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ABSTRACT

The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding
achievements. As a representative, Slime mould algorithm (SMA) is widely used because of its superior initial
performance. Therefore, this paper focuses on the improvement of the SMA and the mitigation of its stagnation
problems. For this aim, the structure of SMA is adjusted to develop the efficiency of the original method. As
a stochastic optimizer, SMA mainly stimulates the behavior of slime mold in nature. For the harmony of the
exploration and exploitation of SMA, the paper proposed an enhanced algorithm of SMA called ECSMA, in which
two mechanisms are embedded into the structure: elite strategy, and chaotic stochastic strategy. The details of the
original SMA and the two introduced strategies are given in this paper. Then, the advantages of the improved SMA
through mechanism comparison, balance-diversity analysis, and contrasts with other counterparts are validated.
The experimental results demonstrate that both mechanisms have a significant enhancing effect on SMA. Also,
SMA is applied to four structural design issues of the welded beam design problem, PV design problem, I-beam
design problem, and cantilever beam design problem with excellent results.

KEYWORDS
Slime mould algorithm; metaheuristic algorithm; continuous optimization; chaos random strategy; engineering
design

1 Introduction

Swarm intelligence (SI) algorithms are currently a very prevalent topic and are receiving increasing
attention. Therefore, they have been employed in many fields, such as medical prediction, tourism path
planning, urban construction planning, and engineering design problems. Therefore, the SI algorithm
is widely adopted in many real-world application scenarios, where the slime mould algorithm (SMA)
[1] has superior performance and has recently been proposed to reveal new aspects of new problems.
The SI algorithms are mostly inspired by optimization phenomena in nature, such as Harris hawks
optimizer (HHO) [2,3] {Kennedy, 2010 #158}, multi-verse optimizer (MVO) [4], and particle swarm
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optimization (PSO) [5]. Some algorithms stimulate the physical phenomenon such as sine cosine
algorithm (SCA) [6,7] and gravitational search algorithm (GSA) [8].

In addition, some novel algorithms have been proposed one after another, which include not only
some novel basic algorithms, such as weighted mean of vectors (INFO) [9], hunger games search
(HGS) [10], colony predation algorithm (CPA) [11], and Runge Kutta optimizer (RUN) [12], but
also some newly proposed variants of basic algorithms, such as evolutionary biogeography-based
whale optimization (EWOA) [13], Harris hawks optimization with gaussian mutation (GCHHO)
[14], opposition-based ant colony optimization (ADNOLACO) [15], Harris hawks optimization with
elite evolutionary strategy (EESHHO) [16], improved whale optimization algorithm (LCWOA) [17],
ant colony optimization with Cauchy and greedy Lévy mutations (CLACO) [18], chaotic, random
spare ant colony optimization (RCACO) [19], moth-flame optimizer with sine cosine mechanism
(SMFO) [20], adaptive chaotic sine cosine algorithm (ASCA) [7], and sine cosine algorithm with
linear population size reduction mechanism (LSCA) [21]. Of course, they have been successfully
applied to many other fields as well, such as gate resource allocation [22,23], feature selection [24,25],
bankruptcy prediction [26,27], expensive optimization problems [28,29], image segmentation [30,31],
robust optimization [32,33], solar cell parameter identification [34], train scheduling [35], multi-
objective problem [36,37], resource allocation [38], scheduling problems [39–41], optimization of
machine learning model [42], medical diagnosis [43,44], and complex optimization problem [45]. These
excellent SI algorithms, including SMA, have shown some superiority. But there are still some common
drawbacks for these algorithms, such as slow convergence speed, more iterations consumed, and they
are prone to stagnating in premature solutions on certain functions with some harsh or flat feature
space.

