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ABSTRACT

As a current popular method, intelligent detection of cracks is of great significance to road safety, so deep
learning has gradually attracted attention in the field of crack image detection. The nonlinear structure, low
contrast and discontinuity of cracks bring great challenges to existing crack detection methods based on deep
learning. Therefore, an end-to-end deep convolutional neural network (AttentionCrack) is proposed for automatic
crack detection to overcome the inaccuracy of boundary location between crack and non-crack pixels. The
AttentionCrack network is built on U-Net based encoder-decoder architecture, and an attention mechanism is
incorporated into the multi-scale convolutional feature to enhance the recognition of crack region. Additionally,
a dilated convolution module is introduced in the encoder-decoder architecture to reduce the loss of crack detail
due to the pooling operation in the encoder network. Furthermore, since up-sampling will lead to the loss of crack
boundary information in the decoder network, a depthwise separable residual module is proposed to capture the
boundary information of pavement crack. The AttentionCrack net on public pavement crack image datasets named
CrackSegNet and Crack500 is trained and tested, the results demonstrate that the AttentionCrack achieves F1 score
over 0.70 on the CrackSegNet and 0.71 on the Crack500 in average and outperforms the current state-of-the-art
methods.
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1 Introduction

Crack formation on pavements poses a safety hazard to road users. Pavement is mainly made of
asphalt or concrete [1]. Its performance will be affected by the surrounding environment and traffic
load. It will gradually be damaged to varying degrees. Among them, cracks are one of the more
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common and harmful road defects. Therefore, it is necessary to regularly check for cracks to ensure
the safety of the infrastructure.

Cracks are a special image feature that appears as small, irregular black lines hidden in road
texture. The crack image also contains complex background noise, such as uneven illumination, stains,
and the texture of the road itself [2]. Since the background of the pavement crack image contains
complex texture patterns, how to effectively segment the crack and improve the accuracy of the crack
segmentation is a complex problem. Therefore, conducting in-depth research on crack detection is
necessary to make up for existing algorithms’ shortcomings.

In recent years, deep learning was used to solve many computer vision problems involving image
classification, object detection and image segmentation. Using deep learning for image segmentation,
such as U-Net, convolutional features in the encoder-decoder network have been found to help
improve semantic segmentation performance [3].

Embedding the attention mechanism in the encoder-decoder network can effectively supervise the
semantic segmentation of crack images and focus on learning local crack semantic features. What’s
more, it can accurately identify pseudo crack features to optimize the image segmentation effect of
the network and enhance the encoder-decoder robustness and generalization of the network [4,5]. The
deep learning algorithm proposed in this paper integrates the attention mechanism and makes the
network focus on the crack region, so the network is named AttentionCrack.

In conclusion, a deep learning algorithm for pavement crack segmentation is proposed, which
demonstrate outperforms other methods. The AttentionCrack network is constructed on the U-Net
based encoder-decoder architecture, and it largely solves the inaccurate boundary localization problem
of deep learning in crack segmentation. In the AttentionCrack, to make the network focus on crack
regions and enhance the crack region recognition, the attention mechanism is fused into the same-scale
convolutional features of the encoder network and decoder network. Meanwhile, to reduce the loss of
crack details because of pooling operations in the encoder network, a dilated convolution module
is introduced in the encoder-decoder architecture. Furthermore, since upsampling in the decoder
network leads to the loss of crack boundary information, a depthwise separable residual module is
proposed to capture the boundary information of pavement cracks.

The contribution of this work is as follows:

(1) The main contribution is to design a new neural network for crack detection. Compared with
the existing pavement crack detection methods, the proposed method has higher detection
accuracy and achieves better performance on the benchmark dataset.

(2) A residual network structure is designed and integrated into the decoder network, which can
reduce the loss of pavement crack boundary information.

(3) The impact of different modules and their combinations in crack detection is explored, the
modules include attention mechanism, dilated convolution and depthwise separable residual
module.

(4) Extensive experiments are conducted on two publicly datasets, i.e., CrackSegNet and
Crack500, and the results demonstrate the effectiveness of the proposed method.

2 Related Work

Pavement crack detection has been studied for many years as a fundamental task for maintaining
road safety. With the advancement of digital image processing technology, various methods and
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models have been applied to crack detection. Crack detection methods are generally divided into
methods based on traditional image processing techniques and methods based on deep convolutional
neural networks.

