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ABSTRACT

In recent years, with the great success of pre-trained language models, the pre-trained BERT model has been
gradually applied to the field of source code understanding. However, the time cost of training a language
model from zero is very high, and how to transfer the pre-trained language model to the field of smart contract
vulnerability detection is a hot research direction at present. In this paper, we propose a hybrid model to detect
common vulnerabilities in smart contracts based on a lightweight pre-trained language model BERT and connected
to a bidirectional gate recurrent unit model. The downstream neural network adopts the bidirectional gate recurrent
unit neural network model with a hierarchical attention mechanism to mine more semantic features contained in
the source code of smart contracts by using their characteristics. Our experiments show that our proposed hybrid
neural network model SolBERT-BiGRU-Attention is fitted by a large number of data samples with smart contract
vulnerabilities, and it is found that compared with the existing methods, the accuracy of our model can reach
93.85%, and the Micro-F1 Score is 94.02%.
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1 Introduction

As an emerging service architecture, blockchain has made great progress in recent years under the
extensive promotion of academia and industry, and has been applied in various fields, such as product
traceability, the Internet of things and logistics, and digital rights management [1]. The innovation and
use of blockchain technology are inseparable from finance, and the realization of complex logic on the
chain is executed by the smart contract behind it, so the security of smart contract is an important
guarantee for the normal operation of blockchain [2]. The innovation of blockchain benefits from
its distributed and decentralized architecture [3]. Because blockchain is distributed and decentralized,
data on the chain cannot be tampered with, which is the advantage of blockchain. On the contrary,
there are some security challenges. If the smart contract is deployed in the blockchain consensus
protocol network for operation, it cannot be modified and will always be executed, which brings

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.026627
https://www.techscience.com/doi/10.32604/cmes.2023.026627
mailto:xugx@gzhu.edu.cn


904 CMES, 2023, vol.137, no.1

great challenges to the developers of smart contracts. If there is a fatal flaw in the smart contract,
the economic loss may be huge and irreversible. There have been many huge losses since smart
contract was applied to blockchain. In 2016, The Dao attack, a well-known security incident, was
attacked by hackers and stole a large number of Ether coins, with a loss of around 2 million Ether
(50 million USD at the time) [4]. In “The Dao” event, a function containing vulnerabilities, exists
in the smart contract, and there is a recursive repeated call vulnerability, which leads to the attacker
can continuously recursively and unrestricted transfer, and steal the balance of the attacker’s account.
In 2017, Ethereum Wallet lost more than $154 million in a major security breach caused by multi-
signature contracts at Wallet.sol [5]. This breach cost three times as much as The Dao incident. In
2018, the famous BEC overflow attack caused the price of a token to shrink to zero [6]. Hackers took
advantage of a smart contract vulnerability to transfer sky-high contract tokens to outside accounts for
a short period of time. Using an early Solidity language vulnerability, overflow attacks on variables
enable bulk transfers to steal the balance of the target contract account. After several well-known
security incidents, more and more security vulnerabilities are exploited by illegal users, resulting in a
large number of property losses, and smart contract vulnerability detection gradually attracts extensive
attention from the academic community.

In order to efficiently and accurately detect the vulnerabilities contained in smart contracts, this
study proposes a bidirectional GRU network model based on SolBERT and an attention mechanism
for a large number of smart contracts [7]. Firstly, a pre-trained model called SolBERT is used to
represent the source code of the smart contract to solve the problem that the Word2Vec static word
embedding model is difficult to represent the source code model. Secondly, the word vector represented
in the previous step is input into the downstream sequential network BiGRU, and the hierarchical
attention mechanism is integrated to capture the words or sentences with greater weight in the smart
contract [8]. The significance of this is that the source code of the smart contract has context semantic
dependencies, and the weights of words and sentences are different. Finally, the results are classified
through the softmax layer to determine whether there is a certain type of vulnerability in the smart
contract. The main contributions of our work are:

• We migrated the pre-trained language model BERT into the smart contract programming
language Solidity scene and compressed BERT [9]. We cut the original BERT-Base model from
12 layers to 5 layers, and used weight sharing and knowledge distillation techniques to compress
the BERT model with more parameters. It proves that the pre-trained language model can be
well used in the smart contract scenario.

• Our proposed downstream smart contract vulnerability detection model is a bidirectional gated
neural unit with hierarchical attention mechanism, which is improved on the existing bidi-
rectional LSTM temporal neural network model [10]. It captures more semantic information
of different sentences in the source code and provides more semantic features for the neural
network model. Our proposed model improves the detection accuracy to 93.85%, the false
positive rate is 6.21%.