SMA was proposed in 2020 that imitates the behavioral and morphological transforms of the slime
mould during food-seeking and solves the optimization problem by weighting the positive and negative
feedback during foraging. Compared with peers, SMA has the advantages of justifiability of logical
principle, few variables, and energetic, dynamic explorative capability. However, the local search capa-
bility of SMA is still deficient in some functions, and, as a newly proposed meta-heuristic algorithm,
there are relatively few improvements to SMA at present. From the existing improved algorithms, it
can be clearly seen that adding effective mechanisms or combining specific procedures contributes
to the performance upgrading of the algorithms. For example, Ebadinezhad et al. [46] developed an
adaptive ant colony optimization (ACO) called DEACO, adopting a dynamic evaporation strategy.
The experimental results showed that compared with the conventional ACO, the convergence speed
of DEACO is faster and the search accuracy is higher. Chen et al. [47] presented an augmented SCA
with multi-strategy. Specifically, the proposed memory-driven algorithm called MSCA combines a
reverse learning strategy, chaotic local search mechanism, Cauchy mutation operation as well as two
operators from differential evolution. The overall outcomes demonstrate the superior solution quality
and convergence speed of the proposed MSCA to its competitors. Guo et al. [48] presented a WOA
with the wavelet mutation strategy and the social learning. The algorithm proposed in the article was
applied to three water resource prediction models.

Jiang et al. [49] designed a chaotic gravitational search algorithm based on balance tuning (BA-
CGSA) with sinusoidal stochastic functions and equilibrium mechanisms, and the overall outcomes
revealed its efficiency in continuous optimization problems. Javidi et al. [50] introduced an enhanced
crow search algorithm (ECSA) that combines a free-flight mechanism and an individual cap strategy
that replaces each offending decision variable with a corresponding decision variable and global
optimal solution. Therefore, ECSA obtained better or very competitive results. Tawhid et al. [51]
presented a new hybrid binary bat enhanced PSO (HBBEPSO), and the outcomes indicated the
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capability of the proposed HBBEPSO to search for optimal feature combinations in the feature
space. Luo et al. [52] proposed a boosted MSA named elite opposition-based MSA (EOMSA). The
presented EOMSA employed an elite opposition-based strategy to increase population variation and
exploration capability. The results showed that EOMSA is capable of probing more accurate solutions
with fast convergence and high stability compared to other population-based algorithms. To handle
a complex power system problem, economic environmental dispatch (EED), Sulaiman et al. [53]
presented a hybrid optimization algorithm EGSJAABC3, which combined the evolutionary gradient
search (EGS) and the recently proposed artificial swarm variant (JA-ABC3), and obtained the
performance enhancement. The obtained benchmark function and EED application results revealed
the optimization efficacy of EGSJAABC3. Consequently, it can be observed that the new mechanisms
and the hybrid of algorithms based on the origin greatly improve the capability.

SMA has excellent convergence and accuracy, so it is also challenging to improve SMA. Here, an
idea for improving the SMA is provided: using elite strategy and chaotic randomness to improve SMA
coefficients A and B. The elite strategy is utilized to ensure convergence while chaotic randomness
is utilized to enhance exploration tendencies. To demonstrate the effectiveness of ECSMA, several
advanced elevating algorithms were compared against SMA. Besides, this paper attempts to apply
ECSMA to several engineering design problems.

The main contributions of this paper are listed as follows:

1) In this paper, a new SMA-based swarm intelligence optimization algorithm, called ECSMA,
is proposed.

2) The ECSMA skillfully combines the elite strategy and the chaotic stochastic strategy with the
original SMA to enhance its performance effectively.

3) ECSMA is compared with some state-of-the-art similar algorithms on 31 benchmark functions
and its performance is well demonstrated.

4) ECSMA is applied to four engineering design problems and achieves excellent results.

This paper is structured as follows. The principle and description of SMA are given in Section 2.
Hereafter, Section 3 describes the detail of the improved ECSMA. In Section 4, the test function exper-
imental results and explanation is presented. The application experiments of ECSMA to fundamental
engineering problems are given in Section 5. Section 6 gives the primary contributions of this thesis
and presents future work.

2 Background Principle of SMA

There are many different types of slime mould, while they have different morphological structures
and behaviors. Therefore, the type of slime mould studied by the original author is mainly Physarum
polycephalum. The slime mould covers the search space as much as possible by forming a large-scale
diffusion net. When spreading, the organic matter at the front of the slime mould diffuses into a
fan-shaped structure to expand the expansion area. Organic substances containing enzymes flow in
the vein structure of slime molds and digest the covered edible substances. Furthermore, the spread
network structure also ensures that slime mould can cover multiple food sources at the same time,
thereby forming a node network based on food concentration.

