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ABSTRACT

Deep Convolution Neural Networks (DCNNs) can capture discriminative features from large datasets. However,
how to incrementally learn new samples without forgetting old ones and recognize novel classes that arise in
the dynamically changing world, e.g., classifying newly discovered fish species, remains an open problem. We
address an even more challenging and realistic setting of this problem where new class samples are insufficient,
i.e., Few-Shot Class-Incremental Learning (FSCIL). Current FSCIL methods augment the training data to alleviate
the overfitting of novel classes. By contrast, we propose Filter Bank Networks (FBNs) that augment the learnable
filters to capture fine-detailed features for adapting to future new classes. In the forward pass, FBNs augment
each convolutional filter to a virtual filter bank containing the canonical one, i.e., itself, and multiple transformed
versions. During back-propagation, FBNs explicitly stimulate fine-detailed features to emerge and collectively align
all gradients of each filter bank to learn the canonical one. FBNs capture pattern variants that do not yet exist in the
pretraining session, thus making it easy to incorporate new classes in the incremental learning phase. Moreover,
FBNs introduce model-level prior knowledge to efficiently utilize the limited few-shot data. Extensive experiments
on MNIST, CIFAR100, CUB200, and Mini-ImageNet datasets show that FBNs consistently outperform the baseline
by a significant margin, reporting new state-of-the-art FSCIL results. In addition, we contribute a challenging FSCIL
benchmark, Fishshot1K, which contains 8261 underwater images covering 1000 ocean fish species. The code is
included in the supplementary materials.
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1 Introduction

The enormous success of Deep Convolution Neural Networks (DCNNs) [1–3] in computer
vision tasks is built upon the collection of large-scale datasets [4,5]. However, with new samples and
novel classes emerging, sequential data collection is required for many tasks, e.g., classifying newly
discovered fish species in the ocean. Towards lifelong learning ability like humans, deep learning
models need to acquire the ability to incorporate new class knowledge incrementally, i.e., Class-
Incremental Learning (CIL) [6–12].

Current CIL methods mainly focus on the setting where novel classes arise with sufficient training
samples. However, the cost of collecting and labeling new samples is considerably high, and it can be
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impossible to gather enough new class data in real-world applications. For example, collecting photos
of rare fish species in the ocean could take years. Therefore, designing effective deep learning models to
incorporate knowledge from limited data and recognize novel classes sequentially, i.e., Few-Shot Class-
Incremental Learning (FSCIL), has recently drawn the attention of the deep learning community [13–
15]. The FSCIL models are first pretrained with some base classes with sufficient data. Then the model
is updated in multiple incremental learning sessions where only a few samples of novel classes, e.g., 1-
shot or 5-shots, are provided in each session. The metric of classification accuracy on all seen classes
is used to evaluate the model performance of each session.

Why the naive fine-tuning of the model with new samples will not work is twofold. First, the over-
parameterized deep learning models tend to overfit the biased distribution of limited few-shot training
samples, resulting in poor performance of the new classes. Second, the incremental tuning damages
the learned filters of the model, causing the drastic decline of old classes’ classification accuracy,
namely the catastrophic forgetting problem. Current few-shot learning methods augment the data of
new classes through distribution sampling, e.g., FreeLunch [16], to alleviate the overfitting problem.
And to resist the forgetting issue, current approaches mainly concentrate on improving the backward
compatibility, which restricts the model parameters from updating in the incremental learning sessions
[10–12,17–21]. Despite substantial progress, the problem of addressing the overfitting and forgetting
issues in a uniform framework remains open.

In this work, we argue that solving Few-Shot Class-Incremental Learning requires endowing
models with the ability to foresee the upcoming new classes and capture the variants of discriminative
semantic patterns that do not yet exist in the limited training data. Take an example from software
engineering. If the early version is poorly designed, it usually takes significantly more work to improve
the later versions without breaking backward compatibility. On the contrary, a proper design of the
early version, which foresees the upcoming features and reserves interfaces, can make it considerably
easier to maintain and upgrade the software. Consequently, we concentrate on models’ forward
compatibility by improving the most fundamental element of Deep Convolution Neural Networks,
i.e., convolutional filters.

We propose Filter Bank Networks (FBNs), Fig. 1, a simple yet effective deep learning framework
to tackle Few-Shot Class-Incremental Learning (FSCIL). FBNs are built upon the commonly used
Deep Convolution Neural Networks (DCNNs) and support modern model architectures, e.g., VGG,
Inception, and ResNet. In the forward pass, FBNs augment each convolutional filter to a virtual filter
bank containing the canonical one, i.e., itself, and multiple transformed versions, e.g., rotation, flip,
or scaling. In the back-propagation, FBNs collectively gather and align gradients of all transformed
versions in the filter bank to learn the canonical filter. During incremental learning, FBNs explicitly
stimulate fine-detailed features to emerge through mining the instance-aware discriminations.

While conventional models only capture existing patterns in the dataset, FBNs learn semantic
patterns that do not yet exist in the pertaining session, thus reserving the feature space for future
new classes. During the incremental sessions, FBNs do not need to squeeze former classes’ space, thus
alleviating the catastrophic forgetting issue. Note that FBNs augment filters to virtual filter banks in all
convolution layers and can model the transformed variants of intermediate representation at different
semantic levels, e.g., bird head rotated to its body. Therefore, FBNs are more expressive than the
conventional DCNNs trained with image-level data augmentation. Whatsmore, the virtual filter bank
in FBNs aggregates gradients from all transformed versions in the dataset to update one canonical
filter, thus can utilize the limited few-shot data more efficiently. We conduct extensive experiments and
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ablation studies on commonly used FSCIL datasets and report new state-of-the-art results, validating
the effectiveness of FBNs. The contribution of this paper are summarized as follows:

• We propose Filter Bank Networks (FBNs) to improve the most fundamental element of
DCNNs, i.e., convolutional filters. FBNs endow DCNNs with the capability of capturing
variants of semantic patterns that do not yet exist in the training session, addressing catastrophic
forgetting and overfitting problems of Few-Shot Class-Incremental Learning (FSCIL).

