similarity of repositories.
However, since the content information of the repository is not used, the recommendation result
is not necessarily the developer’s expertise. The repository content-based recommendation methods
use the Code, Readme, and other repository information to calculate the repository’s similarity and
recommend the most similar repositories to developers. However, different developers have different
needs for open-source repositories, and recommendation methods that only consider the repository
content without considering developers’ behavior cannot meet the needs of developers. The hybrid
recommendation method is a research trend in recent years. However, current research suffers from
incomplete information utilization, e.g., Zhang et al. [8] only used the Star behavior data of developers
and the Readme information of repositories. Such little information is difficult to achieve good results.
Furthermore, the matching degree between developers and repositories is calculated by designing
different scoring metrics in hybrid recommendation methods, relying too much on the researcher’s
experience in GitHub.

2 Related Work

Open-source repository recommendation methods usually involve calculating repository similar-
ity, using different developer behaviors to build complex networks, and designing different repository
recommendation algorithms. Therefore, this paper introduces the related work from three aspects:
similar repository detection, GitHub complex network construction and open-source repository
recommendation algorithm.

For similar repository detection, Thung et al. [5] proposed the CLAN algorithm to detect
the similarity of Java repositories. They considered the relationship between packages and classes,
calculated different weights for different APIs, and then calculated the similarity between repositories
by the LSI model. Inspired by the CLAN algorithm, Linares-Vásquez et al. [9] proposed a CLANdroid
algorithm to detect similar Android repositories. This algorithm extracts the permission list, source
code, sensor list and API call list of Android repositories as repository information. Then, the
similarity between repositories is calculated by the LSI model. Wang et al. [10] proposed a framework
for detecting similar Android repositories. By comparing the dependency information of third-party
libraries used by the repository, the candidate repositories are initially filtered. Then, the final results
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are obtained through a fine-grained comparison of code blocks. Nguyen et al. [11] constructed a
heterogeneous network based on an association network between developers and repositories and
code information extracted from repositories. The similarity of repositories is calculated by network
node similarity.

As for the research of GitHub complex network construction, many researchers have built
a variety of networks. For example, a developer collaboration network is constructed based on
the Commit behavior of developers [12]. Yu et al. [13] studied the comment relationship between
developers. A directed edge is created between the corresponding nodes in a complex network if a
developer comments on a Pull Request (PR). Liao et al. [14] focused on the relationship between
the collaborator and PR and constructed a partner PR network. Then, according to the relationship
between the repository reviewer and the reviewed PR, Liao et al. [15] constructed the reviewer
cooperation network to recommend the appropriate reviewer to PR. Nguyen et al. [16] constructed a
complex open-source repository network by analyzing the code in the repositories, Star and Develop
behaviors performed by developers.

For the open-source repository recommendation system, Zhang et al. [8] thought that repositories
starred by the same developer within a short period are likely to be similar. The more similar the users
who star the two repositories, the more similar the two repositories are. Based on this, a ReopPal
open-source repository recommendation method is proposed. Zhang et al. [3] analyzed five developers’
behaviors to explore whether they can be used to recommend similar repositories and found that Fork
and Star are most suitable. Yang et al. [7] mined the technical features and connection of repositories
based on developers’ historical development activities and social association, which helps to detect
the similarity of repositories and recommend similar repositories. This recommendation system relies
on developer behavior. Once there is less developer behavior, the scope of recommendation is limited.
Xu et al. [6] used TF-IDF to calculate the text-similarity of repositories. They got the final prediction
result by calculating the similarity between repositories directly operated by developers and new
repositories. Less network topology was used in their model. Zhang et al. [4] recommended suitable
developers for repositories by combining GitHub with Stack Overflow. However, it is difficult to
identify public developers from both communities. Matek and Zebec [17] constructed a repository-
developer association network first and then calculated the network node similarity using link
prediction metrics, so as to recommend appropriate repositories for developers. However, the content
information of repositories is ignored. Gao et al. [18] improved the collaborative filtering algorithm
for IOT API recommendation. For the recommended cold start problem, Yang et al. [19] solved the
problem through hybrid collaborative filtering algorithm.

3 Survey Study

In this section, we design a questionnaire to investigate what developers may pay attention to when
they Star or Fork repositories, and whether developers want others to participate in their repositories.
Section 3.1 shows the content of the questionnaire and the participants. Section 3.2 shows the results
of the questionnaire.
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3.1 Survey Design
To investigate what developers pay attention to when browsing repositories and investigate

whether others are involved in developers’ repositories, we design 5 closed questions with possible
choices, and we encourage the participants to inform us of their own answers besides the given choices.
The 5 questions are shown in Table 1 and the full text of the questionnaire can be retrieved in our
Github repository2.