In 2020, Li et al. established a mathematical model for slime mould based on their foraging
behavior in nature and applied SMA to solve a series of optimization problems. The major steps of
SMA are shown below:



418 CMES, 2023, vol.137, no.1

Approach food:

By assessing the concentration of food in the air using receptors, slime mould spread in a general
direction toward the food. The authors used the following formula to simulate their expansion and
contraction behavior roughly.
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The adaptive parameter p is calculated as below:
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SmellIndex = sort(S) (6)

where SmellIndex presents the sequence of sorted fitness values (ascends in the minimum value
problem), wF is the worst fitness value acquired in the current iteration, bF presents the optimal fitness
value obtained in the current iteration, r denotes a random number in the range of [0, 1], condition
indicates that S (i) ranks the first half of the population.

2) Wrap food:

The following equation is utilized to update the values for slime mould in each iteration:
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(7)

where UB and LB denote the maximum and minimum values of search space, rand and r denote the
random number in [0,1]. The value of z is set to 0.3 as the original.
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3) Oscillation:

The tendency of slime mould towards high-quality food arises from propagation waves generated
by biological oscillators used to alter cytoplasmic flow in mucilage veins.

−→
W ,

−→
vb and −→vc are used to

simulate the conversion of the vein width of slime mould.

Among them,
−→
W mainly adjusts the expansion speed of slime mold under different food concen-

tration conditions, to realize the vibration intensity of the vein structure at different concentrations.
The vibration frequency is smaller when the concentration is lower, and vice versa. At the same time,
a certain degree of fault tolerance is also considered in the weight evaluation, so the balance between
the diffusion and the convergence is well coordinated.

The pseudocode of the original SMA is shown in Algorithm 1.

Algorithm 1: Pseudocode of SMA
Initialization of the population of slime mould X
DF is the best search agent
t = 0
while (t < Maxiter) do

for i = 1: N do
Keep search agents inside the boundaries

Calculate fitness value for each search agent
end for
Sort the S
Select the best and worst values
for i = 1:N do

for j = 1: dim do
Update weight by using Eq. (5)

end for
end for
Updates a, b
for i = 1:N do

Update the population by using Eq. (7)
end for
t ← t + 1

end while
return DF

3 Enhanced SMA Method (ECSMA)

The improved ECSMA is equipped with two valid strategies. First, the elite strategy is introduced
to enhance the exploitation of SMA and reduce the adverse effects of false solutions on the optimal
solution. Second, a chaotic strategy is added to improve the ergodicity of SMA and prevent SMA from
falling into local optimum (LO) prematurely.

3.1 Elite Strategy (ES)
The MGABC algorithm [54] improves the neighbor search formula by randomly selecting two

neighbors and using the optimum individual in the population as the initialization state for the search.
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Convergence speed is accelerated thanks to the guidance of the global optimal individual. On this basis,
the paper selects two elite individuals as neighbors to further enhance the rate of convergence, as shown
in Eq. (8).
−−−−−→
X (t + 1) = −−−→

Xb (t) + −→
vb ·

(−→
W · −−−→

XA (t) − −−−→
XB (t)

)
(8)

where XA, XB are the two individuals in the top half of the ranking.

3.2 Chaotic Stochastic Strategy (CSS)
A chaotic stochastic strategy is used to randomly select XA, XB to increase the ductility of the

algorithm, thus increasing the exploration capability of the algorithm and avoiding falling into LO
too early. The specific process is shown in Eqs. (9)–(11).

ch(1) = x (9)

ch (i + 1) = 4 · ch(i) · (1 − ch(i) (10)

A, B = N
2

· ch (i) + 1, rand ≥ z (11)

where x is a random number ∈ [0, 1], which is not equal to 0.25, 0.5, 0.75, and 1. A, B are two integers
with two different chaos factors.

3.3 The Proposed ECSMA
Although SMA already has good convergence and accuracy, it still has some room for improve-

ment in these two aspects. Therefore, the elite strategy and the chaotic stochastic strategy are utilized
to improve SMA coefficients A and B. The use of elite strategy is to ensure the convergence of SMA,
while the use of chaotic randomness is to enhance the exploration tendency of SMA. Algorithm 2
shows the procedure of ECSMA, while Fig. 1 displays the flowchart of ECSMA.