• FBNs achieve new state-of-the-art performance on several commonly used FSCIL datasets,
including CIFAR100, CUB200, and Mini-ImageNet.

• We contribute a challenging FSCIL benchmark, i.e., Fishshot1K, which contains 8261 under-
water images covering 1000 ocean fish species.

Figure 1: We propose Filter Bank Networks(FBNs) that augment each filter in the Deep Convolution
Neural Networks to a virtual filter bank including itself and multiple transformed versions. The filter
bank aggregate and align gradients to learn variants of semantic patterns that do not yet exist in the
current training session, thus preserving feature space for adapting future novel classes in the Few-Shot
Class-Incremental Learning tasks

2 Related Works

Image Classification. Image Classification [1–3,22], i.e., assigning an input image one label from
a fixed set of semantic categories such as fish, cat, or airplane, is one of the fundamental problems
in the Computer Vision field. Despite its simplicity, it has a lot of practical applications, and many
other computer vision tasks, e.g., object detection [23,24] and scene segmentation [25,26], can be
simplified to image classification. Recognizing a visual concept in the image is relatively trivial for
a human to perform. However, it is considered challenging for Computer Vision algorithms due to
several affecting factors. First, an instance of an object can be oriented in many ways concerning the
camera, namely rotation variation. Second, visual concepts often vary in size, namely scale variation.
Next, many objects are not rigid bodies and can be deformed in extreme ways, e.g., a bird’s head can
significantly rotate relative to its body. Moreover, occlusion, illumination conditions, and background
clutter can substantially affect classification accuracy.

Handcrafted Features. Handcrafted image features have been extensively explored in the classical
image classification field, e.g., SIFT [27], LBP [28,29], and Gabor features [30,31], to address those
challenging variation issues in Image Classification, SIFT-like methods first detect stable feature key
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points that can be detected across scales. Image gray values of the local regions are then accumulated
to summarize local patterns and generate the feature descriptors. The dominant orientations are found
according to local gradient directions. With dominant orientation-based feature alignment, SIFT
achieves invariance to rotation and robustness to moderate scale transforms. LBP emanates an invari-
ant encoding operator against the monotonic transformation of the grayscale of local regions. LBP
minimizes the encoded value via the bit cyclic shift operator based on the gray values of a circularly
symmetric neighbor set of pixels in a local region. Other representative handcrafted descriptors include
CF-HOG [32], which uses orientation alignment, and RI-HOG [33], which leverages radial gradient
transform to be rotation invariant. Despite the progress made in handcrafted features, designing the
invariant feature descriptors for different data domains and types of pattern variants is tedious and
can not guarantee global optima.

Deep Convolutional Neural Networks (DCNNs). DCNNs can capture discriminative patterns from
datasets in a data-driven manner to learn features that can tolerate moderate transformations in
the image, such as scale changes and small rotations. DCNNs achieve those abilities through the
fundamental design of convolutional operations, redundant convolutional filters, and hierarchical
spatial pooling [34]. Modern architectures of DCNNs, e.g., VGG [1], Inception [2], and ResNet [3],
achieve great success in image classification. However, it can be seen in the first row of Fig. 2 that the
convolution filters in the DCNN can only learn patterns in the training data by rote. And they failed
to generally model the variants of semantic patterns. Thus, conventional DCNNs require large-scale
training datasets [4,5], which are often expensive to collect and label.

Figure 2: The first row shows the visualization of filters learned in a Deep Convolution Neural Network
(DCNN). Transformed variants of patterns are redundantly learned, indicating conventional DCNNs
lack the ability to generalize and require abundant data for training. The Class Activation Maps in
the second row show that Filter Bank Networks align and learn from all variants of semantic patterns,
thus capable of efficiently utilizing the limited few-shot data to update filters. Best viewed in color
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Few-Shot Learning (FSL). Few-shot learning focuses on training models to classify novel classes
with limited training samples. Conventional methods can be generally grouped into three types, i.e.,
Metric Learning, Meta-Learning, and Data Augmentation. Metric Learning methods [35–41] find a
proper latent embedding space where the feature distances between intra-class samples are significantly
smaller than inter-class samples. A typical two-branch network design is used to determine classes
of the test images by comparing the feature of few-shot training samples. Meta-Learning methods
[42–44] target optimizing the training process to achieve fast adaptation for new classes with limited
data. Data augmentation methods [16,45–47] utilize the hidden information of abundant data of base
classes to generate pseudo examples for novel classes via sampling techniques, aiming to rectify biased
distributions and alleviate the overfitting issue.

Class-Incremental Learning (CIL). With the emergence of new classes, many real-world applica-
tions require the capability to incrementally adapt to novel classes, e.g., classifying newly discovered
fish categories in the ocean. According to the availability of task IDs, incremental learning methods
can be broadly categorized as Task-Incremental or Class-Incremental Learning. CIL methods design
models to support learning from data sequence, i.e., incrementally recognizing novel semantics while
not forgetting old ones. There are rehearsal, regularization, or architecture configuration methods for
the Class-Incremental Learning tasks. Rehearsal methods [7–9,21,48–50] recall samples stored from
a previous session to prevent the catastrophic forgetting issue. Regularization methods [10–12,17–
21] introduce auxiliary training loss that utilizes prior knowledge or distillation to constrain network
parameters from significant changes. Architecture configuration methods restrictedly update parts of
network parameters by leveraging attention [51], pruning mechanisms [52], or dynamic expansion [6]
to ease model drift.