Table 1: Questions of survey

Question ID Question Choices

1 Do you use GitHub in your study or
work?

A.Study B.Work C.Neither D.Both

2 Which behaviors in GitHub can
represent your programming preferences?

A.Create B.Follow C.Fork D.Issue
E.Pull Request F.Star G.Other

3 What will you focus on to decide whether
star or fork a repository?

A.About B.Code C. Language
D.Readme E.#Fork F.#Issue
G.#Pull Request H.#Star I.Other

4 Do you want other developers to
participate in your open-source
repository and contribute code to the
repository?

Yes/No

5 Are other developers joining your
open-source repository and submitting
Pull Requests for your repository?

Yes/No

For the first question, we want to know whether developers use GitHub in their studies and
work. For the second question, we hope we can understand which behavioral information reflects
the developer’s programming preferences, programming preference means the user’s willingness to
participate in the development of a project. And we offer the main behavioral information in GitHub
as choices. For the third question, we hope to know what developers focus on most when they Star
or Fork repositories, and we offer the main content in GitHub repository as choices. For the fourth
question, we want to know whether developers want others to participate in their repositories. The fifth
question is set to know whether others are involved in repositories created by developers surveyed.

In order to ensure that the respondents are related to software engineering, we selected 80
master’s students in software engineering from Central South University and 92 employees engaged in
programming in Internet enterprises. These participants have at least 4 years of program development
experience and their programming fields involve Android program development, Java Web program
development, Machine Learning and so on. We sent out the questionnaire to the students in the school
through the school email system, which can ensure that our email will not be regarded as spam and
reduce the accuracy of the survey. From 80 postgraduates, we received 53 email replies, and from 20
enterprise staff, we received 4 replies. We further asked these respondents about their experience in
using GitHub, of which 3 did not use GitHub, 14 had two years of experience, 18 had three years of
experience, and the remaining 22 had more than three years of experience.

2https://github.com/CHNicelee/GCNRec/blob/main/questionnaire.pdf

https://github.com/CHNicelee/GCNRec/blob/main/questionnaire.pdf
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3.2 Survey Result
3.2.1 GitHub Usage Rate

The questionnaire results for question 1 are shown in Fig. 1a. 94.7% of developers use GitHub in
their studies or work, and 5.3% (3 developers) do not use GitHub. We further ask why these developers
do not use GitHub. One developer replies that they usually use GitLab (a private code hosting platform
similar to GitHub deployed by the company) for code development. Another developer answers
similarly that his company still uses SVN and has not migrated to the Git platform. The third explains
that he is not in the habit of using GitHub because his programming tasks are too few to collaborate
with others.

To better investigate what developers pay attention to when browsing repositories, We excluded the
5.3% of developers who do not use GitHub. As they may be unfamiliar with the behaviors in GitHub,
the results from them are tend to be inaccurate. The results show that most respondents (94.7%) use
GitHub, indicating the popularity of GitHub as a social programming website and the broad audience
for research work conducted on GitHub.

Figure 1: Results of Question 1, Question 4 and Question 5

3.2.2 Repository Information

The result of Question 2 is shown in Fig. 2. As can be seen from Fig. 2, the behavior that best
reflects the developers’ programming preferences is Create, with 83.3% of the answers. Pull Request,
Fork and Star represent 59.3%, 46.3% and 37.0% of the responses, respectively, while Follow and Issue
only account for 9.3% and 5.6%.

Figure 2: Result of Question 2
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For Question 3, we categorized what developers would focus on, and the results are shown in
Fig. 3. It can be seen that 81.5% of developers focus on the number of Star when considering whether
to Star or Fork a repository, and 29.6% of developers pay attention to the number of Fork.

As important repository information, Readme, programming language, code, and About are
concerned by 34 (63.0%), 25 (46.3%), 19 (35.2%), and 16 (29.6%) developers, respectively. This
information reflects the functionality of the repository. Fewer developers (less than 12%) pay attention
to information such as the number of Issue and PR.

Two participants mentioned other information, one of whom would be concerned about whether
the repository is still being maintained. Another mentioned whether any companies are involved in
the repository. Only two participants considered deeper reasons and the rest of participants chose the
options we provided.

Figure 3: Result of Question 3

Therefore, behaviors including Create, Pull Request, Fork and Star can reflect developers’
programming preferences. Developers are more willing to Star or Fork popular repositories, which
can be judged from repository information like Readme, programming language, code and About.

3.2.3 Repository Participation

For Question 4, Fig. 1b shows that 96.3% of developers want others to participate in their
repositories and commit code. For Question 5, Fig. 1c shows that only 11.1% of the repositories
created by developers have other people involved, and the remaining 88.9% of repositories have not
received any Pull Request. The result shows that most developers hope to develop repositories with
other developers in open-source communities. However, most repositories created by developers go
unnoticed, and the development and maintenance of repositories are left to developers themselves or
their teams. A recommendation system can improve this situation by recommending repositories to
appropriate users, increasing repository exposure and developer engagement.
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4 Approach

To recommend appropriate repositories to developers, we propose a Graph Convolutional
Network-Based Repository Recommendation System (GCNRec). The model architecture of GCNRec
is shown in Fig. 4. Firstly, we construct a Developer-Repository network by crawling GitHub data.
Secondly, we extract the repository features and developer features from the repository content that
developers are interested in. Thirdly, GCNRec takes the Developer-Repository network and the node
features (repository features and developer features) as input, uses a multi-layer graph convolutional
network to learn the network structure and updates the node features. Finally, GCNRec recommends
the top-k repositories that developers are most likely to be interested in based on the node feature
matrix learned by the model.