Algorithm 2: Pseudocode of ECSMA
Initialize a population of slime mould X
DF is the optimum fitness value obtained during all iterations
t = 0
while (t < Maxiter) do

for i = 1:N do
Return back the search agents that go beyond the boundaries of the search space

Calculate fitness value for each search agent
end for
Sort S and X in ascending order
for i = 1: N do

for j = 1: dim do
Calculation weight by using Eq. (5)

end for
end for
Updates a, b
Update ch by using Eq. (9)

(Continued)
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Algorithm 2: (Continued)
for i = 1: N do

Update ch by using Eq. (10)
Update A, B by using Eq. (11)

Update population by using Eq. (7)
end for
t = t + 1

end while
return DF

Figure 1: Flowchart of ECSMA

The proposed ECSMA’s time complexity includes several aspects: the number of algorithm
iterations (T), the number of search agents (N), and the dimensions of the optimization problems
(D). Therefore, the complexity of calculating fitness and sorting fitness is both O(N), while the
computational complexity of calculating weight and updating individual is both O (N × D). The
time complexity equations of the proposed algorithm is O (ECSMA) = O (Initialization) + T ×
(O (Calculation of the fitness)) + O (Fitness sorting) + O (Calculation of weight) + O (The position
update of the slime mould. Finally, the proposed ECSMA’s time complexity is O(ECSMA) = O (D)
+T × (2O(N) + 2O (N × D)).

4 Discussions on Experimental Results

The benchmark experiment is carried out in this section. Firstly, the diversity and balance of
ECSMA and SMA are analyzed. Then, we proved the performance of ECSMA through mechanism
comparison and experiment comparison with other algorithms.
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4.1 Validation Using Benchmark Problems and Parameter Settings
In this experimental section, the optimizer’s efficiency with distinguished test functions is bench-

marked. The function equations are shown in Table A1. In this paper, 23 benchmark functions and 8
composite functions in CEC2014 are opted to evaluate the efficacy of ECSMA. As we all know, the
unimodal function has only one optimal solution, so it proves the exploitation ability of the method
well. Compared with single-peak functions, multi-peak functions are more likely to lead to LO cases.
Moreover, the increase of function dimensionality increases the complexity of LO cases. Therefore, the
multi-peak function is suitable for testing the exploration capability of the algorithm and the ability to
jump out of LO. In order to eliminate randomness in the experiment, all the algorithms involved are
compared under the same conditions, where the population size is set to 30, the maximum evaluation
number MaxFEs is uniformly set to 250,000 times, and all algorithms are independently tested 30
times on the benchmark functions. Also, to better present the comparative results of the experiments,
the results were analyzed by the Wilcoxon signed-rank test in this paper.

To ensure fairness, all experiments were conducted on a desktop computer with an Intel(R)
Xeon(R) CPU E5-2660 v3 (2.60 GHz) and 16 GB RAM, and all methods mentioned above were
coded on the MATLAB R2020b.

4.2 Performance Analysis of ECSMA and SMA
We analyzed the algorithmic optimality of ECSMA and SMA including diversity and balance in

this part. The related experiment was carried out on 31 benchmark functions; in addition, to ensure
fairness, the experiment ensured that the parameters such as dimensionality, population size, and
assessment time were the same. To fully analyze the performance, the balance and diversity of ECSMA
and SMA are verified on the designed set of benchmark functions. Fig. 2 depicts the balance and
diversity of DCSMA and SMA on partial functions. The first column is the diversity image. The x-axis
denotes the number of iterations, while the y-axis denotes the diversity measure. The initial population
of the algorithm is randomly generated, so the population has rich diversity at first. However, the
diversity of the population decreases as the iteration progresses.

Figure 2: (Continued)
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Figure 2: Diversity and balance analysis of algorithms

From the diversity analysis image, it can be seen that ECSMA always reaches the bottom of
the image earlier than SMA, which shows that ECSMA converges faster than SMA, and ECSMA
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has stronger exploitation ability than SMA. The second and third columns are balance images,
which have three curves: exploration curve, incremental decline curve, and production curve. The
exploration stability of the algorithm in optimization stems from the high value of the exploration
curve. And, the change in the exploitation curve demonstrates the change in the exploitation ability of
the algorithm. The incremental decline curve is the result of balancing the two behaviors of exploitation
and exploration. When the exploration efficiency is greater than or equal to the exploitation capacity,
the incremental curve will increase. Rather, it is dwindling. The incremental decline curve reaches its
maximum when the exploration and exploitation capabilities are the same. From the balance analysis,
it can also be seen that ECSMA enters the exploitation stage faster than SMA. So, ECSMA can
always spend less time and enter the exploitation stage faster than SMA. Therefore, ECSMA has
better performance than SMA.

