
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.026808

ARTICLE

Heterogeneous Fault-Tolerant Aggregate Signcryption with Equality Test
for Vehicular Sensor Networks

Yang Zhao1, Jingmin An1, Hao Li1 and Saru Kumari2,*

1Network and Data Security Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China,
Chengdu, 610054, China
2Department of Mathematics, Chaudhary Charan Singh University, Meerut, 250004, India

*Corresponding Author: Saru Kumari. Email: saryusiirohi@gmail.com

Received: 26 September 2022 Accepted: 15 December 2022

ABSTRACT

The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-time
detection and operation control of vehicles and real-time transmission of data and information. In the environment
of VSN, massive private data generated by vehicles are transmitted in open channels and used by other vehicle users,
so it is crucial to maintain high transmission efficiency and high confidentiality of data. To deal with this problem, in
this paper, we propose a heterogeneous fault-tolerant aggregate signcryption scheme with an equality test (HFTAS-
ET). The scheme combines fault-tolerant and aggregate signcryption, which not only makes up for the deficiency of
low security of aggregate signature, but also makes up for the deficiency that aggregate signcryption cannot tolerate
invalid signature. The scheme supports one verification pass when all signcryptions are valid, and it supports
unbounded aggregation when the total number of signcryptions grows dynamically. In addition, this scheme
supports heterogeneous equality test, and realizes the access control of private data in different cryptographic
environments, so as to achieve flexibility in the application of our scheme and realize the function of quick search
of plaintext or ciphertext. Then, the security of HFTAS-ET is demonstrated by strict theoretical analysis. Finally, we
conduct strict and standardized experimental operation and performance evaluation, which shows that the scheme
has better performance.

KEYWORDS
Aggregate signcryption; fault-tolerant; heterogeneous; equality test; vehicular sensor network

1 Introduction

In the past few years, the application of Internet of Things (IoT) devices has grown at a great lick,
including Industrial Internet of Things (IIoT), intelligent supply chain, electronic medical, smart home
and other aspects [1]. Among them, internet of vehicles is one of the most important applications,
and the VSN is also one of the key research directions in the academic world. Through wireless
communication technology, vehicle equipments effectively use all the dynamic data and information
of vehicles in the information network platform. And diverse functional services will be provided by
vehicle equipments in the operation control of vehicles.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.026808
https://www.techscience.com/doi/10.32604/cmes.2023.026808
mailto:saryusiirohi@gmail.com

556 CMES, 2023, vol.137, no.1

In the environment of the VSN, massive private data generated by vehicles are transmitted in
open channels, such as driving operations inside vehicles, information transmission between vehicles
and between vehicles and the Internet. In this case, data confidentiality and transmission efficiency
are crucial. At the same time, most IoT rely on cloud computing [2] for massive data processing and
services, and strict authentication is required for data use. In this case, data confidentiality and user
access are necessary. Therefore, maintaining high transmission efficiency and confidentiality of data
is a very important challenge.

In 1976, Diffie [3] researched public key cryptography, and then proposed the concept of digital
signature. Digital signature technology combines the identity information of the signer with the signed
message, indicating that the signer has signed the message. The verifier can verify that the information
is really signed by the signer. Moreover, forging a signature by imitating the signer is difficult.
Later, certificate-based signature [4], identity-based signature [5–7] and certificateless signature (CLS)
schemes [8–10] emerged successively. However, traditional digital signature has higher computational
overhead and lower efficient, so it is not suitable for massive data.

Boneh et al. [11] conducted several research studies to raise verification efficiency and reduce
storage capacity. Finally, an aggregate signature scheme was proposed in 2003. This scheme uses the
properties of bilinear pairs to generate a short signature, which is more flexible, but it requires different
messages to be signed and different participants, which has too many restrictions, higher resource
cost and lower availability. Cheon et al. [12] proposed an aggregate signature based identity (IBAS)
in 2004. Two certificateless aggregate signature schemes (CLAS) were proposed by Gong et al. [13].
After that, schemes for improvement were put forward in abundance. For example, PFCBAS and CL-
DVAAS were proposed respectively by Verma et al. [14] and Deng et al. [15]. These two schemes do
not need pair operation, which further improves the verification efficiency. In 2021, Han et al. [16]
further improved the existing scheme and proposed an efficient pairing-free CLAS (eCLAS), which
reduced the length of signature and the computation cost of verification process. Aggregate signature
algorithm is convenient, and it greatly improves the efficiency of verification and effectively reduce
the storage capacity. However, aggregate signatures still have two problems: first, the confidentiality
of aggregate signatures is low; second, the invalidity of aggregate signatures will lead to the negation
of all signatures.

To address the first problem of aggregate signature, Selvi et al. [17] first gave an aggregate
signcryption scheme in 2009. Aggregate signcryption aggregates multiple signcrypted ciphertext into
a single aggregate signcryption, and the recipient only needs to verify the aggregate signcryption. This
means increases the confidentiality of aggregate signature and effectively controls the computation and
communication costs [18–21]. In 2011, Lu et al. [22] presented certificateless aggregate signcryption
(CLAS), which is based on bilinear mapping and verifiably meets confidentiality and unforgeability.
Later, Ren et al. [23] gave a provably secure aggregate signcryption scheme based on identity,
which greatly reduced communication overhead, but did not achieve complete aggregation. In 2020,
Kim et al. [24] presented a certificateless aggregate signcryption. According to the security require-
ments and computer resource constraints of IoT, this scheme reduces the computation overhead,
communication overhead and storage space, and solves the key aging problem. However, the majority
of the existing aggregate signcryption schemes do not support fault tolerance function, and invalid
signature will cause that all the aggregated signcrypted ciphertext fail to pass verification.

To address the second issue of aggregate signature, Hartung et al. [25] first presented the concept of
fault-tolerant aggregate signatures in 2016, emphasizing fault-tolerant and not mentioning aggregate
signature too much, but the scheme was not flexible enough to be applied in practice. In 2019,

CMES, 2023, vol.137, no.1 557

Wang et al. [26] proposed an improved fault-tolerant aggregate signature scheme with improved
flexibility, but there are still defects, that is, all signatures may still be negated due to a certain or very
few invalid signatures. Xiong et al. [27] proposed SECLS, a secure certificateless signature scheme. The
scheme supports invalid signature recognition and batch verification. Zhao et al. [28] gave CLFTAS,
certificateless fault-tolerant aggregate signature. These two schemes further made up for the defects
of fault-tolerant aggregate signature, but when all signatures are valid, the two schemes have higher
computation overhead and lower verification efficiency. Xiong et al. [29] proposed an efficient batch
verification scheme, while focusing on invalid signature identification. In addition, most aggregate
signature schemes do not consider unbounded scheme and do not support the case that the dynamic
growth of the total number of signatures.

To ensure the availability of data and searchability, Boneh et al. [30] combined the function of
a keyword search with public key encryption, and then presented PKE-KS. This scheme not only
ensures data confidentiality, but also ensures data searchability. However, there is a problem: data
can be searched if the keyword and data are encrypted using the same public key. Xiong et al. [31],
Huang et al. [32] and Chen et al. [33] respectively gave solutions can solve the privacy problems
caused by cloud servers (CSs), to achieve access control. Xiong et al. [34] and Mei et al. [35]
respectively proposed solutions to the privacy problems of Internet of vehicles and blockchain. In
2010, Yang et al. [36] combined the function of equality test with public key encryption, and then
presented PKE-ET. This scheme is not affected by the public key in the encryption process and can
carry out equality test discretionarily between ciphertexts. Since then, many scholars have conducted
in-depth studies in this field [37–39]. In 2020, Xiong et al. [40] improved this method and applied it to
the IIoT environment, which realized data access control in a heterogeneous environment and further
improved data security and confidentiality. After that, Xiong et al. [41] ameliorated the scheme further.
Xiong et al. [42] revocable scheme and Wu et al. [43] key agreement scheme focus on key security.

For the sake of resolving the above problems, and considering heterogeneity in actual IoT
environment, different entities may have different cryptographic environments, so it is necessary to
design a fault-tolerant aggregate signcryption scheme that supports a heterogeneous environment.

As shown in Fig. 1, a vehicle in the PKI system (because the vehicle interior is the on-board unit
with computing power and communication ability, so the vehicle can be called on-board unit (OBU))
signcrypts message by using the administrator’s ID and its own private key to form an individual
signcryption, then sends it to the roadside unit (RSU). RSU implements fault-tolerant aggregate of
multiple signcryptions and sends aggregate signcryption to CS. At the same time, CS receives trapdoor
generated by the administrator in the IBC system. When a user wants to use some data in the IBC
system, he encrypts the keywords with his own ID and the corresponding trapdoor, and then sends
the encrypted messages to CS. CS determines user’s access rights by executing an equality test on the
encrypted messages. If the user has right to access these data, CS will return the corresponding data
to him.