Figure 4: Overview of the GCNRec: (1) Data collection and data processing; (2) Developer-Repository
network construction; (3) Repository features and developer features extraction; (4) Recommend
model construction; (5) Repository recommendation

4.1 Developer-Repository Network Construction
Based on the questionnaire results, we construct the Developer-Repository network using the four

behaviors that best reflect developers’ programming preferences: Create, Fork, Star, and Pull Request.

A Developer-Repository network can be expressed as G = (V , E, W)(|V | = n, |E| = m), where
V stands for the set of nodes and E stands for the set of edges, W represents the set of edge weights.
The meanings of nodes, edges, and weights are as follows:

1. The set of nodes V is composed by developer nodes DevV and repository nodes RepoV , and
DevV ∩ RepoV = φ,DevV ∪ RepoV = V .
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2. An edge between the developer and the repository represents that the developer performs at
least one of the Create, Fork, Star, and Pull Request operations.

3. Since the weight of edges represents developers’ interest in the repository, we set different
weights for each type of developer behavior. The weights of Create, Pull Request, Fork, and
Star are denoted as Wcreate, Wpr, Wfork, and Wstar, respectively. The weight of an edge between a
developer and a repository is a weighted sum of related behaviors. For example, if the developer
i Fork and Star the repository j, the edge weight Wij between the developer node Vi and the
repository node Vj is Wij = Wfork + Wstar.

4.2 Node Features Extraction
4.2.1 Repository Features Extraction

The home page of a repository in GitHub usually contains the following information: repository
name, number of Watch, the number of Star, the number of Fork, About (used to describe the
function of the repository briefly), Code, Readme (used to describe the function of the repository in
detail and how to use the repository) and Language (code programming language). According to the
questionnaire results, the number of Star, the number of Fork, Readme, Language, Code and About
are the main concerns of users when they Star or Fork repositories. The number of Star and Fork
can be expressed by the in-degree of repository nodes in the Developer-Repository network. Four text
contents, including About, Code, Readme and Language, need to be converted into vectors by feature
extraction.

AboutFeature: The About field is mainly used to describe the usage of repositories and does not
involve details, so the text is usually short. We first remove the pause words and punctuation in the
About text. Then, the Word2Vec model is applied to train the About text and encode each word as
a vector with length L1. The vector of About text can be expressed as the mean value of each word
vector, as shown in formula (1).

AboutFeaturei =
∑mi

j=1 Vec
[
Wordij

]

mi

(1)

where Wordij denotes the jth word in the About text of repository i; Vec is a word-vector mapping
model trained by Word2Vec; Vec[w] denotes the vector of word w and mi is the total number of words
in the About text of repository i.

CodeFeature: The code is the crucial repository content, and developers can obtain detailed
information about repositories from source code files. The following steps are used to extract code
features:

1. Remove symbol

There are various symbols in the code files of repositories. For example, {} is used to distinguish
code segments, parameters of methods are defined in () and ‘.’ is often used by method calls in Java. The
same symbols may have different meanings in different languages. For example, {} is used to represent
the dict data type in python. Therefore, there is no uniform standard to distinguish the meaning of a
symbol. For this reason, we remove the symbols from the code and keep only the words in the code.

2. Variable name split

Study show that the vocabulary of code is much larger than that of natural language due to
a large number of custom variable names in the code, which can be any combination of words
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or a combination of word abbreviations and acronyms. Fig. 5 shows a snippet of Android code,
in which SampleActivity is a programming vocabulary that consists of Sample and Activity and
does not exist in the natural language dictionary. Similar variable names include savedInstanceState,
WRAP_CONTENT, etc., which are combinations of two or more words. In general, variables are
named following the Camel-Case (the first letter of uppercase words is used to distinguish word
boundaries, such as SampleActivity) and the Underscore-Case (underscores are used to distinguish
word boundaries, such as WRAP_CONTENT). These two rules also name variables for the official
software library, such as LayoutParams in Fig. 5, which is a class in the Android SDK and is widely
used in Android repositories. Due to the different naming habits of developers, different developers
may design different variable names when expressing the same meaning, but the words in the variable
names may be partially similar. Therefore, the same variable name may appear several times in one
repository but rarely between repositories.

Therefore, we consider variable names that appear less than T times between multiple repositories
as variable names named by developers. Such variable names are split into several words to replace the
original. Besides, we do not perform splitting for those official or third-party APIs that appear more
than T times.