4.3 Impact of ES and CSS
Two strategies are incorporated into the original SMA, called ES and CSS in Section 3. Four

different variants of SMA are shown in Table 1 to investigate the impact of the introduced mechanisms.
“1” represents that the mechanism is introduced in SMA, and “0” represents that the mechanism is
not introduced. For example, ESMA introduced the “ES” mechanism on behalf of SMA.

Table 1: Various SMAs with three strategies

ES CSS

SMA 0 0
ESMA 1 0
CSMA 0 1
ECSMA 1 1

Three SMA variants were tested for performance on a benchmark function set. In Table 2,
the experimental results show the p-values of the various SMAs ranked by Wilcoxon signed-rank
test. The Wilcoxon signed-rank test was used for this experiment, and the significance threshold
difference rate between the comparison algorithms was 5%. The symbol “+” in the table indicates that
ECSMA performs better than other algorithms. The symbol “−” in the table indicates that ECSMA
performance is inferior to other algorithms. The symbol “=” in the table indicates that ECSMA
behaves similarly to other algorithms. Regarding “+/−/=”, there is a difference in performance
between ECSMA and other algorithms. So, ECSMA is inferior to ESMA, CSMA, and SMA on
3, 0, 0 out of 31 problems. Although the advantages of ECSMA in many functions are not distinct
compared with ESMA, CSMA, and SMA, it is not worse or even better than these variants. Therefore,
ECSMA demonstrates superiority. Moreover, ECSMA ranks first overall, showing better performance
compared with its peers in the face of benchmark functions. Finally, ECSMA is chosen as the best
lifting approach for SMA in the light of the above analysis. Therefore, by testing and comparing on
benchmark functions, ECSMA is also very advantageous in optimizing performance.
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Table 2: p-values of various SMAs in this experiment

Function ECSMA CSMA ESMA SMA

F1 – 1.000000E+00 1.000000E+00 1.000000E+00
F2 – 1.000000E+00 1.000000E+00 1.000000E+00
F3 – 1.000000E+00 1.000000E+00 1.000000E+00
F4 – 1.000000E+00 1.000000E+00 1.000000E+00
F5 – 5.577400E−01 2.369400E−01 8.307100E−04
F6 – 1.734400E−06 2.353400E−06 1.734400E−06
F7 – 5.716500E−01 6.435200E−01 8.220600E−02
F8 – 4.285700E−06 1.044400E−02 1.734400E−06
F9 – 1.000000E+00 1.000000E+00 1.000000E+00
F10 – 1.000000E+00 1.000000E+00 1.000000E+00
F11 – 1.000000E+00 1.000000E+00 1.000000E+00
F12 – 1.204400E−01 1.107900E−02 1.126500E−05
F13 – 1.956900E−02 1.915200E−01 1.734400E−06
F14 – 1.250000E−01 6.875000E−01 6.103500E−05
F15 – 3.001000E−02 4.165300E−01 6.319800E−05
F16 – 1.000000E+00 1.000000E+00 1.179300E−04
F17 – 4.640700E−01 2.865600E−02 1.733300E−06
F18 – 5.467200E−04 2.944000E−02 6.309400E−05
F19 – 1.734400E−06 1.956900E−02 2.894800E−01
F20 – 3.820300E−01 9.271000E−03 5.307000E−05
F21 – 4.652800E−01 4.681800E−03 1.734400E−06
F22 – 3.326900E−02 4.405200E−01 1.734400E−06
F23 – 3.160300E−02 1.204400E−01 1.734400E−06
F24 – 1.000000E+00 1.000000E+00 1.000000E+00
F25 – 1.000000E+00 1.000000E+00 1.000000E+00
F26 – 1.000000E+00 1.000000E+00 1.000000E+00
F27 – 8.612100E−01 5.857100E−01 1.528600E−01
F28 – 1.000000E+00 1.000000E+00 1.000000E+00
F29 – 1.000000E+00 1.000000E+00 1.000000E+00
F30 – 1.318300E−04 1.000000E+00 3.125000E−02
F31 – 1.821500E−05 1.000000E+00 2.701600E−05
+/−/= – 2007/3/21 8/0/23 16/0/15
ARV 2.1656 2.3957 2.3591 3.0796