The detailed contributions of our paper are given below:

(1) The paper constructs a heterogeneous fault-tolerant aggregate signcryption scheme with
an equality test (HFTAS-ET). Aggregate signcryption function improves communication
data confidentiality and reduces communication overhead. Fault-tolerant function not only
tolerates invalid signatures and reduces the verification cost, but also realizes one verification
pass when all signcryptions are valid. At the same time, it realizes an unbounded scheme
when the number of signcryptions increases dynamically. The scheme supports heterogeneous
environment to ensure its flexibility of the scheme, and provides the function of an equality test

558 CMES, 2023, vol.137, no.1

to control access rights of data in a heterogeneous environment ensuring the confidentiality and
availability of data.

(2) The security of the scheme is verified by strict theoretical analysis. Through detailed functional
and performance comparisons, we have concluded that our scheme has better performance and
higher efficiency than existing schemes.

(3) This scheme is applicable to the VSN.

Figure 1: System model

2 Preliminaries
2.1 Bilinear Pairing

Suppose G and GT are two cyclic groups and their prime orders both are p. P is a generator of G.
Define a map e : G × G → GT satisfies the following three conditions:

(1) Bilinearity: ∀m, n ∈ G and ∀x, y ∈ Z∗
p , there exists e (xm, yn) = e(m, n)xy.

(2) Nondegeneracy: ∃m, n ∈ G, such that e(m, n) �= 1.

(3) Computability: ∀m, n ∈ G, there is a viable calculation to compute e(m, n).

2.2 Mathematical Assumption
G and GT are two cyclic groups and their prime orders are both p. P is a generator of G. There is

a bilinear map e : G × G → GT . For a random number x ∈ Z∗
p , given (P, xP) to calculate e(P, P)1/x is

called Bilinear Diffie-Hellman Inversion Problem (BDHIP).

BDHIA holds if there do not exist probabilistic polynomial-time adversary A computing BDHIP
with probability at least ε. This is called Bilinear Diffie-Hellman Inversion Assumption (BDHIA).

G is a cyclic group and its prime orders is p. P is a generator of G. For a random number x ∈ Z∗
p ,

given (P, xP) to calculate (1/x)P is called Computational Diffie-Hellman Inversion Problem (CDHIP).

CMES, 2023, vol.137, no.1 559

CDHIP holds if there do not exist probabilistic polynomial-time adversary A computing
CDHIP with probability at least ε. This is called Computational Diffie-Hellman Inversion Assumption
(CDHIA).

2.3 Cover-Free Families
In our scheme, d-cover-free families (d-CFFs) is the basis of fault tolerance.

D-cover-Free Family: There exists two sets, one is X = {x1, . . . , xm}, where | X |= m, and the
other is D = {D1, . . . , Dn}, where Di ⊆ X , 1 ≤ i ≤ n and |D | = n. These two sets form a set
system F = (X , D). A d-cover-free family (d-CFF(m, n)) can be represented a set system as follows:
∀Di0

∈ D and other Di1
, . . . , Did

∈ D , there exists Eq. (1).

Di0
�

d∪
k=1

Dik
(1)

If the characteristic vectors of subsets in D are regared as columns of M , then F can be
represented as a binary incidence matrix M with m rows and n columns. Precisely, if xi ∈ D , Mi,k = 1,
and otherwise Mi,k = 0. M is d-CFF when the corresponding set system is d-CFF.

Nested Family: (M (λ))λ is regarded as a string of incidence matrices of d-CFFs (Fλ)λ = ((Xλ, Dλ))λ,
and M (λ)’s number of rows and columns is r(λ) and c(λ), respectively.

If Xλ ⊆ Xλ+1, r(λ) ≤ r(λ + 1), c(λ) ≤ c(λ + 1), then M (λ+1) =
(

M (λ) Y
Z W

)
, where Y , Z and W

are all 0–1 matrices adapted to the size of M , and Z consists of some rows of M (λ), several rows of all
ones and several rows of all zeros, then (M (λ))λ can be regared as a nested family of d-CFFs incidence
matrices.

3 System Model
3.1 Formal Definition

Our scheme contains eight algorithms:

(1) Setup: It is executed by the private key generator (PKG) according to a number k called security
parameter, which generates a collection of system public parameters and master secret key
MSK.

(2) PKI-Gen: It is executed by PKG according to input a randomly number chosen by a sender si

in PKI system and further produces the corresponding secret key SKsi and public key PKsi .

(3) IBC-Gen: It is executed by PKG according to input the ID of a receiver in IBC system and
further produces the corresponding secret key SKr.

(4) Trapdoor: Given secret key SKr as input, the receiver generates the corresponding trapdoor tpd.

(5) Signcrypt: It is excuted by OBUs. The sender generates a signcryption σi using the sender’s
secret key SKsi , a message Mi and the receiver’s identity ID for computation.

(6) Aggregate: After receiving n senders, n corresponding signcryptions {σi}n
i=1, the RSU aggre-

gates all individual signcryptions into a single aggregate signcryption ϕ by the fault-tolerant
aggregate algorithm on the basic of d-CFF.

(7) Unaggregate: Given the fault-tolerant aggregate signcryption ϕ, the secret key of a receiver SKr,
and the public key of n senders {SKsi}n

i=1, PKG verifies the signcryption and outputs messages.

560 CMES, 2023, vol.137, no.1

(8) Test: After receiving signcryption σA and trapdoor tpdA of receiver A, signcryption σB and
trapdoor tpdB of the receiver B, CS executed an equality test and produces the corresponding
result.

In this scheme, the identity of the administrator is exclusively denoted by IDadmin. The scheme
is performed as a signcryption scheme and the Signcrypt algorithm produces a signcryption of the
message M, when ID = IDadmin. Otherwise, the scheme is performed as a general IBE scheme, the
Signcrypt algorithm does not run digital signature and only produces encrypted ciphertext of M.

3.2 Security Model
Setup: After obtaining a security parameter k, challenger C produces the system parameters by

executing the Setup algorithm. Then, C performs the PKI−Gen algorithm and gets public key and
secret key pairs of n senders, {(PK#

si
, SK#

si
)}n

i=1. Afterward, C delivers them to adversary A1.

Phase I: A1 performs the following queries.

(1) Key Generation Queries: After receiving the ID of the required query from A1, C executes the
IBC−Gen algorithm to get the result SKr, and finally sends it to A1.

(2) Aggregate Queries: After receiving the {σi}n
i=1 of the required query from A1, C executes the

Aggregate algorithm to get the result ϕ, and finally sends it to A1.

(3) Unaggregate Queries: After receiving the signcryption ϕ and receiver’s ID of the required query
from A1, C executes the Unsigncrypt algorithm to get the result, and finally sends it to A1.

Challenge: A1 sends a receiver’s identity ID# and some message M#
1,0, M#

1,1, {Mi}n
i=2 ∈ {0, 1}∗ to C .

In Phase I, A1 is not allowed to query the secret key of ID#. After that, C chooses a number b ∈ {0, 1}∗

at random, and sends ϕ# to A1 by executing Signcrypt and Aggregate algorithm.

Phase II: A1 is permitted for additional queries in Phase I. And the restriction is that the secret
key of ID# and the plaintext of ϕ# can not be queried during this process.

Guess: A1 exports its own guess of b′.

Definition 1: If all IND-CCA2 adversaries A1 with the advantage that Adv(A1) = |2 Pr[b′ = b]−1|
can be ignored, then our HFTAS-ET scheme is deemed to be IND-CCA2 secure.

Setup: After obtaining a security parameter k, challenger C produces the system parameters by
executing the Setup algorithm. Then, C performs the PKI−Gen algorithm and gets public key and
secret key pairs of n senders, {(PK#

si
, SK#

si
)}n

i=1. Afterward, C delivers them to adversary A2.

Phase I: A2 performs the following queries.

(1) Key Generation Queries: After receiving the ID of the required query from A2, C executes the
IBC−Gen algorithm to get the result SKr, and finally sends it to A2.

(2) Trapdoor Queries: After receiving the required query from A2, C executes the Trapdoor
algorithm to get the result tpd, and finally sends it to A2.

(3) Aggregate Queries: After receiving the {σi}n
i=1 of the required query from A2, C executes the

Aggregate algorithm to get the result ϕ, and finally sends it to A2.

(4) Unaggregate Queries: After receiving the signcryption ϕ and receiver’s ID of the required query
from A2, C executes the Unsigncrypt algorithm to get the result, and finally sends it to A2.