• Compared with traditional vulnerability detection systems based on software testing methods,
our proposed deep learning method can detect more smart contract vulnerabilities, and the
detection efficiency is faster, the average detection time for a single smart contract is around
4.5 s.
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2 Related Work

According to the statistics of existing research literature in this field, it can be roughly divided
into two categories: one is vulnerability detection based on static analysis of programs, and the other
is vulnerability detection based on dynamic analysis of programs [11]. Static Analysis includes Formal
Verification method, Static Error Point Analysis method, Machine Learning method. Dynamic
Analysis includes Symbolic Execution method, Dynamic Error Point Analysis method and Fuzz
Testing method [12]. Industry recognition of higher automation vulnerabilities detection tools is often
used to dynamic analysis technology, using dynamic analysis technology to judge whether there are
vulnerabilities in the smart contract by analyzing the execution data status of the contract and other
information according to the execution of the contract operation [13].

2.1 Smart Contract Vulnerability Detection Based on Dynamic Analysis
Smart contract vulnerability detection technology based on the dynamic analysis by constructing

a particular input data, the program debugging and tags, tags of interest through the execution
of a program process critical data, tracking program flow, according to the result of the program
information and operation of runtime intelligent judge the difference of the contract if there is a
vulnerability. The main methods are dynamic symbol execution, dynamic taint analysis and fuzzy
test. The main idea of dynamic symbolic execution is to verify path reachability through symbolic
execution and constraint solution. It aims to form Control Flow Graph (CFG) by simulating execution
contract. In the analysis process, symbol value is used to replace any uncertain variable in source
code, and the reachability is verified after all paths are collected. Chen et al. proposed DefectChecker
contract vulnerability security analysis tool based on symbolic execution; it can reach 88.3% on the
precision indicator [14]. By analyzing Ethereum bytecode, it uses three features, such as control flow
chart and program stack space event, to detect vulnerabilities. Symbolic execution technology not only
obtains more accurate execution paths, but also exposes fatal shortcomings: state space explosion and
solving complex and difficult constrained problems [15]. Program dynamic analysis technology usually
combines a variety of technologies to improve program coverage and vulnerability detection accuracy.
For example, Xie et al. proposed a hybrid testing method based on symbolic execution and fuzzy testing
to determine whether a program has vulnerabilities by analyzing the program execution state through
the generation of use cases [16]. This method can provide many ideas for smart contract vulnerabilities,
and can improve code branch coverage by generating various complex test cases to achieve the purpose
of detecting vulnerabilities. And its shortcomings are also obvious; it needs to execute the source code,
and the generation of test cases is also relatively difficult. At present, smart contract vulnerability
detection automation platform with high recognition in the industry, such as Oyente, Mythril, Securify,
Mantico and other smart contract vulnerability detection tools [17–20]. These kinds of automated
vulnerability detection tools are well recognized by the industry, and can detect various smart contract
vulnerabilities through dynamic analysis and other technologies. However, their disadvantages are that
the detection time is very long, they depend on the smart contract solidity language version, and the
detection accuracy is low. And the disadvantages such as high false positive rate. Ivanov et al. proposed
a contract vulnerability detection tool based on symbolic execution to detect the bytecode at the
Ethereum virtual machine level, analyze the bytecode and the global state of Ethereum, generate the
contract control flow chart, and output the symbol path with vulnerabilities [21]. This method can
analyze the bytecode of the smart contract after execution, but sometimes the execution will cause
problems such as memory overflow because the control flow chart is too large. Jiang et al. proposed
a framework called ContractFuzzer for smart contract vulnerability detection based on fuzzy testing
[22]. By analyzing ABI interface of smart contract, input use cases in accordance with smart contract
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syntax were generated, and a series of new test rules were defined to monitor the execution of smart
contract by operating EVM. It built a detection model for seven common vulnerabilities, and detected
lower false positive rate, more types of vulnerabilities, and lower false positive rate than the current
highly recognized automated detection tool Oyente.

2.2 Smart Contract Vulnerability Detection Based on Deep Learning
With the rapid development of deep learning, NLP technology is widely used in image recognition,

text processing and other fields. Therefore, a large number of researchers use deep learning method to
detect the vulnerability of smart contract [23]. According to a large number of experimental results,
the method using deep learning can support more smart contract vulnerabilities than the traditional
software-based defect detection method, and the detection time can be greatly reduced, as shown in
Table 1 below.