4.4 Comparison with Excellent Peers
In Table A2, the improved SMA was compared with the primitive SMA, 12 efficient metaheuristic

algorithms and improved metaheuristic algorithms on the functions, including improved GWO
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algorithm (IGWO) [55], opposition-based learning GWO (OBLGWO) [56], chaotic whale optimizer
algorithm (CWOA) [57], improved WOA (IWOA) [58], chaotic map bat algorithm with random black
hole model (RCBA) [59], chaos-enhanced moth-flame optimizer (CMFO) [60], adaptive differential
evolution (JADE) [61], particle swarm optimization with an aging leader and challengers (ALC-PSO)
[62], bat optimizer (BA) [63], differential evolution (DE) [64], whale optimizer (WOA) [65] and grey
wolf algorithm (GWO) [66].

The experiments were conducted on the effects of dimensional changes. The dimension of the
benchmark experiment is set to 30. Relative parameters and function verification remain unchanged
from the original version. Table A2 records the standard deviation (STD) and the mean values (AVG)
obtained by algorithms to calculate functions.

In Table A2, the AVG and STD can reflect the stability of an algorithm. It can be observed that the
stability of ECSMA is slightly weaker than other algorithms on F6, F12, f13, F20, F23, and F27, but
it also ranks in the first few. In many functions such as F1, F2, F9, F11, F14, F16, F17, F18, F19, the
AVG and STD of several algorithms, including ECSMA, reach the lowest at the same time. Therefore,
proposed ECSMA can dig out the best solution more stably. The proposed model in this paper shows
advantages on multiple types of functions. This includes multimodal function, unimodal function,
and fixed dimension multimodal function. According to the ranking results, whether dealing with
problems with a different dimension, the proposed ECSMA has obtained the first average ranking,
which verifies the improvement of ECSMA performance compared to the original SMA.

The Wilcoxon signed-rank test evaluated the significance of the proposed ECSMA and other
optimizers on 31 benchmark functions. Its result was also recorded at the end of Table A2, which
demonstrated that the presented method performed well on most problems. p-values less than 0.05
in Table 3 means that ECSMA is significantly superior to competitors. Table 3 shows that ECSMA
has no discernible difference with other algorithms in F1, F2, F9, F11, F15, F16, F20. But in other
functions, it can be seen that ECSMA is obviously superior to most of the comparison algorithms in
the convergence rate. This proves the superiority of ECSMA in testing functions.

Table 3: p-values of ECSMA vs. other peers

F1 F2 F3 F4

IGWO 1.000000E+00 1.730000E−06 1.730000E−06 1.730000E−06
OBLGWO 5.000000E−01 1.730000E−06 5.000000E−01 3.790000E−06
CWOA 1.000000E+00 1.000000E+00 1.730000E−06 1.730000E−06
IWOA 1.000000E+00 1.000000E+00 1.730000E−06 1.730000E−06
RCBA 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
CMFO 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
JADE 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
ALCPSO 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
DE 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
BA 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
GWO 1.000000E+00 1.730000E−06 1.730000E−06 1.730000E−06
WOA 1.000000E+00 1.000000E+00 1.730000E−06 1.730000E−06

(Continued)
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Table 3 (continued)

F5 F6 F7 F8

IGWO 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
OBLGWO 1.730000E−06 1.730000E−06 3.520000E−06 1.730000E−06
CWOA 1.730000E−06 1.730000E−06 1.920000E−06 1.730000E−06
IWOA 1.730000E−06 1.730000E−06 2.350000E−06 1.730000E−06
RCBA 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
CMFO 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
JADE 3.820000E−01 1.730000E−06 1.730000E−06 1.730000E−06
ALCPSO 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
DE 1.730000E−06 1.730000E−06 1.730000E−06 2.610000E−04
BA 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
GWO 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
WOA 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06