Few-Shot Class Incremental Learning (FSCIL). The setting of conventional class incremental
learning methods assumes sufficient training samples of the novel classes. However, the cost of collect-
ing and labeling new samples is considerably high in many real-world applications. Few-shot Class-
Incremental Learning amalgamates the challenges of catastrophic forgetting caused by incremental
learning and overfitting caused by biased and insufficient training samples. Tao et al. [13] implemented
a Neural Gas structure to address FSCIL by building and preserving feature topology. SKAD [14]
designs semantic-aware knowledge distillation [17] to consolidate the features learned from base
classes. Continually evolving prototypes [53,54] learn novel classes by optimizing classifier parameters
to adjust the decision boundary progressively. The mixture sub-space method [55] synthesizes new
samples of incremental classes in the latent embedding space via a variational auto-encoder.

The distribution calibration [16] method initiated the idea of solving the overfitting issue caused
by biased distributions. However, it is nontrivial to migrate and apply those to FSCIL due to the
enormous memory costs caused by sample storage. Despite substantial progress of FSCIL state-of-the-
arts, the problem of solving the forgetting and over-fitting issues in a uniform framework remains open.

Forward Compatible Learning. Compatibility is a core concept in the field of software engineering.
Backward Compatibility provides interoperability with an older legacy system, while Forward Com-
patibility allows a system to accept input intended for an updated later version of itself. The concept
of Compatibility has been introduced to FSCIL in recent works [15]. Conventional FSCIL methods
concentrate on improving models’ Backward Compatibility by preventing the model from significant
changes in the incremental sessions [11,12,17,18]. In contrast, we propose Filter Bank Networks, a
simple yet effective model to improve Forward Compatibility by reserving filters for unseen patterns
in future novel classes.
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Augmented Convolution Filter. Previous works have studied several ways of improving convolution
filters. Dilated convolution [56] insert holes between filters to enlarge the effective receptive field.
Oriented Response Networks [57] introduce active rotating filters to explicitly model orientation
information. Deformable convolution [58] designs learnable offsets to the sampling location of filters,
improving data-specific deformation tolerance. Despite the success, those methods aim at single
transformation, e.g., rotation, and require abundant data to learn auxiliary parameters, thus are
unsuitable for Few-Shot Class-Incremental Learning (FSCIL). We propose Filter Bank Networks
(FBNs), a uniform framework that supports arbitrary filter transformations, e.g., rotation, flip, or
scaling. FBNs introduce model-level prior knowledge to effectively and sequentially learn from limited
few-shot data.

Equivariant Feature Encoding. A number of previous works have addressed the problem of learning
or constructing equivariant representations. For instance, transforming autoencoders [59], equivariant
Boltzmann machines [60,61], and equivariant filtering [62]. The learned features of conventional
Convolutional Neural Networks (CNNs) are naturally equivariant to the translation of image patterns.
Nonetheless, CNNs are incapable of handling other transformations like rotations. Group equivariant
Convolutional Neural Network (G-CNN) [63] is a representative work that implements equivariant
feature encoding in the CNN. However, there are three distinct differences between G-CNNs and
our proposed Filter Bank Networks (FBNs). First of all, G-CNNs mainly consider translation, flip,
and 90 degrees rotation while FBNs use a set of transformation matrices to support more general
feature equivariance such as arbitrary angle rotation. Second, the filter transformation in G-CNNs is
implemented as an indices lookup procedure that can not support the change of spatial shape. FBNs
introduce a sampling technique to support mixing sizes of filters, e.g., scaling. Last but not least,
G-CNNs are evaluated on the regular classification task which assumes abundant training samples.
FBNs are designed for the more challenging Few-Shot Class-Incremental Learning benchmark where
overfitting and catastrophic forgetting issues can be caused by insufficient training samples.

3 Method

Filter Bank Networks (FBNs) are built upon Deep Convolution Neural Networks (DCNNs) via
augmenting convolution filters to virtual filter banks. Each filter bank contains the canonical filter
itself and transformed versions. Thus, a filter bank produces feature maps with additional channels
that capture the response of variants of the semantic pattern. Note that all transformed versions are
generated on-the-fly, and only one filter in the bank is materialized and learned from the aggregated
gradients of the entire filter bank. Model-level prior knowledge is introduced via the design of
transformations of the filter bank. Thus, FBNs learn unseen transformed intermediate representations
from limited pretraining data, preserving feature space for adopting future novel classes in incremental
learning sessions.

In what follows, we address the two problems in implementing FBNs for Few-Shot Class-
Incremental Learning (FSCIL). First, we describe the technique of convolution with filter banks. We
construct a sampling-based method to efficiently generate virtual filter banks in the forward pass. And
we reverse-sampling the gradients to align and aggregate error signals to update one canonical filter in
the backward pass. Next, we elaborate on the proposed FBN framework for FSCIL, Fig. 3. We jointly
train FBNs with both class- and instance-level losses to stimulate the fine-detailed features to emerge
for adapting future novel classes. Last but not least, we discuss the insight into the design of FBNs
from the perspective of inductive bias and equivariant representation.
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Figure 3: FBN framework

3.1 Convolution with Filter Banks
Filter Bank Generation. Filter Bank Networks are upgraded from conventional Deep Convolution

Neural Networks, e.g., ResNet [3]. Without loss of generality, each augmented filter F in FBNs has
the size of M × H × W , where M is the number of transformations P = {Pm}, 0 < m ≤ M, in the
previous layer’s filter banks. F transforms N −1 times during the convolution to produce feature maps
of N channels. It can be virtually seen as a filter bank of the size N ×M ×H ×W , where H ×W is the
spatial resolution of filters, e.g., 3 × 3 in VGG [1] and ResNet [3]. Only the F part is materialized and
learned, while the remaining N − 1 transformed versions are generated on the fly. The n−th version
in the filter bank, F n, n ∈ [1, N], is obtained by F and the n− th generic homogenous transformation
matrix Tn in a predefined set T = {Ti}, 0 < i ≤ N. Note that the first transformation matrix T 1 is the
identity matrix, i.e., F 1 = F . Note each convolutional layer has Coutput × Cinput FBN filters, where Coutput

and Cinput are the number of output and input convolution channels.