Table 1: Existing vulnerability detection methods

Tools Types of vulnerabilities supported

Integer
overflow

Permission
verification
disappears

Exception
handling
error

Transaction
order
dependence

Lack of
randomness

Reentrancy
vulnerability

Frozen
assets

Average
times (Sec)

Oyente × × √ √ √ √ × 30
Securify × √ √ √ × × × 217
Mythril √ √ √ × √ √ √ 34
Manticore × √ × × √ × × 1468
Machine
learning

√ √ √ √ √ √ √ 4

Gao et al. proposed SmartEmbed, a vulnerability detection method combining machine learning
and feature matching [24]. It learned the features in Solidity source code, compared them based on
word embedding and vector space, and parsed the growing text sequence of smart contracts and kept
the structured information of the code. Then the sequence is transformed into a numerical vector,
which contains semantic information. Using the transformed vector sum and the vector transformed
from the source code with vulnerabilities to perform similarity matching, the smart contract is
judged to have security vulnerabilities. This approach focuses more on the similarity between vectors,
while ignoring the vulnerabilities caused by the relationship between the semantics of the smart
contract context. Wang et al. proposed a method to detect the vulnerabilities of smart contracts
using machine learning technology. By extracting the opcode features of smart contracts, the machine
learning algorithm model was established, which solved the time-consuming problem of traditional
symbol execution methods, and improved the detection accuracy and efficiency [25]. The model can
extract bytecode features using machine learning algorithms, with an average detection accuracy of
95%. The application of machine learning in this field also lays the foundation of exploiting deep
learning for smart contract vulnerability detection. Scarselli et al. proposed the temporal Message
Propagation network (TMP) and the undulated graph convolution neural network (DR-GCN) with
the help of the graph neural network model, and constructed the contract graph to represent the
syntactic and semantic structure of the smart contract function [26]. The authors construct an ablation
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process to standardize the graph, highlight the nodes in the contract graph, and normalize the
vulnerability detection of graph learning. Experiments show that DR-GCN has obvious advantages
in detecting three different types of vulnerabilities, but its disadvantage is that it detects too few
types of vulnerabilities [27]. Church proposed a kind of reentrant vulnerability detection based on
temporal neural network model. Word2Vec is used to embed words in smart contract fragments,
and then the sequential neural network model with attention mechanism is input, which can achieve
90% accuracy [28]. Using temporal memory neural network instead of traditional recurrent neural
network can avoid the problems of gradient dispersion and gradient explosion of neural network
model, and can capture more context [29]. The disadvantage of using static word embedding is
that it cannot better represent the source code of the smart contract, and the context semantics
will be lost when the word is represented, which will reduce the detection accuracy of downstream
tasks. Jeon et al. used pre-trained BERT model for contract vulnerability detection, and proposed a
SmartConDetect to detect security vulnerabilities. The principle of SmartConDetect is to extract code
fragments through preprocessing, and use the pre-trained BERT language model to further detect
code patterns containing vulnerabilities [30]. Experimental results show that using NLP technology
for vulnerability detection can show high performance, and the detection efficiency and accuracy are
better than the current methods, but there is still a lot of room for improvement [31]. To sum up, the
source code level contains a large amount of semantic, lexical and grammatical information, which
can be lost by bytecode, but some useless information can also be filtered out [32]. In order to improve
accuracy and reduce the rate of false positives, and can improve the detection efficiency under the
condition, we focus more on the source code level of smart contracts, from establishing an expression
between the source model. Using the word embedding method combined with the attention mechanism
such as deep learning technology of intelligent flaw detection contract, get a more excellent than the
existing methods of detection method [33].

3 SolBERT-BiGRU-Attention Hybrid Neural Network Model

In this section, we will introduce the architecture of our neural network model and how to design
it in detail. In this study, we innovatively introduced the pre-trained BERT model into the smart
contract source code scene, and the downstream task used the timing network combined with the
hierarchical attention mechanism to mine more vulnerability characteristic information in the smart
contract source code.

3.1 Model Framework
According to the research status of traditional software defect detection methods and the

application of machine learning to smart contract vulnerability detection scenario, it is difficult to
support the detection of multiple smart contract vulnerabilities, and it is difficult to solve the problems
of low detection efficiency and high false positive rate and underreport rate. Fig. 1 is the smart contract
vulnerability detection model we designed. The vulnerability detection model of smart contract
proposed in this paper is mainly designed from two aspects: word embedding characterization of source
code and vulnerability information feature capture. Firstly, we replace the traditional Word2Vec static
word embedding model, because in the smart contract source code each word may contain contextual
semantic relations, and the word vector should be represented according to the contextual semantics.
Since the source code has contextual semantic relations, it is natural for our downstream tasks to
use the temporal network model to capture more contextual semantic information, and integrate the
hierarchical attention mechanism to mine some important feature information. The last layer of full
connection layer maps the feature space calculated by the network of the previous layer into the sample
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space, integrates the features into a value to obtain a 7-dimensional vector, and then classifies through
the softmax layer to obtain the probability of each vulnerability classification.