CMES, 2023, vol.137, no.1 561

Challenge: A2 sends a receiver’s identity ID# and some message M#
1 , {Mi}n

i=2 ∈ {0, 1}∗ to C . In
Phase I, A2 is not allowed to query the secret key of ID#. After that, C chooses a number b ∈ {0, 1}∗

at random, and sends ϕ# to A2 by executing Signcrypt and Aggregate algorithm.

Phase II: A2 is permitted for additional queries in Phase I. And the restriction is that the secret
key of ID# and the plaintext of ϕ# cannot be queried during this process.

Guess: A2 exports its own guess of M1

′
.

Definition 2: If all OW-CCA2 adversaries A2 with the advantage that Adv(A2) = |Pr[M1

′ = M1
#]|

can be ignored, then our HFTAS-ET scheme is deemed to be OW-CCA2 secure.

Setup: After obtaining a security parameter k, challenger C produces the system parameters by
executing the Setup algorithm. Then, C performes the PKI−Gen algorithm and gets public key of a
sender, PK#

s . Afterward, C delivers it to adversary A3.

Queries: A3 performs the following queries:

(1) Key Generation Queries: After receiving the ID of the required query from A3, C executes the
IBC−Gen algorithm to get the result SKr, and finally sends it to A3.

(2) Signcryption Queries: After receiving a plaintext M and a receiver’s ID of the required query
from A3, C executes the Signcryption algorithm to get the result σ , and finally sends it to A3.

Forgery: A3 exports a receiver’s ID# and a ciphertext of σ # that isn’t generated by the oracle of
Signcryption. A3 wins if σ # is valid.

Definition 3: If all EUF-CMA adversaries A3 with the advantage that Adv(A3) = |Pr[A3wins]| can
be ignored, then our HFTAS-ET scheme is deemed to be EUF-CMA secure.

4 Construction
4.1 The Construction

(1) Setup: Given a random number k as security parameter, PKG produces cyclic groups G and
GT , which can be utilized to construct a bilinear map e : G × G → GT . P is a generator of G.
Calculate E = e(P, P). Choose system master secret key MSK = (m1, m2), where m1, m2 ∈ Z∗

p .
Calculate P1 = m1P, P2 = m2P. Pick these hash functions: H1 : {0, 1}∗ → Z∗

p , H2 : GT ×
{0, 1}∗ → Z∗

p , H3 : GT → {0, 1}∗, H4 : GT → Z∗
p , H5 : {0, 1}∗ × Z∗

p × G3
T → {0, 1}∗. The system

parameters: < G, GT , e, P, P1, P2, E, H1, H2, H3, H4, H5 >. Set the special function F(ID), the
answer is 1 if ID = IDadmin, otherwise, the answer is 0.

(2) PKI-Gen: PKG input a number asi ∈ Z∗
p randomly chosen by the sender si in PKI system and

produces the corresponding secret key SKsi = (
1/asi

)
P and public key PKsi = asi P.

(3) IBC-Gen: PKG input ID of a receiver in IBC system and produces the corresponding secret
key SKr = (SKr1

, SKr2
), where SKr1

= (1/[H1 (ID) + m1]) P and SKr2
= (1/[H1 (ID) + m2]) P.

(4) Trapdoor: Input the secret key SKr of a receiver, and output the corresponding trapdoor tpd =
SKr2

.

(5) Signcrypt: Given the SKsi of the sender, the plaintext Mi and the ID of a receiver, the sender
calculate the corresponding signcryption according to the following steps:
(a) Randomly pick (u1i, u2i) ∈ Z∗

p .

(b) Set k1i = Eu1i , k2i = Eu2i .

(c) Calculate ti = H2(Mi, k1i · k2i).

562 CMES, 2023, vol.137, no.1

Output the ciphertext σi = (α1i, α2i, α3i, α4i, α5i), where α1i = (Mi||u2i)⊕H3(k1i), α2i = (u2i ·H1(Mi))⊕
H4(k2i), α3i = u1i(H1(ID)P + P1), α4i = u2i(H1(ID)P + P2), and α5i = F(ID)(u1i + ti)SKsi .

(6) Aggregate: When receiving n signcryptions N = {σi = (α1i, α2i, α3i, α4i, α5i)}n
i=1 from n senders

{si}n
i=1 within its coverage, the RSU aggregates all individual signcryptions into a single

aggregate signcryption by the following fault tolerant aggregation algorithm:
(a) The α5i part of each ciphertext is extracted and denoted as Q, i.e., Q = {α51, . . . , α5n}. Then

construct the corresponding binary incidence matrix M with r rows and n columns, while
meeting d-CFF.

(b) In the matrix M , every column represents a signcryption, and every row represents a sub-
validation. If Mi,j = 1, the i-th sub-validation (i.e., ε[i]) contains the j-th signcryption
information α5j. Assuming that ε[j] is composed by {α5i}ω

i=1 of {σi}ω

i=1, i.e., ε [j] = ∑ω

i=1α5i

for (1 ≤ j ≤ r).

(c) Create a new position ε[0] that satisfies the full aggregation of α5i part in all signcryptions
until that signcryption, i.e., ε [0] = ∑n

i=1α5i.

(d) The core of aggregate signcryption ε = (ε[0], ε[1], . . . , ε[r]).

The fault-tolerant aggregate signcryption: ϕ = (α11, . . . , α1n, α21, . . . , α2n, α31, . . . , α3n, α41, . . . , α4n,
ε[0], ε[1], . . . , ε[r])

Unbounded-fault-tolerant aggregate (N 1, N 2)

Let N1, N2 are two sets of α5i in two exclusive mergeable signcryptions. Assume that the dimension
of Nk is nk, where k = 1, 2 and n1 ≤ n2. Let Q1 = {

α51, . . . , α5n1

}
, Q2 = {

α51, . . . , α5n2

}
, and corresponding

core of aggregate signcryption be ε1 = (ε1[0], ε1[1], . . . , ε1[r]), ε2 = (ε2[0], ε2[1], . . . , ε2[r]).

Let λk satisfies c(M (λk−1)) < nk ≤ c(M (λk)), and rk = r(M (λk)) where k = {1, 2} and λ1 ≤ λ2.

M is a submatrix of M (λ2) and made up of the first n2 columns. Note that M =
(

M (λ1) Y
Z W

)
, for

matrices Y , Z , W meeting the “nesting” attribute.

If one or both of the two sets Nk contain only one individual signcryption, εk is an individual α5k,
then εk is expanded into a vector in the manner of Eq. (2), where j is the index of individual signcryption
of Qk.

εk [i] =
{

α5k i = 0||(M [i, j] = 1&&1 ≤ i ≤ rk)

⊥ other
(2)

Aggregate the corresponding positions of ε1 and ε2 based on M , if they are both vectors.
Considering special row type of Z, there are three kinds of row index i: Type 0(a row of zeros); Type 1(a
row of ones); Type 2(a repeated row r of M (λ1)). Expand ε1 to make it have the equal dimension as ε2,
which is ε1[i] is itself if 1 ≤ i ≤ n1 and ε1[i] = ⊥ if n1 + 1 ≤ i ≤ n2. After that, execute as the following.

(i) for i = 0, aggregate α5i part in all signcryptions to ensure that one verification pass in the case
that all signcryptions are valid, as shown in Eq. (3).

ε[0] = ε1[0] + ε2[0] (3)

(ii) for i = 1, . . . , r1, aggregate the corresponding signcryptions, as shown in Eq. (4).

ε[i] = ε1[i] + ε2[i] (4)

CMES, 2023, vol.137, no.1 563

(iii) for i = r1 + 1, . . . , r2, as shown in Eq. (5).

ε [i] =

⎧⎪⎨
⎪⎩

ε2[i] Type 0
ε1[0] + ε2[i] Type 1
ε1[r] + ε2[i] Type 2

(5)

Aggregate with
{
α1i,N1

, α2i,N1
, α3i,N1

, α4i,N1

}n1

i=1
of N1 and

{
α1i,N2

, α2i,N2
, α3i,N2

, α4i,N2

}n2

i=1
of N2 to

constitute the unbounded-fault-tolerant aggregate signcryption: ϕ = (α11,N1
, . . . , α1n1,N1

,
α11,N2

, . . . , α1n1,N2
, α21,N1

, . . . , α2n1,N1
, α21,N2

, . . . , α2n1,N2
, α31,N1

, . . . , α3n1,N1
, α31,N2

, . . . , α3n1,N2
,

α41,N1
, . . ., α4n1,N1

, α41,N2
, . . ., α4n1,N2

, ε[0], ε[1], . . . , ε[r2])

Output ϕ.

(7) Unaggregate: After receiving the fault-tolerant aggregate signcryption ϕ, the secretkey of a
receiver SKr, and the public key of n senders {SKsi}n

i=1, ε[j] is one of the values ε, where 0 ≤ j ≤ r,
and ε[j] = ∑ω

i=1α51i. The algorithm executes as follows:
for 1 ≤ i ≤ ω,

(a) k1i = e(α3i, SKr1
), k2i = e(α4i, SKr2

).