Each element of F and F n can be accessed with Fk,i,j and F n
k,i,j, where 0 < k ≤ N, 0 ≤ |i| ≤ H

2
, 0 ≤

|j| ≤ W
2

, k ∈ N, i, j ∈ R. And the transformed version F n can be derived from F through a two-step

technique. First, the base channel index o is found where Tn = Tk × Po. Next, the location of (p, q) in
F n is obtained from the location of (p′, q′) in F through bilinear sampling as
⎛
⎝

p′

q′

1

⎞
⎠ = Tn

⎛
⎝

p
q
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⎞
⎠ Tn =

⎛
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tn
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21 tn

22 tn
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0 0 1

⎞
⎟⎠ , p, q, p′, q′, tn ∈ R, (1)

F n
o,p,q = (1 − μ)(1 − ω)Fk,u,v + (1 − μ)ωFk,u,v+1 + μ(1 − ω)Fk,u+1,v + μωFk,u+1,v+1 (2)

where u = �p′�, v = �q′�, μ = p′ − u, ω = q′ − v. Zero padding is used when no base channel index
o can be found. Note that filters in different convolution layers are composited to form semantic
patterns at different scales, e.g., edges, object parts, and objects [64]. And the above procedure can
be interpreted as transforming the composited semantic patterns via changing coordinate systems of
corresponding filters in all layers based on T . The transformation matrix Ti can represent rotation
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⎛
⎝

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

⎞
⎠ , θ ∈ R, scaling

⎛
⎝

sx 0 0
0 sy 0
0 0 1

⎞
⎠ , sx, sy ∈ R, flip

⎛
⎝

h 0 0
0 v 0
0 0 1

⎞
⎠ , h, v ∈ {−1, 1},

translation

⎛
⎝

1 0 tx
0 1 ty
0 0 1

⎞
⎠ , tx, ty ∈ R, or their arbitrary composition. Note that the same predefined

T is used for all convolution layers and P = T except the first layer where Pfirst =
⎧⎨
⎩

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠

⎫⎬
⎭.

Transformations like scaling can alter the size of the filter. And the convolution of the mixing
size of filters is not computation-friendly for modern GPUs. Therefore, we implement the generic
form of convolution of filter banks based on a fixed-size sampling of input feature maps M. For each
convolution receptive field centering (ri, rj) of M, we rewrite Eq. (1) by adding (ri, rj) as the offset to
(p′, q′), and we rewrite Eq. (2) by replacing the source of bilinear sampling from the canonical filter
F to the feature maps M. The result is then multiplied with F and reshaped to the output feature
maps. The proposed approach can be efficiently implemented and accelerated with CUDA and the
computational complexity is invariant to the change of filter shape. Note when the transformed filter
sizes are consistent, the implementation can be simplified to first generate the filter bank with Eqs. (1)
and (2) then convolute it with M. In this way, the computational overhead is negligible.

Filter Bank Learning. The filter bank represents the semantic patterns of the canonical filter F and
its transformed variants F n. Only F is materialized and learned during training. We reverse-sample
the gradients of F n by (Tn)−1 to align and accumulate gradients of all transformed filter variants to
update F through SGD optimization. The learning of filter banks is end-to-end with the rest parts of
the model.

3.2 Few-Shot Class-Incremental Learning (FSCIL)
FSCIL contains a pretraining session and multiple incremental sessions. During the pretraining

session, FSCIL methods learn a representation model to recognize some base classes C(0) with abundant
samples. During the incremental sessions, the FSCIL methods generalize the developed model to
novel classes C(t), where t ∈ N+ is the session index, with only a few samples, e.g., 1-shot or 5-shots.
Incremental datasets are denoted as {D(t), t ∈ N+}, where D(t) is the samples of classes C(t) for the t-th
session. For t1 �= t2, we have C(t1) ∩ C(t2) = ∅. In the t-th session, only the training data from D(t) is
available, while all test data of seen classes {C(0), . . . ; , C(t)} is used for model evaluation. In other words,
novel classes shall be learned through limited few-shot data, while the old seen classes shall not be
forgotten.

It can be seen in Fig. 3 that the proposed Filter Bank Networks (FBN) framework for FSCIL
consists of two parts, i.e., a convolutional feature extractor based on FBNs and a classification head
that can adapt to the incremental classes. The whole model is jointly trained with multiple losses in an
end-to-end manner.

FBN Feature Extraction. To obtain a discriminative feature representation, a feature extractor is
developed by upgrading a conventional Deep Convolution Neural Network (DCNN), e.g., VGG [1]
or ResNet [3], to the Filter Bank Network via equipping all convolution layers with the Filter Banks.
Each filter bank contains the canonical filter itself and multiple transformed versions defined by a
predefined transformation matrix set T = {T1, T2, . . . ; , TN}, where N is the number of variants and T1

is identity matrix. The convolution output of each filter bank is a group of feature maps containing
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N channels which correspond to the spatial response of transformed variants of an intermediate
semantic pattern. Along with the convolution and pooling operation, the feature maps gradually
shrink and the output of the top convolution layer is spatially averaged to form the M-dimensional
feature representation R of the input image.

Through the multiple layers’ convolution, each dimension of R detects a discriminative pattern
in the image, such as the dog’s head or the wheel of the car [64]. Conventional DCNNs can only
detect patterns that exist in the training data. In contrast, the proposed FBN feature extractor captures
unseen pattern variants via the filter banks, alleviating the issue of overfitting and forgetting in the
classification phase.