2.1 Crack Detection Using Traditional Image Processing Techniques
Over the past few decades, crack detection algorithms based on digital image processing tech-

niques have been extensively studied. The gray value of crack pixels in crack images is lower than
that of the background and propose threshold segmentation algorithms [6,7]. These algorithms use
thresholds to separate cracks from the background. However, the detection accuracy of these threshold
segmentation algorithms is low when there is much noise in the crack image. To eliminate the influence
of noise, crack detection methods such as wavelet transform and NSCT transform have been proposed
[8,9]. However, these methods do not handle fractures with poor continuity well. For the identification
of pavement crack, the segmentation algorithm has relatively good accuracy, but its processing speed
is slow [10]. If image texture considering brightness and connectivity to identify fractures or dynamic
threshold method is used, relatively rough fracture morphology can only be obtained [11]. In addition,
the crack recognition based on Canny edge detection is also prone to false recognition. It can be seen
that the common problems of traditional image recognition technology are low accuracy and high
false alarm rate. The traditional image recognition technology is unable to identify the crack at pixel
level. Therefore, it needs to manually extract features, but the preprocessing method directly affects
the recognition effect [12–14].

2.2 Crack Detection Using Deep Convolutional Neural Networks
Methods based on deep learning have been widely used in image classification, object detection,

image segmentation, and other fields. Their detection accuracy far exceeds that of traditional methods
based on digital image processing technology and even exceeds the detection level of humans.
A network called DeepCrack is proposed by Zou et al., which fuses the down-sampled and up-
sampled feature maps in the SegNet network to generate single-scale fusion features. Then, the fused
feature maps of all scales are formed into a multi-scale fusion map to obtain better crack detection
performance [2]. Lau et al. proposed a network architecture, which is based U-Net and replace the
encoder with a pretrained ResNet-34 neural network [15]. The authors perform crack detection on
the CFD and Crack500 dataset, which requires fewer features than other machine learning techniques.
Chen et al. proposed a switch module named SWM to improve the efficiency of crack detection [16].
It judges whether the predicted image is positive and determines whether the decoder module needs to
be skipped. An improved deep fully convolutional neural network named CrackSegNet is proposed
to conduct dense pixel-wise crack segmentation [17]. Dilated convolution, spatial pyramid pooling,
and skip connections are fused in the backbone feature extraction network modified from the classic
convolutional network VGG-16. Zhong et al. [18] proposed a concrete crack detection network based
on atrous convolution and multi-feature fusion. It adopts an encoding-decoding structure based on
U-Net. In the encoding stage, an improved residual network, Res2Net, is used to improve feature
extraction. In the middle part of the network, dilated convolutions with different dilation rates is
used to increase the receptive field of feature points. To improve the representation of crack features
effectively, the spatial channel combined attention mechanism was integrated into the encoder-decoder
network [19].

Although these crack detection methods have achieved a certain degree of success, the edges of
crack detection are blurred still, and the detection accuracy in complex backgrounds is not high.
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3 The Proposed Method
3.1 Network Architecture

The AttentionCrack mainly includes encoder network and decoder network, which is improved
based on the encoder-decoder architecture. The encoder network consists of four identical encoding
blocks, each of which contains two convolutional layers with 3 × 3 convolution kernels and one
Maxpooling layer with 2 × 2 convolutional kernels. Each encoding block generates feature maps with
different channel numbers and resolutions. The encoder network will deepen the number of channels
of the feature map and reduce the resolution of the feature map. The decoder network consists of four
identical decoding blocks, each of which contains two convolutional layers with 3 × 3 convolution
kernels. The feature map in the decoder network is upsampled by bilinear new interpolation, so that
the resolution is restored to the original resolution. Each decoder network has a corresponding layer
in the encoder network, so the encoder network and the decoder network are almost symmetrical.

In the AttentionCrack network, dilated convolutions is fused into the connected part of the
encoder-decoder architecture to increase the receptive field of the model. Furthermore, the deep sep-
arable residual module is fused to the decoder network, which can capture the boundary information
of pavement cracks. Additionally, the attention mechanism is combined with the encoder-decoder
architecture to improve the representation of crack information. The overall model structure of the
AttentionCrack is shown in Fig. 1.