(b) Mi||u2i = α1i ⊕ H3(k1i).

(c) ti = H2(Mi, k1i · k2i).
(i) When F(ID) = 1, verify if α2i ⊕ (u2i · H2(Mi)) = H4(k2i) and only if e

(
�ω

i=1α3i, SKr1

) =
e
(
ε [0] ,

∑ω

i=1PKsi

)E
−∑ω

i=1t i
. If hold, all the signcryptions are valid. Meanwhile, create a

new set called “The Valid Set” and add all the signcryptions to it. Then output {Mi}n
i=1.

Otherwise, at least one signcryption is invalid.

(ii) When F(ID) = 0, verify that α2i ⊕ (u2i · H2(Mi)) = H4(k2i). If it holds, output Mi; if
not, output ⊥.

(8) Sign: After receiving a sender’s signcryption σA = (α1A, α2A, α3A, α4A, α5A) and a receiver’s
signcryption σB = (α1B, α2B, α3B, α4B, α5B). The signer calculates the following:
(a) M ′

A = H5(α1A||α2A||α3A||α4A||α5A), M ′
B = H5(α1B||α2B||α3B||α4B||α5B).

(b) Randomly pick
(
u′

1A, u′
1B

) ∈ Z∗
p .

(c) Set k′
1A = Eu′

1A , k′
1B = Eu′

1B .

(d) Calculate tA = H2(M
′
A, k′

1A) and tB = H2(M
′
B, k′

1B).

(e) Generate σA’s signature σ
′
A = F(ID)(u′

1A + tA)SKsi , σB’s signature σ
′
B = F(ID)(u′

1B + tB)SKsi .

(9) Test: After receiving a sender’s ciphertext σA = (α1A, α2A, α3A, α4A, α5A), the signature σ
′
A and the

corresponding tpdA, a receiver’s ciphertext σB = (α1B, α2B, α3B, α4B, α5B), the signature σ
′
B and the

corresponding tpdB. The algorithm is executed as follows:
(a) Verify if k′

1A = e(σ ′
A, PKsi)E

−tA , k′
1B = e(σ ′

B, PKsi)E
−tB . If hold, execute the algorithm

according to the procedure below.

(b) k2A = e(α4A, tpdA), k2B = e(α4B, tpdB).

(c) ZA = α2A ⊕ H4(k2A), ZB = α2B ⊕ H4(k2B).

(d) Check kZB
2A = kZA

2B . If it holds, it means that MA = MB.

564 CMES, 2023, vol.137, no.1

4.2 The Identification of Invalid Signcryptions
Given the fault-tolerant aggregate signcryption ϕ = (α11, . . . , α1n, α21, . . . , α2n, α31, . . . , α3n,

α41, . . ., α4n, ε[0], ε[1], . . . , ε[r]), the secretkey of a receiver SKr, and the public key of n senders {SKsi}n
i=1,

the verification result e(�ω

i=1α3i, SKr1
) �= e(ε[0],

∑ω

i=1PKsi)
E

−∑ω
i=1ti .

(1) Verify if e
(
�ω

i=1α3i, SKr1

) = e
(
ε [j] ,

∑ω

i=1PKsi

)E
−∑ω

i=1ti

, for each 1 ≤ j ≤ r.

(2) Let inve denote the number of the equation does not hold, 1 ≤ inve ≤ r.

(3) Let invs denote the number of invalid signcryption, 1 ≤ invs ≤ n.

(4) For each ω signcryptions in ε[x], 1 ≤ x ≤ inve, verify if α2y ⊕ (u2y · H2(My)) = H4(k2y), for
1 ≤ y ≤ ω.

(5) If not hold, this signcryption are not valid. Meanwhile, create a new sete called “The Invalid
Set” and add the invalid signcryption to it. Then output Miinvs . Otherwise, the signcryption is
considered valid and appended to “The Valid Set”.

5 Security Analysis

Theorem 1: Suppose that BDHIA holds. Our scheme HFTAS-ET is secure against IND-CCA2.

Proof. Suppose there is a challenger C that can solve BDHIP problem and whose advantage is
at least ε. The goal of C is to compute e(P, P)(1/a), where a ∈ Z∗

p by knowing an instance (P, aP)

of BDHIP. Suppose A1 can successfully break the HFTAS-ET scheme. A game was placed between
challenger C and adversary A1. The details of the operation are as given below:

Setup: C chooses θ ∈ {1, . . . , ρH1
}, Lθ ∈ Z∗

p and λ1, . . . , λθ−1, λθ+1, . . . , λρ ∈ Z∗
p at random, where ρH1

indicates the query times of H1. Compute Li = Lθ −λi, where i = 1, . . . , θ −1, θ +1, . . . , ρ. C calculate
the generator P ∈ G1 and two parameters F = aP, G = a′P by using its input, where a, a′ ∈ Z∗

p , and
thus it knows ρ − 1 pairs (λi, Ui = (1/(a + λi))P), (λi, Vi = (1/(a′ + λi))P) for i ∈ {1, . . . , ρ} � θ .
Choose P1 = −F − LθP = (−a − Lθ)P and P2 = −G − LθP = (−a′ − Lθ)P, where s1 and s2 are
respectively set to s1 = −a − Lθ ∈ Z∗

p and s2 = −a′ − Lθ ∈ Z∗
p . (Li, −Ui) = (Li, (1/(Li + s1))P),

(Li, −Vi) = (Li, [1/(Li +s2)]P), where i ∈ {1, . . . , ρ} � θ .

C sends system parameters, P1 = −F − LθP = (−a − Lθ) P, P2 = −G − LθP = (−a′ − Lθ) P, as
well as g = e(P, P) to A1. Afterward, C returns {(PK#

si
, SK#

si
)}n

i=1 which is n senders’ public/secret-key
pair generated by PKI-Gen algorithm.

Phase I: C simulates the original empty H1, H2, H3 and H4 oracles by preserving LH1
, LH2

, LH3
,

and LH4
lists. Assume that each query of H1 is different, and the identity ID# is delivered to H1 at some

point. When any other query uses ID, A1 will query H1(ID) in advance. C responds to A1 according
to the following procedure:

(1) H1-Queries: π indexes these queries, and it is originally set to 1. After receiving a query with
IDπ , C gives Lπ and π to A1. Meanwhile, (IDπ , Lπ) is appended to LH1

.

(2) H2-Queries: After receiving a query with (Mi, ki), C judges whether (Mi, ki) exists in LH2
. If so,

C delivers h2i to A1. Otherwise, C selects h2i at random in Z∗
p and sends it to A1. In addition,

C get h3i = H (k1i) and h4i = H (k2i) by simulating the random oracle, where k1i · k2i = ki.
Finally, C calculates δi = k1i · e(P, P)h2i and adds (Mi, ki, k1i, k2i, δi, h2i) into LH2

.

(3) H3-Queries: After receiving a query with k1i, C judges whether k1i exists in LH3
. If so, C delivers

h3i to A1. Otherwise, C selects h3i at random in Z∗
p and sends it to A1. Meanwhile, (k1i, h3i) is

appended to LH3
.

CMES, 2023, vol.137, no.1 565

(4) H4-Queries: After receiving a query with k2i, C judges whether k2i exists in LH4
. If so, C delivers

h4i to A1. Otherwise, C selects h4i at random in Z∗
p and sends it to A1. Meanwhile, (k2i, h4i) is

appended to LH4
.

(5) Key Generation Queries: After receiving a query with IDπ , C searches the LH1
list. If π = θ ,

C aborts. Otherwise, C knows H1 (IDπ) = Lπ and delivers SKr1
= [1/ (Lπ + s1)] P, SKr2

=
[1/ (Lπ + s2)] P to A1.

(6) Aggregate Queries: After receiving a query with {σi = (α1i, α2i, α3i, α4i, α5i)}n
i=1, C simulates ran-

dom oracle to obtain ε[0] = ∑n

i=1α5i and ε[j] = ∑ω

i=1α5i for 1 ≤ j ≤ r on the basis of Aggregate
step, and return ϕ = (α11, . . . , α1n, α21, . . . , α2n, α31, . . . , α3n, α41, . . . , α4n, ε[0], ε[1], . . . , ε[r]).