Scalable Classification. The commonly used multi-layer perception (MLP) classifier can not be
used in the FSCIL tasks as the number of classes that needs to be recognized is incremental. Therefore,
we make classification scalable by allocating class prototypes P = {P1, P2, . . . ; , PK}, where K is the
number of seen classes and it is dynamically changed in the incremental sessions. Each class prototype
is a learnable M-dimentional tensor representing the class’s cluster center in the latent feature space.
We use random tensors to initial the class prototypes in the pretraining session and use the averaged
features of few-shot training samples to initial class prototypes in the incremental sessions. Given an
input image, we first extract its feature RI and compute the classification logits xk for the k-th seen
classes as

xk = E · CosineSimilarity(RI , Pk) = E · RI · Pk

max(‖ RI ‖ · ‖ Pk ‖, ε)
, (3)

where E is a temperature hyperparameter1 and ε = 1e−8 is to prevent division by zero. The class
prototypes are jointly learned with the filter banks during the model training.

Model Learning. To train the model parameters, we compute the loss between the predicted
classification logits Xc = {x1, . . . ; , xK} and the ground truth class index gc ∈ [1, K] as

Lc(Xc, gc) = −log(
exp(xgc)∑K

k=1 exp(xk)
), (4)

where c indicates classes. Minimizing the loss Lc(Xc, gc) drives the model to capture patterns for
recognizing classes, such as the wheel for cars or the wings for birds. However, previous research
has shown that DCNNs tend to learn the most discriminative patterns of each class while ignoring
detailed visual cues [65]. We design an auxiliary loss to stimulate fine-detailed patterns to emerge to
improve the learned filter banks further. We assign a different instance index gi to each training image
and follow Eq. (3) to compute the classification logits for each instance Xi where i indicates instances.
Then we follow Eq. (4) to minimize the instance-aware loss Li(Xi, gi) to guide the model to learn rich
filter banks for fine-detailed representations, thus improving the model’s generalization ability for the
Few-Shot Class-Incremental Learning. The overall model training is formulated as

arg min
θf , θc

Lc(Xc, gc) + γ Li(Xi, gi), (5)

where θf is the parameters of the FBN feature extractor, θc is the learnable class prototypes, and γ is a
balance factor which we use 0.1 in all experiments.

1 We use E = 16 in all FSCIL experiments.
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3.3 Discussion
Design choices in machine learning signify inductive biases. For example, the composition of layers

in Deep Convolution Neural Networks (DCNNs) provides a type of relational inductive bias, i.e.,
hierarchical processing. And the use of convolution in DCNNs introduces the inductive bias of spatial
translation. More generally, anything that imposes constraints on the learning trajectory introduces
inductive biases, e.g., dropout, data augmentation, batch normalization, and weight decay. Previous
studies have shown that implementing inductive biases to deep learning architectures can facilitate
model learning about entities, relations, and rules for composing them and thus improve performance
and generalization [66].

The conventional DCNNs leverage inductive biases introduced in convolution, hierarchical
structure, and local pooling to handle moderate transforms, i.e., spatial transitions, mild scale changes,
and small rotations. However, DCNNs lack the ability to handle significant and generic transforms;
thus, the most straightforward way to decrease loss is using the abundant filters to memorize the seen
patterns by rote. Transformed variants are often redundantly learned in low-level, middle-level, and
relatively high-level filters, Fig. 2. Consequently, the models tend to overfit the existing data and cannot
generalize to unseen variants, especially when the data is insufficient.

The proposed Filter Bank Networks approach provides a unified framework for implementing
inductive biases within the Deep Convolution Networks (DCNNs) while retaining end-to-end learning
capability. Fig. 4 shows the top layer convolutional features of a LeNet-like FBN model trained on
the MNIST dataset. It can be seen that the FBN features are intra-class equivariant while maintaining
inter-class discrimination. Specifically, the feature difference between the upright 9 and the upside-
down 6 is significant despite being visually similar. And the features of the upright 9 and the upside-
down 9 are equivariant. FBNs endow DCNNs with equivariant feature representations for generic
transformations, improving the essential capability for FSCIL, namely generalization.

Figure 4: Feature maps produced by filter banks learned from MNIST dataset. FBNs endow DCNNs
with equivariant features for transformations. Best viewed by zooming on the screen
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4 Experiments

The proposed Filter Bank Networks (FBNs) are extensively evaluated. In Section 4.1, experiments
on the transformed MNIST dataset [67] are conducted, showing that filter banks can learn trans-
formed variants of intermediate representation and significantly improve the generalization ability of
Deep Convolution Neural Networks (DCNNs). In Section 4.2, FBNs are tested on three commonly
used benchmarks of Few-Shot Class-Incremental Learning (FSCIL), i.e., CIFAR100, Mini-ImageNet,
and CUB200, demonstrating the state-of-the-art performance of FBNs. In Section 4.3, ablation
studies are performed to validate the effectiveness of designs in FBNs.

4.1 Cross Generalization
Dataset Description. We transform test samples in the MNIST dataset [67] via bilinear sampling

to develop the scaling, flip, and rotation versions. Samples of scaling are resized by a random factor
between [0.2, 1.0]. Samples of flip are randomly flipped horizontally or vertically with a probability
of 0.5. Samples of rotation are randomly rotated by a angle between [0, 2π ]. We train the models with
the original upright MNIST training samples and test with transformed versions of test samples to
measure the cross-generalization ability (upright → transformed) of the conventional DCNN baseline
and the upgraded FBN.

Implementation Details. We set up a baseline DCNN with four convolution layers with a kernel
size of 3 × 3. Each convolution layer is followed by a ReLU activation layer. A 2 × 2 Max Pooling
operator is used after the first three convolution layers and a global average pooling operator is used
after the final convolution layer to obtain the feature representation. The feature is classified by a
multi-layer perceptron including two linear layers. For different versions of transformed MNIST, we
upgrade the baseline DCNN to FBN with the filter banks defined by a transformation matrix set T .