F9 F10 F11 F12

IGWO 1.000000E+00 4.770000E−07 1.000000E+00 7.710000E−04
OBLGWO 1.000000E+00 1.000000E+00 1.000000E+00 1.730000E−06
CWOA 1.000000E+00 6.110000E−06 1.000000E+00 1.730000E−06
IWOA 1.000000E+00 1.220000E−04 5.000000E−01 3.870000E−02
RCBA 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
CMFO 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
JADE 1.000000E+00 1.070000E−06 1.950000E−03 3.590000E−04
ALCPSO 1.730000E−06 1.560000E−06 8.580000E−05 6.730000E−01
DE 1.000000E+00 1.960000E−07 1.000000E+00 1.730000E−06
BA 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
GWO 1.000000E+00 6.800000E−08 1.000000E+00 2.350000E−06
WOA 1.000000E+00 4.780000E−05 1.250000E−01 6.890000E−05

F13 F14 F15 F16

IGWO 1.730000E−06 8.140000E−07 1.850000E−01 2.540000E−06
OBLGWO 1.730000E−06 1.730000E−06 7.190000E−02 1.730000E−06
CWOA 1.730000E−06 5.590000E−06 9.710000E−05 6.250000E−02
IWOA 1.730000E−06 1.920000E−05 6.040000E−03 1.220000E−04
RCBA 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
CMFO 1.730000E−06 1.020000E−04 1.640000E−05 1.000000E+00
JADE 1.730000E−06 2.730000E−06 3.110000E−05 1.000000E+00
ALCPSO 2.070000E−02 6.330000E−05 1.480000E−02 1.000000E+00
DE 1.730000E−06 1.450000E−04 9.920000E−01 1.000000E+00
BA 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
GWO 1.730000E−06 1.730000E−06 6.440000E−01 1.730000E−06
WOA 1.730000E−06 8.900000E−06 1.970000E−05 2.290000E−04

(Continued)
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Table 3 (continued)

F17 F18 F19 F20

IGWO 1.730000E−06 1.400000E−05 2.410000E−04 4.780000E−01
OBLGWO 1.730000E−06 1.730000E−06 1.730000E−06 1.150000E−04
CWOA 1.730000E−06 1.730000E−06 1.730000E−06 6.290000E−01
IWOA 2.880000E−06 1.730000E−06 4.860000E−05 7.040000E−01
RCBA 1.730000E−06 1.730000E−06 1.730000E−06 9.750000E−01
CMFO 5.650000E−05 3.150000E−06 3.590000E−04 2.840000E−05
JADE 5.650000E−05 2.290000E−06 1.730000E−06 2.370000E−05
ALCPSO 5.650000E−05 1.220000E−05 1.730000E−06 9.320000E−06
DE 5.650000E−05 2.140000E−06 1.730000E−06 3.880000E−06
BA 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
GWO 1.730000E−06 1.730000E−06 1.730000E−06 7.810000E−01
WOA 1.730000E−06 1.730000E−06 1.730000E−06 1.590000E−01

F21 F22 F23 F24

IGWO 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
OBLGWO 1.730000E−06 1.730000E−06 1.730000E−06 1.000000E+00
CWOA 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
IWOA 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
RCBA 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
CMFO 9.750000E−01 1.650000E−01 6.440000E−01 1.730000E−06
JADE 6.730000E−01 2.770000E−03 1.480000E−02 4.320000E−08
ALCPSO 2.060000E−01 1.480000E−02 2.770000E−03 1.730000E−06
DE 3.110000E−05 1.730000E−06 3.110000E−05 6.800000E−08
BA 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
GWO 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06
WOA 1.730000E−06 1.730000E−06 1.730000E−06 1.730000E−06

F25 F26 F27 F28

IGWO 1.730000E−06 9.320000E−06 1.730000E−06 1.730000E−06
OBLGWO 1.000000E+00 9.260000E−01 2.440000E−04 1.220000E−04
CWOA 3.910000E−03 4.900000E−04 1.730000E−06 3.790000E−06
IWOA 5.960000E−05 4.490000E−02 1.730000E−06 2.560000E−06
RCBA 1.730000E−06 6.580000E−01 1.730000E−06 1.730000E−06
CMFO 1.730000E−06 4.450000E−05 1.730000E−06 1.730000E−06
JADE 1.730000E−06 1.730000E−06 1.650000E−01 1.730000E−06
ALCPSO 1.730000E−06 1.730000E−06 2.840000E−05 1.730000E−06
DE 1.730000E−06 1.730000E−06 2.600000E−06 1.730000E−06
BA 1.730000E−06 1.730000E−06 2.060000E−01 1.730000E−06
GWO 1.730000E−06 1.820000E−05 1.040000E−03 1.730000E−06
WOA 1.730000E−06 9.770000E−04 4.720000E−02 1.730000E−06