(7) Unaggregate Queries: When receiving the query with ϕ = (α11, . . . , α1n, α21, . . . , α2n, α31, . . . , α3n,
α41, . . . , α4n, ε[0], ε[1], . . . , ε[r]) and IDi of a receiver, C judges whether i equals θ . If not, C
returns {Mi}n

i=1 based on Unaggregate. Otherwise, Eq. (6) holds.

log∑n
i=1SK∗

si

(
ε [0] −

n∑
i=1

h2i · SK#
si

)
= log(LiP+P1)

n∑
i=1

α3i (6)

where h2,i = H2 (Mi, k1i · k2i).
Then, C calculates δ = e(ε[0], LiP+P1) and searches LH2

. If not found, ϕ is rejected. Otherwise,
C checks Eq. (7).

e(
∑n

i=1α3i,
∑n

i=1SK#
si
)

e(LiP + P1, ε[0])
= e

(
LiP + P1,

n∑
i=1

h2i · SK#
si

)
(7)

If it holds, return {Mi}n
i=1; else, for 1 ≤ j ≤ r, C verifies Eq. (8)

e(
∑ω

i=1α3i,
∑ω

i=1SK#
si
)

e(LiP + P1, ε[j])
= e

(
LiP + P1,

ω∑
i=1

h2i · SK#
si

)
(8)

And return the valid set to A1.

Challenge: After receiving the receiver’s ID#, M#
1,0, M#

1,1, {Mi}n
i=2 ∈ {0, 1}∗, the C performs algorithm

in the following step:

(1) If IDi �= ID#, C will abort.

(2) Otherwise, C respectively selects b and μ in {0, 1}∗ and Z∗
p at random. ϕ# = (α11, . . . , α1n, α21, . . . ,

α2n, α31, . . . , α3n, α41, . . . , α4n, ε[0], ε[1], . . . , ε[r]) is the ciphertext to be challenged. α1i, α2i ∈
{0, 1}∗, α3i = −μP, α4i ∈ G1, where 1 ≤ i ≤ n. And ε[j] ∈ G1, where 1 ≤ j ≤ r. And give
σ # to A1. Let κ = μ/a and s1 = −a − Lθ , so that for 1 ≤ i ≤ n, we have Eq. (9).

α3i = −μP = −κaP = (Lθ + s1)κP = κLθP + κP1 (9)

Phase II: A1 is permitted for additional queries in Phase I. And the restriction is that the secret
key of ID# and the plaintext of ϕ# can not be queried during this process.

Guess: A1 exports its own guess b′ ∈ {0, 1}∗. C randomly chooses a set (Mi, ki, k1i, k2i, δi, h2i) or
(k1i, h3i) from LH2

list or LH3
list and gets f (y) = ∑ρ−1

i=1 ciyi which is a polynomial in P = f (a) P̂. Then

566 CMES, 2023, vol.137, no.1

outputs k1i = e (P, P)
κ = e

(
P̂, P̂

)f (a)2μ/a

. If δ# = e
(

P̂, P̂
)1/a

, the BDHIP can be derived via Eq. (10).

e (P, P)
1/a = δ#c0

2
e

(
ρ−2∑
t=0

ct+1

(
atP̂

)
, c0P̂

)
e

(
P,

ρ−2∑
t=0

ct+1

(
atP̂

))
(10)

Theorem 2: Suppose that BDHIA holds. Our scheme HFTAS-ET is secure against OW-CCA2.

Proof. Suppose there is a challenger C that can solve the BDHIP problem and has an advantage
is at least ε. The goal of C is to compute e(P, P)(1/a), where a ∈ Z∗

p by knowing a instance (P, aP)

of BDHIP. Suppose A2 can successfully break the HFTAS-ET scheme. A game was placed between
challenger C and adversary A2. The details of the operation are given below:

Setup: C chooses θ ∈ {1, . . . , ρH1
}, Lθ ∈ Z∗

p and λ1, . . . , λθ−1, λθ+1, . . . , λρ ∈ Z∗
p at random, where ρH1

indicates the query times of H1. Compute Li = Lθ −λi, where i = 1, . . . , θ −1, θ +1, . . . , ρ. C calculate
the generator P ∈ G1 and two parameters F = aP, G = a′P by using its input, where a, a′ ∈ Z∗

p , and
thus it konws ρ − 1 pairs (λi, Ui = (1/(a + λi)) P), (λi, Vi = (1/(a′ + λi)) P) for i ∈ {1, . . . , ρ} � θ .
Choose P1 = −F − LθP = (−a − Lθ)P and P2 = −G − LθP = (−a′ − Lθ) P, where s1 and s2 are
respectively set to s1 = −a − Lθ ∈ Z∗

p and s2 = −a′ − Lθ ∈ Z∗
p . (Li, −Ui) = (Li, (1/(Li + s1)) P),

(Li, −Vi) = (Li, [1/ (Li + s2)] P), where i ∈ {1, . . . , ρ} � θ .

C sends system parameters, P1 = −F − LθP = (−a − Lθ) P, P2 = −G − LθP = (−a′ − Lθ) P, as
well as g = e(P, P) to A2. Afterward, C returns {(PK#

si
, SK#

si
)}n

i=1 which is n senders’ public/secret-key
pair generated by the PKI-Gen algorithm.

Phase I: C simulates the original empty H1, H2, H3 and H4 oracles by preserving LH1
, LH2

, LH3
,

and LH4
lists. Assume that each query of H1 is different, and the identity ID# is delivered to H1 at some

point. When any other query uses ID, A2 will query H1(ID) in advance. C responds to A2 according
to the following procedure:

(1) H1-Queries: π indexes these queries, and it is originally set to 1. After receiving a query with
IDπ , C gives Lπ and π to A2. Meanwhile, (IDπ , Lπ) is appended to LH1

.

(2) H2-Queries: After receiving a query with (Mi, ki), C judges whether (Mi, ki) exists in LH2
. If so,

C delivers h2i to A2. Otherwise, C selects h2i at random in Z∗
p and sends it to A2. In addition,

C get h3i = H (k1i) and h4i = H (k2i) by simulating the random oracle, where k1i · k2i = ki.
Finally, C calculates δi = k1i · e(P, P)h2i and adds (Mi, ki, k1i, k2i, δi, h2i) into LH2

.

(3) H3-Queries: After receiving a query with k1i, C judges whether k1i exists in LH3
. If so, C delivers

h3i to A2. Otherwise, C selects h3i at random in Z∗
p and sends it to A2. Meanwhile, (k1i, h3i) is

appended to LH3
.

(4) H4-Queries: After receiving a query with k2i, C judges whether k2i exists in LH4
. If so, C delivers

h4i to A2. Otherwise, C selects h4i at random in Z∗
p and sends it to A2. Meanwhile, (k2i, h4i) is

appended to LH4
.

(5) Key Generation Queries: After receiving a query with IDπ , C searches the LH1
list. If π = θ ,

C aborts. Otherwise, C knows H1 (IDπ) = Lπ and delivers SKr1
= [1/(Lπ + s1)]P, SKr2

=
[1/(Lπ + s2)]P to A2.

(6) Trapdoor Queries: After receiving this query, judge whether π is equal to θ . If so, C aborts.
Otherwise, C returns SKr2

= [1/(Lπ + s2)]P to A2.

CMES, 2023, vol.137, no.1 567

(7) Aggregate Queries: After receiving a query with {σi = (α1i, α2i, α3i, α4i, α5i)}n
i=1, C simulates ran-

dom oracle to obtain ε[0] = ∑n

i=1α5i and ε[j] = ∑ω

i=1α5i for 1 ≤ j ≤ r on the basis of Aggregate
step, and return ϕ = (α11, . . . , α1n, α21, . . . , α2n, α31, . . . , α3n, α41, . . . , α4n, ε[0], ε[1], . . . , ε[r]).

(8) Unaggregate Queries: When receiving the query with ϕ = (α11, . . . , α1n, α21, . . . , α2n, α31, . . . , α3n,
α41, . . . , α4n, ε[0], ε[1], . . . , ε[r]) and IDi of a receiver, C judges whether i equals θ .
If not, C returns {Mi}n

i=1 based on Unaggregate. Otherwise, Eq. (11) holds.

log∑n
i=1SK∗

si

(
ε [0] −

n∑
i=1

h2i · SK#
si

)
= log(LiP+P1)

n∑
i=1

α3i (11)

where h2,i = H2 (Mi, k1i · k2i). Then, C calculates δ = e(ε[0], LiP + P1) and searches LH2
. If not

found, ϕ is rejected. Otherwise, C checks Eq. (12).

e(
∑n

i=1α3i,
∑n

i=1SK#
si
)

e(LiP + P1, ε[0])
= e

(
LiP + P1,

n∑
i=1

h2i · SK#
si

)
(12)

If it holds, return {Mi}n
i=1; else, for 1 ≤ j ≤ r, C verifies Eq. (13).

e(
∑ω

i=1α3i,
∑ω

i=1SK#
si
)

e(LiP + P1, ε[j])
= e

(
LiP + P1,

ω∑
i=1

h2i · SK#
si

)
(13)

And return the valid set to A2.