Figure 1: SolBERT-BiGRU-attention model framework

3.2 SolBERT
The pre-trained BERT language model can dynamically embed the word representation of

the source code, and can greatly solve the problem of information loss, and better represent the
mathematical feature relationship between words and expressions. However, the pre-trained model has
not been applied in Solidity source code of smart contracts yet. Its neural network model has complex
hierarchical structure, contains 340 million parameters, and has low efficiency of word embedding,
so it is difficult to put into real smart contract vulnerability batch detection. Therefore, efficient and
accurate word presentation for Solidity source code scenarios of smart contracts needs to be further
explored. According to the research experience of TinyBERT, DistillBERT and other models, the
proposed SolBERT model is based on the Bert-base model (https://huggingface.co/bert-base-uncased)
to do Fine-Tune, in which the Transformer block cutting, knowledge distillation, sharing parameters
and other methods to compress our model. The compression method of the model is shown in Fig. 2.
A 12-layer BERT-base was used as the Teacher model for training, and our Student model was
designed as a 5-layer model, and the vectors of the last two layers were used as the representation
of the final smart contract source code, the compressed model parameters are shown in Table 2. The
smart contract source code data set we crawled was prepared in advance, and the BERT-Base model
and our SolBERT were trained. The model could pay more attention to the context, enhance the
characterization of the words in the source code, and provide better characteristic information for the
following vulnerability mining and classification tasks. Through the final experiment, the model we
proposed has fewer parameters to be trained and fitted, smaller model and lower calculation cost,
which solves the problems existing in BERT-base. The current model is about 1/2 of the number of
layers of the original model, while ensuring the corresponding accuracy.

https://huggingface.co/bert-base-uncased
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Figure 2: SolBERT model framework

Table 2: BERT-base model and SolBERT parameters

Model Parameters number Parameters-sharing Hidden-layers Vocab_size

SolBERT 45.8 M True 5 27402
BERT-base 110 M False 12 30523

3.3 Bidirectional Gate Recurrent Unit Recurrent Neural Network
There are some problems such as gradient dispersion and gradient explosion when recurrent

sequential neural networks are used to learn text information. In the smart contract vulnerability,
it is necessary to pay attention to the context information in the source code to determine whether
there is a vulnerability. The neural network architecture of the sequential neural network model is
studied, and the hierarchical attention mechanism is introduced to focus on the words of the source
code, so that the neural network can pay more attention to the information with higher weight. A
bidirectional gated recurrent unit neural network model is proposed, as shown in Fig. 3, so that the
model can better extract features from the source code sample context of smart contracts, optimize
model parameters, and realize efficient and accurate vulnerability detection of smart contracts. With
the gradual application of deep learning in smart contract source code vulnerability detection, its
problems become more and more prominent. At present, existing research literatures use deep learning
methods for smart contract vulnerability detection, which are mainly based on convolutional neural
networks, recurrent neural networks and their variants. However, the traditional neural network
model has some problems such as gradient disappearance and gradient explosion when training long
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sequence data, and the fitting effect of the model is poor. It is difficult to capture the word order,
syntactic and semantic rules which are important to the classification results. Recurrent neural network
to a long sequence of text such as source code is very weak, because the recurrent time steps of neural
network is the last step input to a large extent depends on the time step output information, for the
logical sequence far apart in the text of the data information transmission loss is very serious, lead to
the loss of semantic code, and can also cause neural network fitting degree is low.

Figure 3: Bidirectional GRU vulnerability detection classification model

Therefore, in our downstream task, we designed a bidirectional GRU gated recurrent unit with
hierarchical attention mechanism. The hierarchical attention mechanism has achieved good results
in text classification, so we introduced it into our model innovatively. The purpose of introducing
hierarchical attention mechanism is that we can find in the source code text of a smart contract
with integer overflow vulnerability that the sentences with vulnerability have different weights for text
detection to contain the vulnerability. In “require(totalSupply+_value<=tokenLimit)”, the weights of
“totalSupply+_value<=tokenLimit” are different. So, in our downstream network we think of text
as both text level and sentence level. A two-tier attention mechanism that focuses more on code
statements or logical relational operations that are vulnerable. In Figs. 4a and 4b, we can see that each
word has a different weight in a sentence of source code, and each sentence of code has a different
weight in the entire smart contract file. The higher the importance, the darker the color. Context and
semantic relationship will also appear, which is the characteristic information that the hierarchical
attention mechanism can highlight.