Figure 5: A snippet of Android code

3. Vector representation

Due to a large amount of code vocabulary, using the vector space model (VSM) to represent the
code content may face large vector dimensionality and vector sparseness. Therefore, TF_IDF is used
to calculate the weight of each word, and then the LSA model is used to calculate the latent semantic
encoding of the repository. The TF_IDF calculation formula is shown in formula (2).

ww,c = tft,d × log
|D|

| {d ∈ D|t ∈ d} | (2)

where tft,d is the word frequency of word t in repository code d, |D| is the total number of codes in the
code set, |{d ∈ D|t ∈ d}| is the number of repository code containing the word w.

Based on this, a repository code can be represented as a vector dj,

dj = (w1,j, w2,j, · · · wt,j) (3)

The LSA model can map the repository vector dj to a low-dimensional latent semantic space, by
which we convert the repository vector into a low-dimensional vector of length L2 as the code feature
CodeFeature.

ReadmeFeature: The Readme field contains many contents, such as the purpose and usage of
repositories, copyright information, and methods of participating in the repository. The Readme text



184 CMES, 2023, vol.137, no.1

is usually written in Markdown format and contains many Markdown tags, and some of the Readme
text contain code blocks, image links, etc., so it is necessary to preprocess the Readme files. Firstly,
regular expressions are used to remove Markdown tags, code blocks, hyperlinks, and punctuation.
Secondly, stop words without practical meaning should be removed in the Readme files. TF_IDF and
the LSI model are then used to calculate the weight of words and extract the semantic feature of the
Readme text, respectively. The Readme text of each repository is finally converted into a dense vector
of length L3.

LanguageFeature: Most developers only master a few languages used for repository development,
so they prefer to create repositories with their familiar languages. What’s more, they are more interested
in repositories developed in familiar languages when browsing repositories. The questionnaire results
show that 46.3% of developers pay attention to the programming languages of repositories. Therefore,
we extract the language feature of repositories by converting the language into a vector of length L4
by one-hot encoding.

We concatenate the above features into a vector as the overall feature of the repository r, which
can be expressed by formula (4).

RepoFeaturer =
concat (AboutFeaturer, ReadmeFeaturer, CodeFeaturer, LanguageFeaturer) (4)

4.2.2 Developer Features Extraction

In GitHub, there is no textual content about developers’ programming preferences on their
homepage, so the developer’s preference feature cannot be directly obtained. The questionnaire results
show that 4 developer behaviors (Create, PR, Fork, and Star) can reflect developers’ programming
preferences. Therefore, the developer’s preference feature can be obtained by repositories correspond-
ing to those behaviors. The About, Readme, Code, and Language features are also components of
the developer’s preference feature, as they contain developers’ preference for repository content. We
obtain the developer’s feature by calculating repository features with weights of connected edges, and
the preference feature for developer d can be formulated as follows:

DevFeatured =
∑

r∈N(d)
Wdr ∗ RepoFeaturer∑

r∈N(d)
Wdr

(5)

In the above equation, N(d) refers to the set of neighbors of developer node d in the Developer-
Repository network, and Wdr is the weight of the edge between developer node d and repository node r.

4.3 Model Construction and Repository Recommendation
Recent years, deep learning have achieved exciting results in recommendation field [20], and

graph convolution neural network is a deep learning method for graph data, which can effectively
extract graph structural features. Therefore, we build a repository recommendation model based
on a graph convolution neural network. We take the Developer-Repository network and its node
features (repository features and developer features) as the model’s input and use the multi-layer graph
convolution network to learn the network structure and update the node features. We predict the top-
k repositories that developers are most likely to be interested in as the repository recommendation
results through graph encoding and graph reconstruction. The model includes graph encoding and
graph reconstruction.
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Graph encoding: We use k-layer GCN to embed the nodes of the Developer-Repository network
to obtain the graph embedding matrix Z(k), which can be seen as updated node features. Taking
the Developer-Repository network and the extracted node features as the model input, through the
learning of k-layer GCN, the node features in the network are constantly updated, and finally, the
graph embedding matrix Z(k) is obtained. The extraction formula of the graph embedding matrix Z(k)

is as follows:

Z(1) = fRelu

(
X ; A|W (0)

)
(6)

fRelu

(
X ; A|W (0)

) = Relu(ÃXW (0)) (7)

Z(k) = flinear

(
Z(k−1); A|W (k)

)
(8)

fRelu

(
Z(k); A|W (k)

) = Relu(ÃZ(k)W (k)) (9)

where X = concat(RepoFeature, DevFeature) is the matrix of node features, A is the adjacency matrix
of the Developer-Repository network, Ã = D− 1

2 AD− 1
2 is the normalized adjacency matrix of A, D is

the degree matrix of the Developer-Repository network, W (i) is the weight of the i-th GCN.