For instance, we use Ts =
⎧⎨
⎩

⎛
⎝

2i 0 0
0 2i 0
0 0 1

⎞
⎠ , i ∈ [0, 3]

⎫⎬
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⎧⎨
⎩

⎛
⎝

i 0 0
0 j 0
0 0 1

⎞
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⎫⎬
⎭, and Tr =
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cos(i ∗ π

4
) −sin(i ∗ π

4
) 0

sin(i ∗ π

4
) cos(i ∗ π

4
) 0

0 0 1

⎞
⎟⎟⎠ , i ∈ [0, 7]

⎫⎪⎪⎬
⎪⎪⎭

for the scaling, flip, and rotation versions of MNIST,

repectively. Note we also divide the number of channels in each convolution layer by the number of
transforms in each T to match FBN’s feature dimension with the baseline. The Max Pooling across
response channels of each filter bank is used in the final convolution layer to encode the invariant
FBN representation. Both the DCNN baseline and the FBN models are trained with standard Cross-
Entropy loss, batch size of 128, and Adadelta optimization for 100 epochs.

Performance. It can be seen in Table 1 that FBN improves the accuracy in scaling and flip setting
by 3.17% (70.17% vs. 67.00%) and 20.7% (91.00% vs. 70.30%) respectively with 25.27% learnable
parameters. FBN significantly outperform the baseline in the rotation setting by 34.37% (78.97% vs.
44.60%) while using only 12.82% parameters. The third column of Table 1 shows that conventional
DCNNs can be generalized to samples of different scales to a certain extent, thanks to the hierarchical
processing and pooling layers. The huge performance gaps (34.37% and 20.70%) in the fifth and
seventh columns of Table 1 indicate that the conventional DCNN can not handle flipped and rotated
samples due to the lack of corresponding model-level prior knowledge. Based on this observation and
the fact that samples are often flipped in the data augmentation, we use T = Tr in all Few-Shot Class-
Incremental Learning experiments.
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Table 1: Results on the MNIST-generalization

Method original → scaling original → rotation original → flip

Params (%) Accuracy
(%)

Params (%) Accuracy
(%)

Params (%) Accuracy
(%)

Baseline DCNN 100.00 67.00 100.00 44.60 100.00 70.30
FBN (ours) 25.27 70.17 12.82 78.97 25.27 91.00

Fig. 5 shows the t-SNE 2D mapping of the features captured by DCNN and FBN where each dot
corresponds to a test sample and different colors for different ground truth classes. It can be seen that
the FBNs’ features constitute clear clusters and produce a much more explicit feature distribution in
manifold than the baseline DCNN.

Figure 5: t-SNE visualization of the features produced by DCNN and FBN on the MNIST-
generalization dataset. Best viewed in color

The Filter Bank Networks consistently outperform the baselines while using significantly fewer
learnable parameters, demonstrating the strong generalization ability of filter banks to the unseen
variants of semantic patterns.

4.2 Few-Shot Class-Incremental Learning
We evaluate the proposed FBN on the commonly used FSCIL benchmarks including CIFAR100,

CUB200, and Mini-ImageNet. The categories in the datasets are divided into base classes with
adequate annotations and new ones with K-shot annotated images. For FSCIL, the network is trained
upon base classes for the first pretraining session. New classes are gradually added to train FBN in T
incremental sessions. In each incremental session, N-way new classes are added.

Implementation Details. The proposed FBN is built upon the ResNet18/ResNet20 network and
optimized with the standard SGD algorithm. We follow the state-of-the-art methods to use four
data augmentation strategies, i.e., normalization, horizontal flipping, random cropping, and random
resizing. During the first session, FBN is trained using D(0) upon the base classes. When t > 0, the
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model is trained upon D(t) with new classes. After the T-th session training, FBN is evaluated on all
of the seen classes to obtain the average classification accuracy. We use the official implementation
of [15] for the training loop to keep the hyperparameters consistent with baselines. All the training
images (N × K) are fed to the network through a batch. Since the performance could be sensitive to
the orders of class identities and images, we conducted experiments 10 times with different random
seeds and reported the average results.

4.2.1 CIFAR100

Dataset Description. CIFAR100 consists of 100 classes, where 60 classes are used as base classes in
the pretraining session and 40 as new classes. Each new class has 5-shot annotated images (K = 5). The
new classes are divided into 8 sessions (T = 8), each of which has 5 classes (N = 5). In this dataset, the
image size is 32 × 32, and the detailed information on categories is in the left part of Table 2. We use
the same training hyperparameters as FACT [15], i.e., learning rate 0.1 for the base session training,
and a batch size of 256.

Table 2: Categories in CIFAR100 and Mini-ImageNet dataset. The first column denotes the session
index where 0 indicates the base classes for the pretraining session. Best viewed by zooming on the
screen

CIFAR100 Mini-ImageNet
mammals
beaver

dolphin otter seal whale tench goldfish great-white-
shark

tiger- shark hammerhead

aquarum
fish

flatfish ray shark trout electric- ray stingray coc k-hen ostrich

orchids poppies roses sunflowers tulips brambling goldfinch house- finch junco indigo-
bunting

containers
bottles

bowls cans cups plates robin bulbul jay magpie chickadee

apples mushr
ooms

oranges pears sweet
peppers

water- ouzel kite bald- eagle vulture great-grey-
owl

clock computer
keyboard

lamp telephone television European
-fire- salam-
ander

common- newt eft spotted-
salamander

axolotl
bullfrog

0 furniture
bed

chair couch table wardrobe tree- frog tailed- frog loggerhead leatherback-

turtle

mud-turtl

bee beetle butterfly caterp
illar

cockroach terrapin box-turtle banded- gecko common-
iguana

American-
chameleon

bear leopard lion tiger wolf whiptail agama frilled- lizard alligator-
lizard

Gila-
monster

bridge castle house road skyscraper green- lizard African-
chameleon

Komodo-
dragon

African-
crocodile

American-
alligator

cloud forest mountain plain sea triceratops thunder- snake ringneck- snake hognose-
snake

green- snake

camel cattle chimpa
nzee

elephant kangaroo king-snake garter- snake water- snake vine- snake night- snake

1 fox porcupine possum raccoon skunk boa-
constrictor

rock- python Indian- cobra green-
mamba

sea- snake

2 crab lobster snail spider worm horned-viper diamondback sidewinder trilobite harvestman
3 baby boy girl man woman scorpion black-and- gold-

garden-spider
barn-spider garden-

spider
black-widow

(Continued)
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Table 2 (continued)
CIFAR100 Mini-ImageNet