Each convolution of the encoder network will deepen the number of channels of the feature map.
Feature map with fewer channels contain more detail and location information, and feature map with
more channels contain more semantic information. The decoder network upsamples the dense feature
map progressively. The Maxpooling operation in the encoder network can reduce the size of the feature
map, which leads to a loss of spatial resolution and a deviation in the location of the crack boundary.
As a result, the dense feature map loses more location information for cracks. To solve this problem,
many researchers believe that the resolution of feature map can be directly kept unchanged. However,
this approach increases the number of parameter and takes more time during network training. Dilated
convolution can increase the receptive field of the convolution kernel without the loss of information
because of the reduction of feature map resolution. As illustrated in Fig. 2, the Dilated Convolution
Module (DCM) is integrated in the middle of the encoder-decoder architecture. Dilated convolutions
with dilation rates of 1, 2, and 4 is used in the AttentionCrack, which means that the receptive fields
of the convolution kernels are 3 ∗ 3 = 9, 5 ∗ 5 = 25, and 9 ∗ 9 = 81, respectively. Our network makes
full use of the information of different receptive fields to capture the location information of pavement
cracks.

Bilinear interpolation is used in the encoder-decoder architecture to expand the size of the feature
map, which makes the region boundary position of the sparse feature map blurred and results in the
identification of pavement cracks discontinuity. To improve this problem, the Deep Separable Residual
Module (DSRM) is applied to the decoder network, and the module structure is shown in the Fig. 3.
The kernel size of 1 × 1 convolution is used in the DSRM to reduce the dimension of the feature map,
and the kernel size of 5 × 5 convolution is used to extract feature. The DSRM reduces model size and
computational complexity, which uses convolutions with larger receptive fields to capture boundary
information of pavement cracks.
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Figure 1: The AttentionCrack structure

Figure 2: Dilated convolution module

Figure 3: Depth separable residual module
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Since multi-scale feature fusion is effective for improving network performance, coarse feature
map is addressed by adding skip connections in the encoder-decoder architecture. However, skip con-
nections cannot sufficiently integrate important global information, which results in discontinuities
in crack prediction. Moreover, the encoder-decoder architecture lacks the ability to distinguish cracks
and backgrounds on low-level feature maps, which is not conducive to guiding the learning of the
network. The attention mechanism can refine crack features and effectively guide network training.
Furthermore, the convolution operation extracts features by fusing the channel information between
different feature map and the spatial information of the same feature map. Both channel information
and spatial information are crucial for refining crack information. Therefore, the Convolutional
Block Attention Module (CBAM) is introduced into the skip connections of the encoder-decoder
architecture, which can improve the representation ability of the network [20]. The schematic diagram
of the CBAM module is shown in Fig. 4.

Figure 4: CBAM module

The CBAM is an attention module that combines channel attention module and spatial attention
module. The purpose of the channel attention module is to selectively emphasize the relationship
between channels, which can make the network pay more attention to the meaningful crack infor-
mation. The channel attention module is shown in Fig. 5. The spatial attention module is designed
to selectively emphasize the features of each spatial location, which can enable the network to extract
more information about the spatial location of cracks. The spatial attention module is shown in Fig. 6.

Figure 5: Channel attention module

Figure 6: Spatial attention module
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3.2 Loss Function
Since there are only two classes in crack detection, it can be viewed as a binary classification

problem. Generally, the ground truth crack pixels stand as a minority class in the crack image, which
makes it an imbalance classification or segmentation. Some works deal with this problem by adding
larger weights to the minority class. However, in crack detection, larger weights adding to the cracks
will result in more false positives. Thus, a binary cross-entropy loss (BCELoss) function is used for
cost function in the training process of neural network. BCELoss is defines as

LBCE−LOSS = − 1
N

∑
i
[Li ∗ log(yi) + (1 − Li) ∗ log(1 − yi)] (1)

where N is the total number of pixels in a crack image, and Li and yi are the label value and predicted
probability value of the i pixel, respectively.

4 Experiments and Results
4.1 Experimental Setup

During training, BN is used after each convolution layer of the encoder-decoder network to
speed up convergence. Random weights in convolutional layers are initialized by built-in He normal
initializers, and the bias is initialized to 0. In the same time, the bilinear interpolation method is used
for up-sampling. The global learning rate is initialized to 1e-5, and it is divided by 10 after every
10 epochs. The stochastic gradient descent method is employed to update the network parameters
with mini-batch size of 4 in each iteration. The training is completed until the evaluation in the test
is optimal, and the corresponding number of epochs is 40. All experiments are performed by using
on NVIDIA GeForce RTX 3090 GPU. We implement our network by using the publicly available
PyTorch which is well-known in this community.

4.2 Dataset
(1) CrackSegNet: The CrackSegNet dataset [17] contains 919 crack images, of which 735 crack

images are used as training, and 184 images are used as test.