Graph reconstruction: We use the graph embedding matrix Z(k) extracted from the k-layer GCN
to reconstruct the original Developer-Repository network. Reconstructing an edge is to use the deep
embedding of developer i and repository j to do inner product, then uses the sigmoid function to
normalize result to the interval (0, 1), as shown in formula (10). The formula of reconstructing the
entire network is shown in formula (11):

p
(

Âij = 1|zi, zj

)
= σ(zT

i zj) (10)

p
(

Â|Z
)

=
n∏

i=1

N∏
j=1

p
(

Âij|zi, zj

)
(11)

We use the cross-entropy loss function to minimize the reconstruction error of the model:

L = −(Alog
(

Â
)

+ (1 − A) log(1 − Â)) (12)

The weight W (i) of the model is updated through full-batch gradient descent, so that the model
can reconstruct the Developer-Repository network through the graph coding matrix Z(k). After the
model training is completed, the probability of whether there is an edge between developer node i and
repository node j can be calculated by formula (10), therefore we recommend the top-k repositories
with the largest probability to developers.

5 Experiment

In this section, we first describe the statistical results of the dataset and introduce the evaluation
metrics of the method. Secondly, we set the necessary parameters of the model, and conduct
exploratory experiments on the key parameters to make the model achieve the best performance.
Thirdly, we conduct ablation experiments on the proposed feature extraction method to prove its
effectiveness. Finally, in order to evaluate the recommendation effect of the model, we compare our
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model with the other two recommendation methods. The two baseline methods were reused original
methods. we ran the results on both methods using the same data set and compared the results with
our own GCNRec methods.

5.1 Dataset
In order to accurately evaluate the performance of the model, we must evaluate each model on the

same dataset. There is no open dataset in previous work that contains multiple language repository,
therefore, we need to crawl the real behavior data and repository information of GitHub. We try to
crawl the developers and repositories in the same programming domain, because the developers and
repositories in the same domain can make the developers and repositories have denser behavior data.
Specifically, we download the GitHub database from the GHTorrent website [21] and collected 2303
developers who have forked the hdodenhof/circleimageview3 repositoy and whose behavior records are
greater than 10. Then, repositories which are related to these developers are collected, with a total of
83076 repositories and 876245 behavior records. We represent this dataset as Dataset-L. In order to
evaluate the performance of the model on sparse dataset, we deleted 1000 developers with the largest
number of behaviors among 2316 developers, and finally retained 1303 developers, 29605 repositories
and 113315 behavior records. We represent this dataset as Dataset-S. The specific information of the
dataset is shown in Table 2. As can be seen in the table, density of Dataset-S is 0.29% and density of
Dataset-L is 0.46%. Therefore, compared with Dataset-L, Dataset-S is much sparser. Network density
is the ratio of the actual number of edges in the network to the upper limit of the number of edges
accommodated. It can be used to describe the density of edges among nodes in the network. The
calculation formula is shown in formula (13).

Density = #Edges
#Users × #Repositories

(13)

Table 2: Dataset information

Name Developers Repositories Create PR Fork Star Edges Density

Dataset-S 1303 29605 2118 644 1583 108970 113315 0.29%
Dataset-L 2303 83076 6084 2054 5877 862230 876245 0.46%

In order to visually display the data distribution, we have counted the in-degree of each repository
node, and calculated the proportion of the in-degree of each repository in the edge of the dataset.
The result is shown in Fig. 6. Figs. 6a and 6b show the distribution of the in-degree proportions of
repositories in Dataset-L and Dataset-S, respectively. The orange dashed line in Fig. 6 represents the
10% cut-off point of the number of repositories. In Fig. 6a, the in-degree of the 10% repositories on
the left occupies 66.9% of the in-degree of Dataset-L. In Fig. 6b, the in-degree of the 10% repositories
on the left occupies 57.8% of the in-degree of Dataset-S, which shows that more than 50% of the edges
in the two datasets point to the most popular 10% of the repositories. In GitHub, only a few popular
repositories have received wide attention, and most other repositories have received less attention [22–
24], which is consistent with the distribution of the datasets.

3https://www.github.com/hdodenhof/circleimageview

https://www.github.com/hdodenhof/circleimageview
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(b)(a)

Figure 6: In-degree distribution. A is the distribution of Dataset-L, b is the distribution of Dataset-S,
the orange dotted line identifies 10% of the repositories

5.2 Evaluation Metrics
During GCNRec training, it is necessary to evaluate the effect of the model through positive

examples (pairs of nodes that have edges in the dataset) and negative examples (pairs of nodes that have
no edges in the dataset) to verify the distinguishing effect of positive samples and negative samples.
Therefore, we use the Area Under Receiver Operator Characteristic Curve (AUC) evaluation metric,
the most common evaluation index in the field of graph neural network [25], to evaluate the model
classification effect during model training.