4 crocodile dinosaur lizard snake turtle tarantula wolf-spider tick centipede black-grouse
5 hamster mouse rabbit shrew squirrel ptarmigan ruffed- grouse prairie- chicken peacock quail
6 maple oak palm pine willow partridge African-grey macaw sulphur-

crested-
cockatoo

lorikeet

7 bicycle bus motor
cycle

pickup
truck

train coucal bee-eater hornbill humming
bird

jacamar

8 lawn-
mower

rocket streetcar tank tractor toucan drake red-breasted-
merganser

goose black-swan

Performance. Table 3 shows the comparison of the proposed FBN and the state-of-the-art
methods. We calculate the average classification accuracy of each session’s seen classes. It is shown
in Table 3 that FBNs achieve the new state-of-the-art performance. Specifically, FBNs outperform
TOPIC by 29.55%, which is a large margin. Compared with recent works, it outperforms CEC and
FACT by 9.78% and 7.31%, respectively. The significant performance improvement demonstrates the
effectiveness of the proposed FBN. Fig. 6 shows that FBN achieves the highest accuracy across all the
sessions, validating that the proposed FBN maintains high performance across the whole incremental
learning and alleviates models’ forgetting issue.

Table 3: Classification accuracy comparison on CIFAR100 using the ResNet20 backbone

Method Session Average

0 1 2 3 4 5 6 7 8

Ft-CNN 64.10 36.91 15.37 9.80 6.67 3.80 3.70 3.14 2.65 16.24
iCaRL [48] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 32.88
EEIL [68] 64.10 53.11 43.71 35.15 28.96 24.98 21.01 17.26 15.85 33.79
NCM [69] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 34.22
TOPIC [13] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 42.62
CEC [54] 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 59.53
FACT [15] 79.25 72.57 68.37 63.95 60.75 57.91 55.53 53.58 51.61 62.61
FBN (ours) 84.03 78.79 75.16 71.20 68.14 65.11 63.31 61.57 58.92 69.58
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Figure 6: Performance of all the sessions and comparison of average accuracy on CIFAR100
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Table 4: Classification accuracy comparison on Mini-ImageNet using the ResNet18 backbone

Method Session Average

0 1 2 3 4 5 6 7 8

TOPIC [13] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 39.64
CEC [54] 72.00 66.86 62.97 59.43 56.70 53.73 51.19 49.24 47.63 57.75
FACT [15] 72.56 69.63 66.38 62.77 60.60 57.33 54.34 52.16 50.49 60.69
FBN (ours) 76.02 71.92 67.67 64.47 61.10 58.38 55.54 53.98 52.61 62.41

4.2.2 Mini-ImageNet

Dataset Description. Mini-ImageNet is a subset of the ImageNet dataset. It is composed of 100
categories sampled from ImageNet, where 60 classes are set as base classes and 40 as new classes.
Each new class has 5-shot annotated images (K = 5). The new classes are divided into 8 sessions (T
= 8), each of which has 5 classes (N = 5). In this dataset, the image size is 64 × 64, and the detailed
information on categories is in the right part of Table 2.

Performance. To validate the superiority of our proposed FBN, we compare the performance of all
the sessions with state-of-the-art methods. From Table 4 we can see that FBN outperforms CEC [54]
and FACT [15] by 4.98% and 2.12% in the last session, respectively. To clearly show the performance
drop across all the sessions and comparison of the averaged accuracies, we drew the line chart and the
plot chart, Fig. 7. As shown in Fig. 7, the proposed FBN outperforms all the existing methods across
all the sessions and achieves the highest averaged accuracy, validating the superiority of our method
in the dataset with strong class diversity.
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1.72

Figure 7: Performance of all the sessions and comparison of average accuracy on Mini-ImageNet

4.2.3 CUB200

Dataset Description. CUB200 consists of 200 classes where 100 classes are set as base classes and
the other 100 classes as new classes under the settings of K = 5, T = 10, N = 10. All the categories
in this dataset are birds. Thus it requires the model to learn fine-grained features between classes. The
image size of CUB200 is 224 × 224.

Performance. To validate the models’ ability to mine fine-detailed features, we do not use
ImageNet-pretraining in the experiments. For a fair comparison, we re-evaluate CEC [54] and FACT
[15] with a consistent setting based on their official implementations, and the result is reported in
Table 5. One can see that without pretraining, FBN outperforms CEC [54] and FACT [15] by 13.94%
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and 1.45% in the last session, respectively. We analyze the classes with the highest performance
improvements for each session and visualize the samples of those classes, Fig. 8. It can be seen that the
‘Fish Crow’, ‘Pigeon Guillemot’, and ‘Ovenbird’ achieve the highest performance improvements on the
base session. Typically, those samples have large intra-class differences and require more fine-detailed
information for recognition. The proposed FBN is endowed with the ability to learn more diversified
fine-detailed patterns with filter variants in filter banks and instance-aware loss, which benefits the
learning and prediction of those classes.