(2) Crack500: The Crack500 dataset [21] contains 3368 crack images, which are cropped from 500
crack images captured by mobile phones, of which 2244 crack images are used for training, and
1124 images are used for testing. Crack500 is a large publicly accessible pavement crack dataset
with corresponding labeled images. These images contain a variety of complex pavement
backgrounds and various types of cracks.

(3) Data augmentation has been performed to enlarge the size of the training set. In each training
iteration, the crack image is rotated at eight different angles, 45° each time, and the crack image
is also rotated horizontally and vertically. Therefore, the dataset is 16 times larger.

During training and testing, it is necessary to unify the image size as input of network model.
Similar to [17] and [15], we resize the images of the CrackSegNet dataset to 512 × 512, and ones of
the Crack500 dataset to 320 × 320, respectively.

4.3 Evaluation Indicators
All methods are tested on the above datasets. At test time, the detection result image is compared

with the label image to calculate the Precision, Recall and F1 score. These evaluation criteria can assess
the accuracy of the semantic segmentation tasks, which are defined as shown in Eqs. (2)–(4):
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Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

F1 = 2 × Precision × Recall
Precision + Recall

(4)

Among them, TP is the number of pixels that are correctly detected and judged as cracks in the
detection result. FP is the number of falsely detected background pixels as crack pixels, and FN is the
number of falsely detected crack pixels as background pixels. Due to the limitations of Precision and
Recall, we use F1 score as an overall indicator to evaluate the detection effect.

4.4 Contrast Method
The proposed method is compared with existing crack detection methods, all of which are based

on deep learning. These crack detection methods are trained and tested on the CrackSegNet dataset
and Crack500 dataset, respectively.

(1) U-Net [3]: U-Net is based on the encoder-decoder structure and realizes feature fusion through
splicing. Its structure is simple but very effective.

(2) SegNet [22]: SegNet is a fully convolutional network for pixel-level image segmentation with
an encoder-decoder symmetric structure.

(3) DeepCrack [2]: DeepCrack is a convolutional network for pixel-level crack segmentation,
which is based on the SegNet and fusion jump connection.

(4) CrackSegNet [17]: CrackSegNet is a convolutional network for dense pixel crack segmentation.
The network consists of a backbone, dilated convolution, spatial pyramid pooling and skip
connection modules.

(5) CarNet [23]: CarNet is based on the encoder-decoder architecture. It is an efficient and high-
quality crack detection method. In the decoder, a lightweight up-sampling feature pyramid
module is introduced to learn rich hierarchical features for crack detection.

4.5 Experimental Results and Analysis
The U-Net, SegNet, DeepCrack, CrackSegNet, CarNet, and the AttentionCrack are trained and

tested on the CrackSegNet and Crack500, respectively. The results on the CrackSegNet dataset is
shown in Table 1, and the P-R (Precision-Recall) curves are shown in Fig. 7. It can be seen from
the experimental results that the F1 score of the method is the highest, and the F1 scores of U-Net,
SegNet, DeepCrack, CrackSegNet, and CarNet are lower than those of the method: 2.91%, 1.48%,
6.1%, 7.52%, 2.01%. In the P-R curves, our method is the best one of all methods.

Table 1: Comparison of various methods on CrackSegNet dataset

Methods Precision Recall F1

U-Net [3] 65.77% 71.31% 67.11%
SegNet [22] 65.02% 75.09% 68.54%
DeepCrack [2] 60.52% 70.93% 63.92%

(Continued)
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Table 1 (continued)

Methods Precision Recall F1

CrackSegNet [17] 64.11% 65.02% 62.50%
CarNet [23] 65.26% 73.41% 68.01%
AttentionCrack 65.81% 77.17% 70.02%

Figure 7: P-R curves on CrackSegNet dataset (left) and Crack500 dataset (right)

The quantitative results on the Crack500 datasets are shown in Table 2, Recall of our method is
slightly lower than that of U-Net method, which is due to the influence of the imbalance of positive and
negative samples in the dataset on model training. Although Recall is slightly lower than that of U-Net
method, a single Recall cannot judge the model. The F1 score and P-R curve are better indicators to
measure model performance. It can be seen from Table 2 that F1 score of AttentionCrack is the highest.
Compared with U-Net, SegNet, DeepCrack, CrackSegNet, and CarNet, there are 1.5%, 2.12%, 3.65%,
2.5% and 2.69% performance improvement on F1, respectively. The P-R curves are shown in Fig. 7.
The AttentionCrack achieves the best performance on Crack500.