Challenge: After receiving a receiver’s ID#, the meaasges M#
1 , {Mi}n

i=2 ∈ {0, 1}∗, C performs the
algorithm in the following step:

(1) If IDi �= ID#, C will abort.

(2) Otherwise, C respectively selects b and μ in {0, 1}∗ and Z∗
p at random. ϕ# = (α11, . . . , α1n, α21, . . . ,

α2n, α31, . . . , α3n, α41, . . . , α4n, ε[0], ε[1], . . . , ε[r]) is the ciphertext to be challenged. α1i, α2i ∈
{0, 1}∗, α3i = −μP, α4i ∈ G1, where 1 ≤ i ≤ n. And ε[j] ∈ G1, where 1 ≤ j ≤ r. And give
σ # to A2. Let κ = μ/a and s1 = −a − Lθ , so that for 1 ≤ i ≤ n, we have Eq. (14).

α3i = −μP = −κaP = (Lθ + s1)κP = κLθP + κP1 (14)

Phase II: A2 is permitted for additional queries in Phase I. And the restriction is that the secret
key of ID# and the plaintext of ϕ# can not be queried during this process.

Guess: A2 exports its own guess M ′
1 ∈ M#

1 . C randomly chooses a set (Mi, ki, k1i, k2i, δi, h2i) or
(k1i, h3i) from LH2

list or LH3
list and gets f (y) = ∑ρ−1

i=0 ciyi which is a polynomial in P = f (a) P̂. Then

outputs k1i = e (P, P)
κ = e

(
P̂, P̂

)f (a)2μ/a

. If δ# = e
(

P̂, P̂
)1/a

, the BDHIP can be derived via Eq. (15).

e (P, P)
1/a = δ#c0

2
e

(
ρ−2∑
t=0

ct+1

(
atP̂

)
, c0P̂

)
e

(
P,

ρ−2∑
t=0

ct+1

(
atP̂

))
(15)

Theorem 3: Suppose that CDHIA holds. Our scheme HFTAS-ET is secure against EUF-CMA.

Proof. Suppose there is a challenger C that can solve the CDHIP problem and whose advantage is
at least ε. The goal of C is to compute (1/a)P, where a ∈ Z∗

p by knowing a instance (P, aP) of CDHIP.
Suppose A3 can successfully break the HFTAS-ET scheme. A game was placed between challenger C
and adversary A3. The details of the operation are as given below:

568 CMES, 2023, vol.137, no.1

Setup: C obtains system parameters and MSK by performing the Setup and then sends the
corresponding results to A3. In addition, C transmits the sender’s public key PK#

s = aiP to A3. C
simulates the original empty H1, H2, H3 and H4 oracles by preserving every list of LH1

, LH2
, LH3

, and
LH4

.

Queries: C responds to A3 according to the following procedure:

(1) H1-Queries: After receiving a query with IDi, C judges whether IDi exists in LH1
. If not, C

selects h1i in Z∗
p at random and sends it to A3. Otherwise, C delivers h1i to A3 directly. Meanwhile,

(IDi, h1i) is appended to LH1
.

(2) H2-Queries: After receiving a query with (Mi, ki), C judges whether (Mi, ki) exists in LH2
. If

not, C selects h2i in Z∗
p at random and sends it to A3. Otherwise, C delivers h2i to A3 directly.

Meanwhile, ((Mi, ki), h2i) is appended to LH2
.

(3) H3-Queries: After receiving a query with k1i, C judges whether k1i exists in LH3
. If not, C selects

h3i in Z∗
p at random and sends it to A3. Otherwise, C delivers h3i to A3 directly. Meanwhile,

(k1i, h3i) is appended to LH3
.

(4) H4-Queries: After receiving a query with k2i, C judges whether k2i exists in LH4
. If not, C selects

h4i in Z∗
p at random and sends it to A3. Otherwise, C delivers h4i to A3 directly. Meanwhile,

(k2i, h4i) is appended to LH4
.

(5) Key Generation Queries: After receiving a query with IDπ , C searches the LH1
list. If π = θ ,

C aborts. Otherwise, C knows H1 (IDπ) = Lπ and delivers SKr1
= [1/(Lπ + s1)]P, SKr2

=
[1/ (Lπ + s2)] P to A3.

(6) Signcryption Queries: After receiving a query with the IDi of a receiver and M, C performs
algorithm in the following step:
(a) Randomly pick u2, μ, δ ∈ Z∗

p .

(b) Calculate α2 = (u2 · H1(M)) ⊕ H4(k2i), α5 = μSKr1i
, α3 = μPK#

s − δ(H1(IDi)P + P1),
α4 = u2(H1(IDi)P + P2), k1i = e(α3, SKr1i

), k2i = e(α3, SKr2i
).

(c) Patch the hash value H2 (k1i · k2i) to δ. C fails if H2 is defined.

(d) Calculate α1 = (M||u2) ⊕ H3(k1i)

C returns σ = (α1, α2, α3, α4, α5) to A3.

Forgery: According to forking lemma, A3 can develop a new algorithm A
′

3 during the execution.
A3 and A

′
3 can export two signatures (M, δ, α5i) and (M, δ′, α′

5i), where δ �= δ′ and k1i are the same
for both results. After that, C can calculate the answer of the CDHIP problem, (1/a)P = (δi − δ

′
i)

−1

(α5i − α
′
5i).

6 Performance Evaluation

In this section, we make a comparison of our scheme and several existing schemes with respect to
function comparison, communication and computation overhead.

6.1 Features
In Table 1, we list the functionalities of our scheme compared with the previous similar schemes.

From this table, it illustrates that only scheme [40] and our scheme can support heterogeneous
signcryption network and have a function of equality test. Among the schemes [14–16,28] that support
aggregate signature, only our scheme can support both fault-tolerant aggregation and aggregate
signcryption. Compared with the scheme [28] that supports fault-tolerant aggregate signature, our

CMES, 2023, vol.137, no.1 569

scheme is an unbounded fault-tolerant aggregate signcryption scheme, which improves efficiency. In
addition, our scheme supports one verification pass when all signcryptions are valid, which further
improves efficiency.

Table 1: Comparison of functionality

Scheme PFCBAS
[14]

CL-DVAAS
[15]

eCLAS
[16]

SECLS
[27]

CLFTAS
[28]

HSC-ET
[40]

Ours

Heterogeneous × × × × × √ √
Equality test × × × × × √ √
Signcrypt × × × × × √ √
Aggregation

√ √ √ × √ × √
Fault-tolerant × × × √ √ × √
Unbounded × × × × × × √
OVS 1 × × × × × × √
Note: OVS: One verification pass.

6.2 Communication Overhead and Computation Cost
To easily evaluate and analyze the efficiency of our scheme and existing schemes, we use JPBC

library to run the experiment on a machine with Windows 10 operating system and Intel Core i7-
11700 CPU at 2.50 GHz.

The experimental scheme consists of pairing-based schemes and ECC-based schemes, therefore
it is necessary to ensure the same security level. Therefore, two groups are selected, respectively. One
is a bilinear pairing e : G × G → GT , where G has order q on a supersingular curve E : y2 = x3 +
ax + b mod p and p is a 512-bit prime number. The other is an additive group G′ of order q′ covering
a supersingular elliptic curve E/Fp : y2 = x3 + x mod p′, where p, q are two 160-bit prime numbers of
160.

Relevant symbols in this paper are implied in Table 2.

Table 2: The list of notations and descriptions

Symbol Meaning

|G| The size of group G
|Zp| The size of group Zp

Tsm−ecc The operation of scale multiplication based on elliptic curve
Tpa−ecc The operation of point addition based on elliptic curves
Tp The operation of pairing
Tsm The operation of scale multiplication on the basis of bilinear pairing
Tpa The operation of point addition on the basis of bilinear pairing
Th The operation of hash function
Te The operation of exponentiation in G
Tmi A modular inverse in Zp

Tmm A modular multiplication in Zp

570 CMES, 2023, vol.137, no.1

We contrast our scheme and the previous similar schemes in terms of communication overhead.
As shown in Table 3, there is not much difference among these schemes. However, the size of aggregate
signcryption of our scheme is significantly less than those of schemes [14–16], while almost the same
to scheme [28]. And since our scheme is unbounded aggregation of signcryptions, the small gap is
tolerable. Overall, our scheme performs better in terms of communication overhead.