In addition, there is also semantic dependence between the upper and lower parts of the statement.
When a variable is declared above, the following operation is performed, and some logical judgment
is not made, the contract has the vulnerability of integer overflow. Therefore, we introduced a
bidirectional GRU-gated recurrent neural network model to solve the relationship between RNN
recurrent neural network and the large dependence of time step distance in time series. It controls the
flow of information by learning a gating unit. The concepts of reset gate and update gate are included
in GRU. The input of reset gate and update gate are both the current time step input and the hidden
state of the last time step, and the output is calculated by the fully connected layer whose activation
function is sigmoid function.
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Figure 4: The application of hierarchical attention mechanisms. (a) Semantic relation and weight map
of overflow and overflow vulnerability (b) Reentrant vulnerability semantic relation

We compared GRU and LSTM, as shown in Figs. 5 and 6. GRU has one less gating unit and
one less parameter than LSTM, and its accuracy is not significantly lower. Therefore, we chose GRU.
In the GRU gated neural unit, xt represents the input information of the smart contract source code
word vector at the current time t, and ht−1 the hidden state at the last time. The hidden state acts as a
neural network memory, which contains the data information previously seen by the node. ht hidden
information passed to the next moment. h̃t candidate hidden state. rt resets the gate and zt updates
the gate. Sigmoid function, through which data can be changed into values in the range of [0-1]. tanh:
tanh function, through which data can be changed into data in the range of [−1, 1]. The rt reset gate
determines how to combine the new input information with the previous memory. The formula is: Wr

is not a value, but a weight matrix that is used to linearly transform the concatenated matrix of xt and
ht−1. Then you multiply the values of the two matrices into the sigmoid function, and you get the value
of rt. The obtained reset gate value will be brought into the candidate hidden state. When the value of
rt is smaller, the value of the matrix produced by the product of rt and ht−1 Hadamard will be smaller,
and then the value obtained by the multiplication of the weight matrix will be smaller, indicating that
more information input at the last moment needs to be forgotten, and more information is discarded.
The larger the value of rt, the more information needs to be remembered at the last moment, and
the newer input information is combined with the previous memory. When the value of rt is closer to
0, it indicates that only the input at the current time needs to be discarded. Therefore, all historical
information unrelated to prediction can be discarded. When the value of rt is close to 1, it indicates
that the hidden state of the previous time is retained. This is where the reset gate plays an important
role, helping to capture short-term dependencies in the time series.

zt = σ (Wz · [ht−1, xt]) (1)

rt = σ (Wr · [ht−1, xt]) (2)

h̃t = tanh (W · [rt ∗ ht−1, xt]) (3)

ht = (1 − zt) · ht−1 + zt ∗ h̃t (4)
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Figure 5: Gate recurrent unit structure

Figure 6: LSTM structure

The update gate is used to control the degree to which the state information of the previous
moment is brought into the current state, that is, the update gate helps the model decide how much
information of the past should be transferred to the future, which is simply used to update the
memory. The closer zt is to 1, the more data is “memorized”, while the closer it is to 0, the more it
is “inherited”. (1 − zt) · ht−1 indicates selective “forgetting” of the hidden state at the last moment.
Forget the unimportant information in ht−1 and discard the irrelevant information. zt ∗ ht indicates a
further selective “memory” of candidate hidden states. The update gate will forget some unimportant
information in ht, and will further select certain information in h̃t. The vector ht forgets some
information of ht−1 passed down, and adds some information of current node input, which is the
final memory. The gated recurrent unit GRU will not clear the previous information over time, and will
retain the relevant information to be transferred to the next unit. The hierarchical attention mechanism
is based on the hierarchical nature of documents. Sentences are composed of words. In the source
code of smart contracts, the code is also composed of words and symbols, paragraphs are composed
of sentences, and program source files in the source code are composed of code statements. Therefore,
program source files are structured hierarchically just like documents. Therefore, the hierarchical
attention mechanism can stratify words and sentences, and the word encoder can summarize the
information at the word level and input it into the sentence encoder. The sentence encoder can



CMES, 2023, vol.137, no.1 913

summarize the information at the sentence level and finally output the classification probability of
the document.

The hierarchical attention mechanism consists of four parts: Word Encoder, Word Attention,
Sentence Encoder, and Sentence Attention, as shown in Fig. 7.

Smart Contract vector 

Sentence level

word level

Figure 7: Hierarchical attention mechanism

Word encoder: A piece of smart contract source code contains several words wit,t ∈ [1, T ]. Firstly,
the word vector xij obtained by the upstream task is used. The bidirectional GRU is used to obtain
the information in both directions of the source word to capture the context of the word relation. The

bidirectional GRU includes forward
→
h and

←
h.