Table 2: Comparison of various methods on Crack500 dataset

Methods Precision Recall F1

U-Net [3] 68.39% 79.24% 70.44%
SegNet [22] 68.12% 77.15% 69.82%
DeepCrack [2] 69.74% 73.17% 68.29%
CrackSegNet [17] 68.51% 77.35% 69.44%
CarNet [23] 68.36% 75.82% 69.25%
AttentionCrack 71.76% 77.65% 71.94%

The experimental results show that the AttentionCrack can extract cracks from complex scenes
and effectively remove the influence of shadows, stains and other interference. The AttentionCrack
includes the advantages of U-Net, such as encoder-decoder path, skip connection and the attention



770 CMES, 2023, vol.137, no.1

mechanism. Extended convolution expands the receptive field of the convolution kernel to include
multi-scale context. In particular, the proposed extended convolution with different expansion rates
can enhance the feature extraction ability without reducing the resolution of the feature map.

The partial segmentation results of various methods on the Crack500 dataset is shown in
Fig. 8. Compared with other methods, the AttentionCrack is observed to be able to suppress more
background artifacts than other methods. And the AttentionCrack has better performance in dealing
with the problems of discontinuity of cracks, wrong segmentation of complex background, and
accurate positioning of crack edges.

Figure 8: Images of detection results of different methods on the Crack500 dataset

4.6 Ablation Study
In Section 4.5, the experimental results show that this approach is superior to other advanced

methods in crack detection. The effect of each module is studied in this part. Specifically, we
investigated the importance of CBAM, DCM, and DSRM. Therefore, one or two of the three modules
are removed each time before training the modified model with the same parameters. The reserved
module is used as the method name. For example, Ours (CBAM) keeps the CBAM and remove the
DCM and DSRM. And Ours (CBAM + DCM) keeps the CBAM and DCM and remove the DSRM.
Finally, these models are tested on the CrackSegNet and Crack500 dataset, respectively.

The P-R curves on the CrackSegNet dataset and Crack500 dataset are shown in Fig. 9. The
experimental results show that removing any module will lead to performance degradation.

As seen in Tables 3 and 4, the accuracy of Ours (CBAM) is slightly higher than AttentionCrack,
because Ours (CBAM) misjudges the background of part of crack boundary as a crack. Although
Ours (CBAM) accuracy improves, its Recall rate drops. Ours (CBAM) does not accurately locate the
crack boundary information. The fusing of DCM and DSRM into the model increases the F1 score
of AttentionCrack, which indicates that AttentionCrack is the best compared with other methods.
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Figure 9: Comparison of the AttentionCrack with its modified versions by removing module on
CrackSegNet dataset (left) and Crack500 dataset (right)

Table 3: Comparison between architectures for ablation study on CrackSegNet dataset

Methods Precision Recall F1

Ours (CBAM) 66.11% 75.51% 69.42%
Ours (DCM) 65.97% 74.12% 68.63%
Ours (DSRM) 65.21% 70.09% 65.15%
Ours (CBAM + DCM) 64.31% 76.85% 69.11%
Ours (CBAM + DSRM) 65.81% 74.70% 68.59%
Ours (DCM + DSRM) 64.38% 73.14% 66.69%
AttentionCrack 65.81% 77.17% 70.02%

Table 4: Comparison between architectures for ablation study on Crack500 dataset

Methods Precision Recall F1

Ours (CBAM) 72.61% 75.08% 71.04%
Ours (DCM) 71.53% 77.38% 71.29%
Ours (DSRM) 72.02% 75.82% 70.56%
Ours (CBAM + DCM) 75.47% 71.92% 71.03%
Ours (CBAM + DSRM) 71.36% 77.14% 71.76%
Ours (DCM + DSRM) 74.70% 70.96% 69.65%
AttentionCrack 71.76% 77.65% 71.94%

5 Conclusion

In this work, a novel end-to-end trainable convolutional network named AttentionCrack is
proposed for crack detection. In AttentionCrack, the attention mechanism is integrated into multi-
scale convolution features to enhance the recognition of crack areas. At the same time, the dilated
convolution and the depth separable residual module are used to reduce the loss of crack details.
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Compared with other state-of-the-art deep learning methods for crack detection, this method has
achieved significant improvement in accuracy. The resulting method has good generalization and
low data requirements, which can be enhanced by the inclusion of more powerful architectures or
additional training of labeled images. Next, further investigation will be performed to improve the
accuracy of crack detection, reduce the model’s complexity and improve the model’s generalization
ability. In addition, exploration of other detection fields by using this method will be performed too.
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