Table 5: Classification accuracy comparison on CUB200 using the ResNet18 backbone

Method Session Average

0 1 2 3 4 5 6 7 8 9 10

CEC [54] 42.43 39.70 36.26 33.74 32.37 30.37 28.44 27.38 26.42 25.51 24.42 31.55
FACT [15] 64.56 59.31 54.62 50.13 49.07 45.22 42.81 40.46 39.80 38.25 36.91 47.38
FBN (ours) 65.94 60.53 55.00 51.18 49.54 45.90 43.72 42.28 41.09 39.79 38.36 48.49

OvenbirdFish Crow American Redstart House Sparrow Seaside Sparrow Barn Swallow Forster Tern Warbling Vireo Hooded Warbl Swainson Warbler Cedar Waxwing House WrenPigeon Guillemot
13.6515.66 8.12 3.32 3.11 2.86 1.98 1.56 1.32 1.19 0.96 1.02 0.89

Base session (top 3) Incremental session (top 1)

0 1 2 3 4 5 6 7 8 9 10

Figure 8: Samples of classes with the highest performance improvements for each session

4.2.4 Fishshot1K

Dataset Description. To further evaluate Filter Bank Networks, we propose a new challenging
Few-Shot Class-Incremental Learning (FSCIL) benchmark, i.e., Fishshot1K, which contains 8261
images covering 1000 ocean fish species. The dataset is built upon an open underwater photography
database2 . We preprocess and clean the raw data in three steps. First, we sort the fish categories by the
number of samples and select the top 1000 classes. Then, we choose 600 classes as the base classes used
in the pretraining session and divide the rest 400 classes into 8 incremental sessions, each containing
50 novel classes per session. For each novel class, we use only 1 sample to train the model whereas the
rest samples are used for evaluation, i.e., 1-shot learning. Lastly, we resize each raw image to 92 × 92
and center crop the image of the size 84 × 84. It can be seen in Fig. 9 that Fishshot1K is challenging.
The fish can have arbitrary poses relative to the camera, the background is varying, and the light for
underwater photography is typically weak.

2 http://www.fishdb.co.uk/

http://www.fishdb.co.uk/


CMES, 2023, vol.137, no.1 663

Figure 9: Samples of the proposed Fishshot1K dataset which contains 1000 ocean fish species. Images
in each row belong to the same category showing significant intra-class differences

Performance. We evaluate our proposed Filter Bank Network approach on the challenging
Fishshot1K benchmark and compare it with the state-of-the-art method. As shown in Table 6, FBN
achieves better classification accuracy for the pretraining and all incremental sessions. The average
accuracy significantly outperforms FACT [15] by 2.81% (22.01% vs. 19.20%). This further shows the
effectiveness of FBN in learning from limited and incremental data and thus FBN has great potential
in handling real-world longtail problems, e.g., research of ocean fish species recognition.

Table 6: Classification accuracy comparison on Fishshot1K

Method Session Average

0 1 2 3 4 5 6 7 8

FACT [15] 21.87 20.34 19.06 19.00 19.09 19.02 18.39 17.93 18.13 19.20
FBN (ours) 24.96 23.48 21.89 21.83 21.83 21.91 20.63 20.72 20.83 22.01

4.3 Ablation Studies
We perform ablation studies on the CIFAR100 FSCIL benchmark to evaluate the effectiveness of

the two core designs in FBNs, i.e., the filter banks that learn unseen transformed variants of semantic
patterns, and the instance-aware loss which stimulates fine-detailed features to emerge. We sample a
subset of Tr (|Tr| = 8), to form three settings. As shown in the left part of Table 7, increasing the
number of transforms, i.e., |T |, consistently improves the average accuracy over all FSCIL sessions,
showing the effectiveness of filter banks. The ablation studies on instance-aware loss are evaluated in
the right part of Table 7. We change the balance factor γ to different values where γ = 0.0 indicates the
instance-aware loss is discarded. The performance drop (“PD”) is defined as PD = ACC(0) − ACC(T),
where ACC(0) denotes the accuracy of pertaining session and ACC(T) denotes the accuracy of the T-th
session. It can be seen that the proper use of instance-aware loss can guide the FBN to mine more fine-
detailed features and alleviate the catastrophic forgetting issue. However, when the balance factor is too
large, the model focuses on distinguishing instances and neglects to capture the discriminative features
between categories, which affects the final performance. We use γ = 0.1 for all FSCIL experiments.
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Table 7: Ablation studies of the designs choices of FBNs on CIFAR100

Filter banks Average

|T | = 1 |T | = 4 |T | = 8

� 65.02
� 66.27

� 69.58

Instance-aware loss PD

γ = 0.0 γ = 0.1 γ = 0.2 γ = 0.5 γ = 1.0

� 26.59
� 25.11

� 25.48
� 25.61

� 26.24

5 Conclusion

In this paper, we proposed a simple yet effective Few-Shot Class-Incremental Learning (FSCIL)
framework, i.e., Filter Bank Networks (FBNs), which introduce learnable inductive biases to address
the issue of overfitting and catastrophic forgetting. FBNs improve modern Deep Convolution Neural
Networks (DCNNs) to achieve the capability of learning variants of visual patterns that do not exist in
the dataset. FBNs augment each learnable filter to a virtual filter bank, containing its canonical form
and multiple transformed versions. During back-propagation, gradients of the entire filter bank are
collectively aligned and aggregated to update the canonical filter. Moreover, FBNs stimulate instance-
aware discriminative patterns to emerge and learn diverse features, reserving latent embedding space
for incorporating future novel classes in incremental learning sessions. The primary contributions
are three-fold. First, we design the learning paradigm of Filter Bank Networks, including learning
augmented filters and mining instance-aware features. Second, we upgrade the modern architecture
of DCNNs to FBN and achieve new state-of-the-art results in commonly used Few-Shot Class-
Incremental Learning (FSCIL) benchmarks, including CIFAR100, Mini-ImageNet, and CUB200.
Last but not least, we contribute a challenging FSCIL benchmark, namely Fishshot1K, which contains
8261 underwater images covering 1000 ocean fish species. With the same training hyperparameters,
FBNs consistently outperform their baselines and report the best results, which indicates that the usage
of learnable inductive biases is a crucial factor in training growable models which can incrementally
learn from limited data.
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