→
hit = −−−→

GRU (xit) , t ∈ [1, T ] (5)
←
hit = ←−−−

GRU (xit) , t ∈ [T , 1] (6)

hit =
[ →

hit,
←
hit

]
(7)

Word attention mechanism: In the smart contract source code, each code statement may not all
have the same effect on semantic expression, so it is necessary to use the soft attention mechanism
to extract important words in the source code statement to form a sentence vector. Ww, uw, bw are all
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parameters that need to be fitted by training. First, input the word vector hit through the MLP layer
to obtain the hidden layer, then use the word-level context uw to measure the importance of the word,
and then obtain a normalized importance weight through the softmax function. Then we calculate the
sentence vector Si as the weighted sum of the word weights.

uit = tanh(Wwhit + bw) (8)

ait = exp(uT
it uw)∑

t exp(uT
it uw)

(9)

Si =
∑

t

aithit (10)

Sentence-level encoder: Given source code sentence vector Si, the document vector is obtained
using encoding and attention mechanisms similar to word vectors. Bidirectional GRU is also used for
encoding. Aggregate the vectors from front to back and back to front of the sentence, but focus most
on the i vector.
→
hi = −−−→

GRU (Si) , t ∈ [1, T ] (11)
→
hi = −−−→

GRU (St) , t ∈ [L, 1] (12)

hi =
[→

hi,
←
hi

]
(13)

Sentence attention mechanism: In the same way as word-level attention mechanism, a sentence-
level contextual parameter us is introduced, which can be learned to measure the importance of
sentences to vulnerability classification. The V vector is the summary feature of the entire input smart
contract source code sentence.

ui = tanh(Wshi + bs) (14)

ai = exp(uT
i uw)∑

i exp(uT
i us)

(15)

v =
∑

i

aihi (16)

The hierarchical attention mechanism process includes Word encoder, Word attention, Sentence
attention, softmax to calculate the attention weight by word encoder, and then the important words
in the sentence forming sentence can be obtained as input. And the attention weight is calculated to
get the important sentences in the text content.

The document vector V is the high-level representation of the entire smart contract, which is fed
into the softmax function, using the negative log-likelihood of the correct label as the training loss,
and j is the classification of the document.

p = softmax(Wcv + bc) (17)

L = −
∑

d

log pdj (18)
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4 Experiment Results and Analysis

Through comparative experiments on upstream and downstream tasks, multiple indicators of the
dataset are evaluated to find out whether our proposed model is superior to the existing models.

4.1 Experimental Environment
This paper proposes to use our proposed SolBERT-BiGRU-Attention hybrid neural network

model to detect reentrant vulnerabilities in smart contracts. The data source is the latest real smart
contract in the Ethereum network crawled by the block and smart contract browser provided by
Ethereum official. Our experimental environment is all from Intel Xeon E5 quad-core processor, CPU
frequency 3.6 GHz, memory 128 G, graphics card RTX 1080 Ti. In the experiment, Python 3.7 is used
to write scripts to crawl data sets and preprocess smart contracts. Tensorflow-gpu, Keras 2.2.4 and
PANDAS are used as deep learning framework. Sklearn library is used as the final experimental model
performance evaluation. The specific experimental environment is shown in Table 3.

Table 3: Experimental environment details

Environment Detail

Operating system Windows 10 & Ubuntu
Memory
CPU

128 G
Intel Xeon E5 3.6 GHz

GPU NVIDIA GeForce GTX 1080 Ti
Language Python 3.7

4.2 Comparative Experiment Settings
In order to verify the effectiveness and superiority of the trained model, 80% of the crawling

smart contract data set is divided into the training set and 20% is divided into the test set. The
training set is used to fit our detection model, and the test set evaluates the performance of the model.
The dataset contains a total of 37232 smart contracts. Our experiment examines six kinds of smart
contract vulnerabilities. In the data samples, our smart contracts may contain multiple smart contract
vulnerabilities.

In the comparison experiment, we set up eight groups of comparison experiments, among which
three groups are traditional static analysis method tools and one group is the experiment solved by
deep learning method.

(1) Oyente: Static analysis of the bytecode of smart contracts compiled in EVM based on symbolic
execution. Vulnerability detection requires compilation of contracts rather than direct access
to the source code.

(2) Mythril: A static analysis tool based on symbolic execution and taint analysis that verifies the
existence of security vulnerabilities by using the transactions required to compute the contract
bytecode.

(3) Osiris: A static analysis smart contract vulnerability tool, sensitive to the detection of integer
overflow vulnerabilities, but not limited to the detection of integer overflow vulnerabilities.

(4) Word2Vec-RNN: The static word embedding model combined with RNN timing cycle neural
network is used to compare our model and reflect the improvement of our model on this basis.
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(5) BERT-GRU: The dynamic word embedding model is replaced by the traditional static word
embedding model, and the word embedding model has better representation than the tra-
ditional model. The GRU gated neural network is added to verify and prevent gradient
dispersion.