Table 3: Communication overhead comparison

Scheme The length of
secret key

The length of
public key

Single signature Aggregate
signature

PFCBAS [14] |Zp| |G| 2|G| + 4|Zp| 2n|G| + 4|Zp|
CL-DVAAS [15] |G| 2|G| |G| + 2|Zp| (n + 1)|G| + n|Zp|
eCLAS [16] |Zp| |G| |G| + 2|Zp| n|G| + 2|Zp|
SECLS [27] 2|Zp| 2|G| |G| + |Zp| –
CLFTAS [28] |Zp| |G| |G| + 4|Zp| log2 n(|G| + 4|Zp|)
HSC-ET [40] |G| |G| 2|G| –
Ours |G| |G| 2|G| 2 log2 n|G|

Table 4 displays a detailed comparison of computation overhead for each phase. Moreover, we
perform a detailed comparison experiment as detailed below.

Table 4: Communication overhead comparison

Scheme Message signature Signature aggregate Aggregate verification

PFCBAS [14] Tsm−ecc (n − 1)Tpa−ecc (2n + 2)Tsm−ecc

CL-DVAAS [15] 3Tsm−ecc + 2Tpa−ecc + 2Th (n + 3)Tsm−ecc (3n + 1)Tsm−ecc

eCLAS [16] Tsm−ecc + Th nTpa−ecc (n+1)Tsm−ecc +(2n−1)Tpa−ecc +nTh

SECLS [27] Tsm−ecc + Tmi + 2Tmm +
Tpa−ecc

– (3n + 1)Tsm−ecc + nTmm + 2nTh +
2nTpa−ecc

CLFTAS [28] 2Tsm−ecc + 2Th + 2Tpa−ecc 2nTpa−ecc log2 n(4Tsm−ecc + 5nTpa−ecc)

HSC-ET [40] 2Te + 2Th – –
Ours 2Te + 2Th nTpa (2n + 2)Tp + 3nTh + Te

Fig. 2 shows that time consumption of encryption/signcryption of existing schemes [14–
16,27,28,40] and our scheme. Our scheme’s signcryption time consumption is slightly higher than
that of scheme [14,16], but obviously much lower than that of [15,27,28]. And scheme [14,16] does not
need to consider the impact of signcryption stage on fault-tolerant performance in the signature stage,
so our scheme has a better signcryption efficiency.

Fig. 3 below shows that time consumption of signatures/signcryptions aggregation in existing
schemes [14–16,28] and our scheme. At this stage, our scheme’s time consumption is similar to that
of [14–16]. In addition, only the scheme [28] and our scheme are fault-tolerant aggregate signature
schemes, while the aggregation time of our scheme is far less than the scheme [28].

CMES, 2023, vol.137, no.1 571

Figure 2: Comparison of encryption (signcryption) cost

Figure 3: Comparison of signatures (signcryptions) aggregation cost

Fig. 4 below shows that the average time consumption of aggregate signature/signcryption veri-
fication in the existing scheme [14–16,28] and our scheme. Our scheme maintains log n ratio with the
number of signatures. Although our scheme has a little more time consumption when there are few
signatures, it will be smaller than other existing schemes when the number of signatures increases.

572 CMES, 2023, vol.137, no.1

Figure 4: Comparison of aggregate signature (signcryption) verification cost

Finally, we experiment on identifying invalid signatures/signcryptions, as shown in Fig. 5. We
assume that signatures/signcryptions n = 100 has an invalid signature/signcryption. In addition, we
use binary search method to identify invalid signatures for the scheme [16]. Our scheme supports
the identifying of invalid signcryptions information and fault-tolerance, while the scheme [16] only
verify the existence of invalid signatures, but cannot tolerate invalid signatures. Therefore, our scheme
sacrifices a little verification efficiency, the time consumption of the scheme [16] is less than ours in
the best case. But in the worst case, our scheme has less time consumption than the scheme [16].

Figure 5: Comparison of identifying invalid signatures (signcryptions)

CMES, 2023, vol.137, no.1 573

According to the analysis above, it is clear that our scheme has good performance in message signa-
ture/signcryption, aggregate signature/signcryption, aggregate signature/signcryption verification and
invalid signature/signcryption identification.

7 Conclusion

In this paper, we give a heterogeneous fault-tolerant aggregate signcryption scheme with equality
test, and apply it to the VSN. The scheme adds an unbounded-fault-tolerant function on the basis
of aggregate signcryption, which not only strengthens the data confidentiality, but also improves the
signcryption verification efficiency. At the same time, the equality test can control data access and
ensure the confidentiality of data. In addition, we give a security model of the scheme and prove its
security. Finally, experimental operation and performance evaluation show that the scheme has better
performance.

Funding Statement: This work was supported in part by the Open Fund of Advanced Cryptography
and System Security Key Laboratory of Sichuan Province under Grant SKLACSS-202102, in part by
the Intelligent Terminal Key Laboratory of Sichuan Province under Grant SCITLAB-1019.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Asghari, P., Rahmani, A. M., Javadi, H. H. S. (2019). Internet of Things applications: A systematic review.

Computer Networks, 148, 241–261. https://doi.org/10.1016/j.comnet.2018.12.008
2. Esposito, C., Castiglione, A., Martini, B., Choo, K. K. R. (2016). Cloud manufacturing: Security, privacy,

and forensic concerns. IEEE Cloud Computing, 3(4), 16–22. https://doi.org/10.1109/MCC.2016.79
3. Diffie, W. (1976). New direction in cryptography. IEEE Transactions on Information Theory, 22, 472–492.
4. Thompson, M. R., Essiari, A., Mudumbai, S. (2003). Certificate-based authorization policy in a PKI envi-

ronment. ACM Transactions on Information and System Security (TISSEC), 6(4), 566–588. https://doi.org/
10.1145/950191.950196

5. Shamir, A. (1984). Identity-based cryptosystems and signature schemes. Workshop on the Theory and
Application of Cryptographic Techniques, pp. 47–53. Springer, Berlin, Heidelberg.

6. Hess, F. (2002). Efficient identity based signature schemes based on pairings. International Workshop on
Selected Areas in Cryptography, pp. 310–324. ST Johns, Canada.

7. Paterson, K. G., Schuldt, J. C. N., Paterson, K. G., Schuldt, J. C. N., Batten, L. M. et al. (2006). Efficient
identity-based signatures secure in the standard model. 11th Australasian Conference on Information Security
and Privacy, vol. 4058, pp. 207–222. Melbourne, Australia.

8. Al-Riyami, S. S., Paterson, K. G. (2003). Certificateless public key cryptography. International Conference
on the Theory and Application of Cryptology and Information Security, pp. 452–473. Taipei, Taiwan.

9. Huang, X., Susilo, W., Mu, Y., Zhang, F. (2005). On the security of certificateless signature schemes from
Asiacrypt 2003. International Conference on Cryptology and Network Security, pp. 13–25. Berlin, Germany.

10. Harn, L., Ren, J., Lin, C. (2009). Design of DL-based certificateless digital signatures. Journal of Systems
and Software, 82(5), 789–793. https://doi.org/10.1016/j.jss.2008.11.844

11. Boneh, D., Gentry, C., Lynn, B., Shacham, H. (2003). Aggregate and verifiably encrypted signatures from
bilinear maps. International Conference on the Theory and Applications of Cryptographic Techniques, pp.
416–432. Warsaw, Poland.

https://doi.org/10.1016/j.comnet.2018.12.008
https://doi.org/10.1109/MCC.2016.79
https://doi.org/10.1145/950191.950196
https://doi.org/10.1016/j.jss.2008.11.844

574 CMES, 2023, vol.137, no.1

12. Cheon, J. H., Kim, Y., Yoon, H. J. (2004). A new ID-based signature with batch verification. Cryptology
ePrint Archive.

13. Gong, Z., Long, Y., Hong, X., Chen, K. (2007). Two certificateless aggregate signatures from bilinear
maps. Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed Computing (SNPD 2007), vol. 3, pp. 188–193. Qungdao, China.

14. Verma, G. K., Singh, B., Kumar, N., Kaiwartya, O., Obaidat, M. S. (2019). Pfcbas: Pairing free and provable
certificate-based aggregate signature scheme for the e-healthcare monitoring system. IEEE Systems Journal,
14(2), 1704–1715. https://doi.org/10.1109/JSYST.4267003

15. Deng, L., Yang, Y., Gao, R. (2021). Certificateless designated verifier anonymous aggregate signature
scheme for healthcare wireless sensor networks. IEEE Internet of Things Journal, 8(11), 8897–8909.
https://doi.org/10.1109/JIOT.2021.3056097

16. Han, Y., Song, W., Zhou, Z., Wang, H., Yuan, B. (2022). eCLAS: An efficient pairing-free certificate-
less aggregate signature for secure VANET communication. IEEE Systems Journal, 16(1), 1637–1648.
https://doi.org/10.1109/JSYST.2021.3116029

17. Selvi, S., Vivek, S. S., Shriram, J., Kalaivani, S., Rangan, C. P. (2009). Identity based aggregate signcryption
schemes. International Conference on Cryptology in India, pp. 378–397. New Delhi, India.