When making repository recommendations, it is necessary to recommend top-k open-source
repositories for each developer, so we use hit rate [26], recall and precision [12,27] to measure the
effect of the model. The two metrics are defined as follows:

Hit rate = |{u|u ∈ U , R(u) ∩ T(u) �= ∅}|
|U| (15)

Recall =
∑

u∈U |R(u) ∩ T(u)|∑
u∈U |T(u)| (16)

Precision =
∑

u∈U |R(u) ∩ T(u)|∑
u∈U |R(u)| (17)

where U represents the set of developers in the test set, R(u) represents the set of repositories
recommended to developer u. T(u) represents the set of repositories related to user u in the test dataset.

Hit rate can measure the number of developers that the recommended model is applicable to.
The larger the hit rate value, the higher the proportion of developers that the model is applicable to.
precision represents the proportion of correctly recommended repositories.
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5.3 Parameter Setting
The GCNRec model needs to set the lengths of repository features and weights of developer

behaviors. We set the length L1 of AboutFeature in the repository features to 100, the length L2 of
CodeFeature to 100, and the length L3 of ReadmeFeature to 100. We set the dimension to 100 which
is shown to be effective [28], and these values will be constantly updated by GCN. Since there are 163
programming languages in our dataset, we set the length L4 of LanguageFeature to 163. Therefore,
the dimension of the repository feature is 463, and the dimension of the developer features is also 463.
Based on the questionnaire results, the importance of Create, Pull Request, Fork, and Star decrease in
turn, we use the following formula to calculate the weight for every behavior:

W_create = round (1/(P (create) + P (pr) + P (star) + P (fork)) ∗ P (create)) (18)

W_pr = round (1/(P (create) + P (pr) + P (star) + P (fork)) ∗ P (pr)) (19)

W_star = round (1/(P (create) + P (pr) + P (star) + P (fork)) ∗ P (star)) (20)

W_fork = round (1/(P (create) + P (pr) + P (star) + P (fork)) ∗ P (fork)) (21)

So, we set Wcreate = 0.4, Wpr = 0.3, Wfork = 0.2, Wstar = 0.1. For the threshold T used to divide
variables, we calculated the average times of occurrences of variables defined by the developer on the
dataset Dataste-L, which is 0.47, so we set the threshold T to 5.

We ran the experiment on a server with Intel(R) Xeon(R) Silver 4210 2.20 GHz CPU, 128 GB
RAM and GeForce RTX 2080ti GPU running the Ubuntu 16.04.7 LTS operating system.

5.4 Hyperparameter Influence Experiment
5.4.1 The Impact of GCN Layer

The GCNRec uses multiple layers of GCN to learn network structure information and node
features information, so the number of GCN layers in the model will affect the model performance.
In order to explore the impact of the number of GCN layers on the model performance, we set the
embedding dimension of GCN to 32. The number of GCN layers was increased from 1 to 10, and
experiments were carried out in Dataset-L. The results are shown in Fig. 7. Fig. 7 shows that when the
number of GCN layers is 2, the model performance is the best. As the number of model layers increases,
the overall AUC value of the model shows a downward trend. This is because as the number of GCN
layers increases, the embedding of each node will be similar, which is not conducive to backpropagation
to update GCN parameters.

We calculated the cosine similarity between the node embeddings output by the multi-layer GCN,
the number of GCN layers increased from 1 to 10, and the cosine similarity of the embedding is
shown in Fig. 8. Fig. 8 shows that as the number of GCN layers increases, the similarity of embedding
continues to increase. When the number of GCN layers increases to 5, the embedding cosine similarity
between nodes is greater than 0.97, and the AUC has dropped to 0.732, so if the number of GCN
layers increases, the effect will decrease. When there is only one layer of GCN, the AUC value is
0.753. Although the similarity of embedding is low, the ability of one layer of GCN to extract network
structure information and node features information is weak. Therefore, when two layers of GCN are
used, our model achieves the best AUC value, so we set the GCN layer number of the GCNRec to
2 layers.
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Figure 7: Impact of GCN layer. The points in the figure represent the best results obtained by the
model with different GCN layers

Figure 8: Embedding similarity. The points in the figure represent the embedding similarity between
different nodes under the number of GCN layers

5.4.2 The Impact of Dimension of Embedding

The dimension of embedding output by GCN is an essential factor to impact model performance.
In order to explore the impact of the dimension of embedding, we increase the dimension from 8 to 512,
carry out the experiment on Dataset-S, and report the result in Fig. 9. It shows that as the dimension
increases, the AUC value of the model continues to increase because a larger dimension can contain
more information, making the model more effective. However, when the vector dimension is increased
to 32, the model effect tends to be stable. A larger dimension will only take a longer training time
without significantly improving the model performance, so we choose 32 as the final dimension.
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Figure 9: Impact of the dimension of the embedding. The points in the figure represent the best results
obtained by the model with different dimension of the embedding

5.5 Experiment of Feature Ablation
In order to verify whether the features we constructed improve the model performance, we

conducted experiments on Dataset-S. We separately used each type of features as the repository feature,
reconstructed the developer feature by formula (5), respectively, and calculated the AUC value of the
model under the four types of features. A random vector is assigned to each node through a random
function, and the AUC value of the model is calculated. The final result is shown in Fig. 10.