(6) SolBERT-GRU: Using our compressed neural network model combined with the downstream
gated recurrent unit neural network, it is proved that the word embedding of our compressed
model is more efficient than the uncompressed word embedding model BERT.

(7) SolBERT-BiGRU: The downstream BiGRU can capture more contextual semantics in smart
contracts, and improve more detection accuracy.

(8) SolBERT-BiGRU-Attention: The compressed Bert model is used for word embedding of the
smart contract source code, and the bidirectional GRU model with attention mechanism is
used downstream. It is proved that hierarchical attention mechanism can make our model more
sensitive to the characteristics of smart contract vulnerabilities.

4.3 Evaluation Metrics
The evaluation indexes of several groups of comparative experiments and the neural network

model proposed in our experiment are similar to the text classification task, so the evaluation indexes
we adopted are divided into five evaluation indexes: accuracy, true positive rate, false positive rate,
precision rate and precision rate precision. Index calculation formula is as follows: True Positive (TP):
The predicted result indicates that the vulnerability exists. The actual tag also has the vulnerability.
False Positive (FP): The prediction result indicates that the vulnerability exists. The actual label
indicates that the vulnerability does not exist. False Negative (FN): The predicted result is that no
vulnerability exists. The actual label indicates that the vulnerability exists. True Negative (TN): The
predicted result is that no vulnerability exists. The actual label indicates that no vulnerability exists.

The accuracy rate is the number of correctly classified samples in the test set, which is defined as
follows:

Accuracy = (TP + TN)

(TP + FP + FN + TN)
(19)

Among all positive classes, how many true positive rates are predicted to be positive classes, also
known as Recall, is defined as follows:

Recall = TP
TP + FN

(20)

Precision refers to the proportion of predicted positive samples that are actually positive. The
formula is defined as follows:

Precision = TP
TP + FP

(21)

F1-score (F1 value), also known as F1-measure, is an index that comprehensively considers
Precision and Recall and is defined as follows:

F1 − Score = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(22)
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4.4 DateSet
According to literature records, there is currently no standard open source vulnerability dataset

in the field of smart contract vulnerability detection. However, some existing vulnerability smart
contract data can be collected from some papers and vulnerability library websites. But such datasets
are not reliable, and the proportion of positive and negative samples varies greatly. Contracts with
vulnerabilities in most papers are detected and determined by traditional smart contract detection
tools and then marked. These traditional tools are not authoritative, so we need to add manual
judgment on the basis of the original tool detection to improve their label calibration. Correctness and
improve the quality of our training set. Therefore, our data set sources include: data sets published in
the paper, smart contracts existing in vulnerability libraries, and crawling related smart contracts using
crawlers from the Ethereum platform. The final total number of smart contracts includes 35,232. There
are 11,012 smart contract samples with integer overflow vulnerabilities, 11,012 contract samples with
underflow vulnerabilities, 2,421 contract samples with transaction dependency vulnerabilities, 205
contracts with unchecked return values, and 3,578 contract samples with timestamp dependencies. And
there are 4,262 contracts with reentrancy vulnerabilities and unchecked return value vulnerabilities.
Each smart contract sample may contain multiple vulnerabilities. Therefore, as shown in Table 4, we
show that the table contains a certain vulnerability.

Table 4: Experimental data set ratio

Type Number

Vulnerable Invulnerable Total

OverFlow 11,012 24,220 35,232
UnderFlow 10,023 25,209 35,232
TimeStamp dependency 3,578 31,654 35,232
Reentrancy vulnerability 4,262 30,970 35,232
Unchecked return value 4,262 30,970 35,232
Transaction order dependence 2,421 32,881 35,232

4.5 Analysis of Results
By comparing two sets of comparison experiments, compared with traditional detection tools,

and compared with other four kinds of neural network models, the effect of introducing hierarchical
attention mechanism is verified experimentally. We also carried out comparative experiments on the
Bert-base model and the traditional Word2Vec static word embedding model with our model, and
proved that our optimized BERT model could represent the vulnerability of the smart contract better,
making the final detection result of the smart contract more accurate. In terms of detection time, It
also takes less time than traditional smart contract vulnerability detection tools.