18. Wang, H., Liu, Z., Liu, Z., Wong, D. S. (2016). Identity-based aggregate signcryption in the standard
model from multilinear maps. Frontiers of Computer Science, 10(4), 741–754. https://doi.org/10.1007/
s11704-015-5138-2

19. Yiliang, H., Fei, C. (2015). The multilinear maps based certificateless aggregate signcryption scheme. 2015
International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, pp. 92–99.
Shanghai, China.

20. Eslami, Z., Pakniat, N. (2014). Certificateless aggregate signcryption: Security model and a concrete
construction secure in the random oracle model. Journal of King Saud University-Computer and Information
Sciences, 26(3), 276–286. https://doi.org/10.1016/j.jksuci.2014.03.006

21. Chen, J., Ren, X. (2016). A privacy protection scheme based on certificateless aggregate signcryption and
masking random number in smart grid. International Conference on Mechanical Materials and Manufactur-
ing Engineering, pp. 10–13. Wuhan, China.

22. Lu, H., Xie, Q. (2011). An efficient certificateless aggregate signcryption scheme from pairings. 2011
International Conference on Electronics, Communications and Control (ICECC), pp. 132–135. Ningbo,
China.

23. Ren, X. Y., Qi, Z. H., Geng, Y. (2012). Provably secure aggregate signcryption scheme. ETRI Journal, 34(3),
421–428. https://doi.org/10.4218/etrij.12.0111.0215

24. Kim, T. H., Kumar, G., Saha, R., Alazab, M., Buchanan, W. J. et al. (2020). CASCF: Certificateless
aggregated signcryption framework for internet-of-things infrastructure. IEEE Access, 8, 94748–94756.
https://doi.org/10.1109/Access.6287639

25. Hartung, G., Kaidel, B., Koch, A., Koch, J., Rupp, A. et al. (2016). Fault-tolerant aggregate signatures. 19th
IACR International Conference on the Theory and Practice of Public-Key Cryptography (PKC), vol. 9614,
pp. 331–356. Taipei, Taiwan. https://doi.org/10.1007/978-3-662-49384-7_13

26. Wang, G., Cao, Z., Dong, X., Liu, J. (2019). Improved fault-tolerant aggregate signatures. The Computer
Journal, 62(4), 481–489. https://doi.org/10.1093/comjnl/bxy108

27. Xiong, H., Wu, Y., Su, C., Yeh, K. -H. (2020). A secure and efficient certificateless batch verification
scheme with invalid signature identification for the internet of things. Journal of Information Security and
Applications, 53, 102507. https://doi.org/10.1016/j.jisa.2020.102507

28. Zhao, Y., Dan, G., Ruan, A., Huang, J., Xiong, H. (2021). A certificateless and privacy-preserving
authentication with fault-tolerance for vehicular sensor networks. 2021 IEEE Conference on Dependable
and Secure Computing (DSC), pp. 1–7. Aizuwakamatsu, Japan.

https://doi.org/10.1109/JSYST.4267003
https://doi.org/10.1109/JIOT.2021.3056097
https://doi.org/10.1109/JSYST.2021.3116029
https://doi.org/10.1007/s11704-015-5138-2
https://doi.org/10.1016/j.jksuci.2014.03.006
https://doi.org/10.4218/etrij.12.0111.0215
https://doi.org/10.1109/Access.6287639
https://doi.org/10.1007/978-3-662-49384-7_13
https://doi.org/10.1093/comjnl/bxy108
https://doi.org/10.1016/j.jisa.2020.102507

CMES, 2023, vol.137, no.1 575

29. Xiong, H., Jin, C., Alazab, M., Yeh, K. H., Wang, H. et al. (2022). On the design of blockchain-based ecdsa
with fault-tolerant batch verification protocol for blockchain-enabled iomt. IEEE Journal of Biomedical and
Health Informatics, 26(5), 1977–1986. https://doi.org/10.1109/JBHI.2021.3112693

30. Boneh, D., Crescenzo, G. D., Ostrovsky, R., Persiano, G. (2004). Public key encryption with keyword
search. International Conference on the Theory and Applications of Cryptographic Techniques, pp. 506–522.
Interlaken, Switzerland.

31. Xiong, H., Yang, M., Yao, T., Chen, J., Kumari, S. (2021). Efficient unbounded fully attribute
hiding inner product encryption in cloud-aided wbans. IEEE Systems Journal, 16(4), 5424–5432.
https://doi.org/10.1109/JSYST.2021.3125455

32. Huang, X., Xiong, H., Chen, J., Yang, M. (2021). Efficient revocable storage attribute-based encryption with
arithmetic span programs in cloud-assisted Internet of Things. IEEE Transactions on Cloud Computing, 1.
https://doi.org/10.1109/TCC.2021.3131686

33. Chen, C. M., Tie, Z., Wang, E. K., Khan, M. K., Kumar, S. et al. (2021). Verifiable dynamic ranked search
with forward privacy over encrypted cloud data. Peer-to-Peer Networking and Applications, 14(5), 2977–
2991. https://doi.org/10.1007/s12083-021-01132-3

34. Xiong, H., Chen, J., Mei, Q., Zhao, Y. (2022). Conditional privacy-preserving authentication protocol with
dynamic membership updating for vanets. IEEE Transactions on Dependable and Secure Computing, 19(3),
2089–2104. https://doi.org/10.1109/TDSC.2020.3047872

35. Mei, Q., Xiong, H., Chen, Y. C., Chen, C. M. (2022). Blockchain-enabled privacy-preserving authentication
mechanism for transportation cps with cloud-edge computing. IEEE Transactions on Engineering Manage-
ment, 1–12. https://doi.org/10.1109/TEM.2022.3159311

36. Yang, G., Tan, C. H., Huang, Q., Wong, D. S. (2010). Probabilistic public key encryption with equality test.
Cryptographers’ Track at the RSA Conference, pp. 119–131. San Francisco, CA.

37. Lee, H. T., Ling, S., Seo, J. H., Wang, H. (2016). Semi-generic construction of public key
encryption and identity-based encryption with equality test. Information Sciences, 373, 419–440.
https://doi.org/10.1016/j.ins.2016.09.013

38. Wu, T., Ma, S., Mu, Y., Zeng, S. (2017). Id-based encryption with equality test against insider attack.
Australasian Conference on Information Security and Privacy, pp. 168–183. Auckland, New zealand.

39. Qu, H., Yan, Z., Lin, X. J., Zhang, Q., Sun, L. (2018). Certificateless public key encryption with equality
test. Information Sciences, 462, 76–92. https://doi.org/10.1016/j.ins.2018.06.025

40. Xiong, H., Zhao, Y., Hou, Y., Huang, X., Jin, C. et al. (2020). Heterogeneous signcryption with equal-
ity test for IIoT environment. IEEE Internet of Things Journal, 8(21), 16142–16152. https://doi.org/
10.1109/JIOT.2020.3008955

41. Xiong, H., Hou, Y., Huang, X., Zhao, Y., Chen, C. M. (2022). Heterogeneous signcryption scheme
from IBC to PKI with equality test for wbans. IEEE Systems Journal, 16(2), 2391–2400. https://doi.org/
10.1109/JSYST.2020.3048972

42. Xiong, H., Zhou, Z. D., Wang, L. L., Zhao, Z. T., Huang, X. et al. (2022). An anonymous authentication
protocol with delegation and revocation for content delivery networks. IEEE Systems Journal, 16(3), 4118–
4129. https://doi.org/10.1109/JSYST.2021.3113728

43. Wu, T. Y., Wang, T., Lee, Y. Q., Zheng, W., Kumari, S. et al. (2021). Improved authenticated key
agreement scheme for fog-driven iot healthcare system. Security and Communication Networks, 2021.
https://doi.org/10.1155/2021/6658041

https://doi.org/10.1109/JBHI.2021.3112693
https://doi.org/10.1109/JSYST.2021.3125455
https://doi.org/10.1109/TCC.2021.3131686
https://doi.org/10.1007/s12083-021-01132-3
https://doi.org/10.1109/TDSC.2020.3047872
https://doi.org/10.1109/TEM.2022.3159311
https://doi.org/10.1016/j.ins.2016.09.013
https://doi.org/10.1016/j.ins.2018.06.025
https://doi.org/10.1109/JIOT.2020.3008955
https://doi.org/10.1109/JSYST.2020.3048972
https://doi.org/10.1109/JSYST.2021.3113728
https://doi.org/10.1155/2021/6658041

	Heterogeneous Fault-Tolerant Aggregate Signcryption with Equality Test for Vehicular Sensor Networks
	1 Introduction
	2 Preliminaries
	3 System Model
	4 Construction
	5 Security Analysis
	6 Performance Evaluation
	7 Conclusion
	References