Figure 10: Repository feature ablation result. RandRepo represents that the repository features
are randomly generated. Language, Readme, Code and About represent the repository features are
generated by our algorithm but only use Language, Readme, Code and About content respectively.
Combined represents the repository features were extracted by our algorithm using four content
information

Fig. 10 shows that when repository features are randomly constructed (presented as RanRepo
in Fig. 10), the AUC value obtained by the model is 0.697. When the repository Language, About,
Readme, and Code are used as repository features (presented as Combined in Fig. 10), the AUC values
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obtained by the model are all higher than the randomly constructed repository features, which shows
that these four types of information can improve the performance of the model, which is conducive to
open-source repository recommendation. When the four features are combined, the model can achieve
the best performance, and the AUC value is 0.796.

In order to find out whether the developer features can improve the model performance, we
conducted ablation experiments on the developer features. We generate a random vector as the
developer features (represented as RanDev in Fig. 11), and combined it with the extracted repository
features for model training, and report the results in Fig. 11. Fig. 11 shows that when random
developer features are combined with the four types of repository features to train the model, the AUC
is less than 0.528, indicating that the performance is poor. When the developer preference features are
randomly generated, the repository features generated with four types of information can still achieve
the best results (0.573), showing that combined repository features can get better performance. It is
worth noting that when we use random developer features and random repository features, the AUC
of the model can reach 0.696, which is better than using random developer features and extracted
repository features. This is due to the large difference in distribution between the randomly generated
developer features and the extracted repository features, making the model performance poor. When
the node features all use randomly generated vectors, the node features are distributed similarly so that
a higher AUC value can be reached. When using our proposed method to extract developer features
and repository features, the AUC value of the model can reach 0.796, which is far better than randomly
generated developer features. Therefore, our proposed feature extraction method is very effective.

Figure 11: Developer feature ablation result. The first four bars indicate that the developer features are
randomly generated and the repository features are constructed by our algorithm using one content
information. The fifth bar indicates that the developer features are randomly generated and the
repository features are constructed by our algorithm using four content information. The sixth bar
indicates that the the developer features and the repository features are both randomly generated. The
seventh bar indicates that the the developer features and the repository features are both generated by
our algorithm
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5.6 Model Evaluation
We conducted performance evaluation experiments on the actual dataset and compared it with

the two existing methods. The effectiveness of our method was verified by comparing the two models.
The models used for comparison are as follows:

Repository recommendation system based on GitHub community partition (CPRec) [17]: The
CPRec recommendation model uses the Infomap community division algorithm [29] to divide
the Developer-Repository network into multiple communities and give developers repositories from
the same community.

Recommendation system based on developer behavior and repository information (BCRec)
[6]: BCRec calculates the similarity between repositories by Readme and Code, and calculates the
similarity between candidate repositories and the repositories that the developers have created, Fork,
and Star. Recommend the repository with the highest score to the developer.

The GCNRec model was empirically evaluated in the datasets Dataset-S and Dataset-L, and the
recommended results were compared with BCRec and CPRec. The comparison results are shown in
Table 3. The results show that our method has higher hit rate and precision on both datasets than
BCRec and CPRec.

Table 3: The results of GCNRec, CPRec and BCRec

Hit rate (%) Precision (%) Recall (%)
Top3 Top5 Top10 Top15 Top3 Top5 Top10 Top15 Top3 Top5 Top10 Top15

Dataset-S BCRec 2.93 4.26 6.4 11.24 0.95 0.82 0.82 0.84 0.04 0.19 0.37 0.44
CPRec 5.43 9.36 18.85 25.79 2.54 2.34 1.84 1.53 0.11 0.22 0.38 0.58
GCNRec 10.03 16.27 26.86 35.93 3.34 3.53 3.29 3.16 0.12 0.21 0.40 0.59

Dataset-L BCRec 5.9 8.98 13.41 18.29 2.02 2.12 2.43 2.38 0.00087 0.0019 0.17 0.41
CPRec 30.13 40.28 53.58 61.05 14.66 14.87 14.59 14.14 0.00071 0.0022 0.27 0.63
GCNRec 41.96 51.59 62.73 69.04 21.05 20.20 18.76 17.85 0.00090 0.0025 0.32 0.67