4.5.1 Overall Comparison

Table 5 shows the experimental results after preprocessing according to the data set we crawled.
The comparison experiment was mainly divided into two groups. The first group compared the hybrid
model SolBERT-BiGRU-Attention model we proposed with several good smart contract vulnerability
detection models in the industry. Comparison indexes were Accuracy, Precision, Recall and F1-score,
and detection efficiency was introduced. The other group is mainly compared with the machine
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learning model, comparing the improvement of the word embedding model in the representation of
the smart contract source code, which can then affect the vulnerability detection of the downstream
neural network model. It can be seen from the figure that the proposed hybrid model has much higher
accuracy than the traditional smart contract vulnerability detection model, with the average detection
accuracy of 90% or above and the detection efficiency about 10 times higher. In terms of the detection
time of the model, it can also be found that the compressed BERT model we proposed has better
detection efficiency than BERT-base. In the evaluation of the entire model, we used the Micro-F1
Score to evaluate the detection accuracy and recall rate of the model more fairly. As shown in Table 4,
the model we proposed can have higher accuracy and lower false alarm rate than some of the latest
detection methods in terms of Accuracy, Precision, Recall, and Micro-F1. Finally, while ensuring the
accuracy, it also improves the training efficiency of the model and reduces the training cost of the
model.

Table 5: The results of eight comparative experiments

Accuracy (%) Precision (%) Recall (%) Micro-F1 (%) Average
times (Sec)

Oyente 46.32 54.23 60.24 59.92 30
Mythril 56.59 61.54 59.21 61.23 84
Osiris 69.76 62.42 62.12 62.56 34
Word2Vec-RNN 83.18 83.13 80.15 81.61 1.3
BERT-GRU 86.22 85.24 84.67 84.96 6.5
SolBERT-GRU 89.55 89.64 87.34 88.47 4.2
SolBERT-BiGRU 92.01 91.97 92.10 92.03 4.3
SolBERT-BiGRU-
attention

93.85 93.92 94.11 94.02 4.5

In the test data set of the data set, we first compare our proposed model with the traditional smart
contract vulnerability detection model. The corresponding ROC image is shown in Fig. 8. It can be
compared that the true positive rate of our model is higher than that of the static word, The embedding
model combines the RNN sequence neural network, and the false positive rate is lower than other
models. The area of the ROC curve in SolBERT-BiGRU-Attention is about 0.94, and the detection
effect can be performed very well. As shown in the histogram in Fig. 9, our model can reach 93.92% on
TPR, which is 13.55% higher than the traditional model, and the false positive rate is much lower than
the static word embedding model. In addition, adding the hierarchical attention mechanism and not
adding the hierarchical attention mechanism is 1.82%, which can capture more contextual semantics in
the source code of the smart contract. Several experimental indicators show that we have successfully
integrated the Attention mechanism and the bidirectional sequential neural network. It also shows
that in the smart contract source code scenario, the dynamic word embedding model will perform
better than the static word embedding model.
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Figure 8: Experimental ROC curve

Figure 9: Comparison of TPR and FPR experimental data of several models

Our data set has a total of 35,232 samples. When we choose Batch Size during model training, we
choose 256 pairs of models for training. The number of smart contract samples to be trained for each
Epoch is 35,232 complete data sets, a total of 138 iterations. Each epoch iterates the model parameters
138 times, and the experiment is set to 100 epochs. During the experiment, at the 80th and 90th epochs,
as shown in Fig. 10, the Accuracy of each model is already in a convergent state. In the two-way GRU
model that does not use the attention mechanism, it can be found that the Accuracy has a declining
process, and it is very likely that the model has an overfitting problem. However, we did not have this
problem when we used the hierarchical attention mechanism. It can be explained to a certain extent
that the hierarchical attention mechanism can improve the robustness of our model and have stronger
generalization ability.
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Figure 10: Epoch and accuracy of model training

5 Conclusion and Future Work

In this research, we propose a hybrid neural network model based on SolBERT-BiGRU-Attention
for smart contract vulnerability detection. The vulnerabilities that can be detected include 6 classi-
fications, including Integer overflow, Integer underflow, reentrant vulnerability, timestamp depen-
dency vulnerability, transaction order dependency vulnerability, unchecked return value vulnerability.
Compared with the existing smart contract vulnerability detection methods, our proposed model can
achieve a detection accuracy of 94% probability, and the false positive rate can be guaranteed to be
below 10%, which can have a better detection effect than the current model. The detection efficiency
can also be guaranteed to be around 4 s. If the traditional method of smart contract vulnerability
detection is dynamic detection, it will rely on the current solidity version, while the method of smart
contract vulnerability detection using the machine learning method does not rely on the solidity
execution process and results, which will greatly improve its running efficiency. At present, many pre-
trained language models are gradually applied to the field of code analysis, and the performance is also
quite remarkable. In the future, the research may be extended to more smart contracts to improve the
robustness of the model. There will certainly be many smart contract vulnerabilities that we have not
discovered and classified, and our model also needs to learn more data to improve the sensitivity of
the model. The second plan is to use a more lightweight dynamic pre-trained language model for word
meaning transformation to reduce the training cost of the model and improve its detection accuracy.
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