On the Dataset-S, the hit rate of each model increases as the number of recommended repositories
increases. The optimal results of the hit rate of BCRec and CPRec are 11.24% and 25.79%. In
comparison, the hit rate of GCNRec can reach 35.93%, exceeding 10% of CPRec, which means
when 15 repositories are recommended for each developer on Dataset-S, GCNRec can hit 10% more
developers than other models. For precision, BCRec and CPRec reached the best in Top3, 0.95%
and 2.54%, respectively, while GCNRec reached the best in Top5, 3.53%, which shows that the
proportion of correctly recommended repositories of GCNRec is higher than BCRec and CPRec.
The poor performance of BCRec is because BCRec uses less developer behavior, does not make
full use of the network topology, and only considers the similarity of Readme and Code, so the
performance is not good. CPRec uses the network topology information to divide the community, so
the candidate repositories are not selected from the entire test set, but from the same community, so the
recommendation results are better, but hit rate and precision are still lower than GCNRec. The method
we propose makes full use of the four repository contents of About and Readme, Code and Language,
and uses the four developer behaviors of Create, Fork, Star, and PR for repository recommendation.
Recommendation results in Top3, Top5, Top10, and Top15 of GCNRec have achieved the best hit rate
and precision.
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Compared with Dataset-S, Dataset-L has more developer nodes and repository nodes, and the
network built by Dataset-L is denser, with an average of 380 edges per developer. In comparison,
there are only 87 edges per developer in Dataset-S, so Dataset-L has richer developer behavior
information. GCNRec can use the developer behavior information and repository information of the
entire network, so it performs better in Dataset-L than in Dataset-S. For example, in the recommended
results of Top10, the hit rate of GCNRec in Dataset-S is 26.86%, but the hit rate on Dataset-L can
reach 62.73%, which is an impressive recommendation performance. The precision of GCNRec in
Top10 recommendation in Dataset-L is 18.76%, which means that of all the candidate repositories
recommended for each developer, 18.76% are actually of interest to the developer. The recall of
GCNRec in Top10 recommendation in Dataset-L is 0.32%, which means that 0.32% of the set of
repositories related to user are recommended. Among the top3-top10 project recommendations, the
recall rate of dataset-S was higher than that of dataset-L, it is because the sparse dataset had much less
edges between users and projects, so the denominator T(u) of the recall rate became smaller, resulting
in a higher overall recall rate. Recommendation results in Dataset-L of GCNRec have achieved the
best hit rate, recall and precision compared to the other methods.

In addition, we compared the time, memory and GPU memory required to run the three methods.
The results are shown in Table 4. Table 4 shows that GCNRec takes the shortest time, because it is
based on graph convolution network, so GPU can be used to accelerate the training and prediction of
the model. The GPU memory used in our model is not high, for example, only 1.86 G GPU memory
is used for training on Dataset-L, so our model can be extended to a larger dataset.

Table 4: The result of resource consumption

Time (s) Memery (G) GPU Memery (G)

Dataset-S BCRec 189 1.5 0
CPRec 50 2.9 0
GCNRec 47 3.2 1.16

Dataset-L BCRec 927 8.2 0
CPRec 743 29.1 0
GCNRec 143 4.9 1.86

6 Threats to Validity

Dataset. GitHub has more than 100 million repositories, however, there are only 83076 reposito-
ries in our dataset, which is a small fraction. However, our dataset is obtained from GitHub, and the
data distribution is consistent with the GitHub repository, that is, a few GitHub repositories are very
popular, and most repositories get less focus [22–24].

Repository domain. GitHub does not set the domain label for each repository; we cannot
guarantee that all repositories belong to the same domain. In order to reduce this impact, we collect
those developers who fork the hdodenhof/CircleImageView repository, and collect the repositories
which are related to these developers.

Survey study. We conducted a survey to investigate what developers are interested in when
browsing the repository, but we only delivered the questionnaire to 100 people. This is because the
large-scale delivery of the questionnaire will cause the mail to be intercepted by the mail server as
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spam and affect the survey results. Another threat is that the question are all closed, which will affect
developers’ decisions. In order to mitigate this threat, we try to list all possible answers, and inform
participants that if they have any other answer, they can response with their own answers.

7 Conclusion

This paper proposes a graph convolutional network-based repository recommendation system to
help developers find appropriate repositories. First, constructing a Developer-Repository network and
assigning weights to the edges reflects the developer’s interest in the repository. Then, the repository
features and the developer features are extracted from the repository’s content as the node feature
of the network. Finally, multi-layer GCN is used to build a repository recommendation model and
recommend appropriate repositories for developers. We evaluated our model on sparse and dense
datasets, performed feature ablation experiments on the model, verified the effectiveness of our
proposed feature extraction method, and compared the model with two other open-source repository
recommendation methods. The results show that our model is better than existing models in precision
and hit rate.

However, there are still some shortcomings in our model. For example, GCNRec cannot interpret
the results of repository recommendations and there is a cold start problem in GCNRec. Therefore, in
the future, we will combine GCN with a knowledge graph to provide more accurate and interpretable
open-source repository recommendation results, and use a knowledge graph to mitigate cold start
problems. In addition, we plan to inform the developers of the recommendation results and get
feedback from the developers to improve our recommendation system.
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