(Continued)
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Table 3 (continued)

F29 F30 F31

IGWO 1.730000E−06 1.730000E−06 1.730000E−06
OBLGWO 1.730000E−06 1.730000E−06 1.730000E−06
CWOA 1.730000E−06 1.730000E−06 1.730000E−06
IWOA 1.720000E−06 1.730000E−06 1.730000E−06
RCBA 1.730000E−06 1.730000E−06 1.730000E−06
CMFO 1.730000E−06 1.730000E−06 1.730000E−06
JADE 1.730000E−06 1.730000E−06 1.730000E−06
ALCPSO 1.730000E−06 1.730000E−06 1.730000E−06
DE 1.730000E−06 1.730000E−06 1.730000E−06
BA 1.730000E−06 1.730000E−06 1.730000E−06
GWO 1.730000E−06 1.730000E−06 1.730000E−06
WOA 2.560000E−06 1.710000E−06 1.730000E−06

Fig. 3 shows 12 convergence curves of ECSMA and other competitors on the 30-dimensional
benchmark functions. ECSMA shows the best convergence when tackling problems F15, F22, F24,
F25, F28, F29, while other optimizers stagnate in the local optimum. When considering F30 and F31,
although JADE and DE converge rapidly in the early stage, ECSMA reaches the relative optimum at
the later stage of the whole process. Compared with other algorithms, ECSMA converges to the right
solution with the fastest speed when dealing with F1 and F2 problems.

Figure 3: (Continued)
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Figure 3: Convergence curves of ECSMA and other peers

4.5 Comparison with State-of-the-Art Peers
In this subsection, ECSMA was compared with five state-of-the-art algorithms, mainly SADE

[64], PEDE [67], EPSDE [68], LSHADE [69], and LSHADE_cnEpSi [70], which are some of the
champion algorithms. The average and variance obtained by ECSMA and these advanced algorithms
on each of the benchmark function tests are given in Table A3. It is easy to see that ECSMA achieves
very good results compared to these advanced algorithms for the 31 benchmark functions selected
in this paper. First, the excellent performance of ECSMA on the mean value fully illustrates that
ECSMA has strong optimization ability on the function problems and can outperform these advanced
algorithms on most of the benchmark functions. Secondly, from the outstanding performance on the
variance of ECSMA, it fully illustrates that ECSMA has strong stability in the optimization process
and can perform well.

Further, the significance of the proposed ECSMA and other advanced algorithms on 31 bench-
mark functions was evaluated using the Wilcoxon signed-rank test. Observing the specific results
in Table 4, it can be found that most of the p-values in the Wilcoxon test are less than 0.05, which
fully demonstrates the validity of our experiments and the given results are sufficient to prove the
advancedness of ECSMA. Finally, the convergence curves of ECSMA and other advanced algorithms
on F1, F5, F7, F10, F12, F13, F25, F28, and F29 are given in Fig. 4. In the given convergence curves, it
can be seen that ECSMA has excellent convergence effect and the ability to jump out of local optimum.
The core advantages of ECSMA are further revealed, indicating that ECSMA is an excellent swarm
intelligence optimization algorithm that can be used to solve most optimization problems.



CMES, 2023, vol.137, no.1 431

Table 4: p-values of ECSMA vs. state-of-the-art peers

SADE MPEDE EPSDE LSHADE LSHADE_cnEpSi

F1 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06
F2 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06
F3 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06
F4 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06
F5 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06
F6 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06
F7 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06
F8 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06
F9 1.733310E−06 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06
F10 1.734400E−06 1.734400E−06 1.734400E−06 1.594240E−06 1.734400E−06
F11 1.819740E−05 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06
F12 1.020110E−01 1.360110E−05 1.650270E−01 3.181680E−06 4.729200E−06
F13 6.732800E−01 1.920920E−06 6.732800E−01 2.596710E−05 1.734400E−06
F14 6.334250E−05 6.334250E−05 6.334250E−05 6.334250E−05 6.334250E−05
F15 1.734400E−06 5.709650E−02 4.729200E−06 1.734400E−06 3.112320E−05
F16 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00
F17 4.882810E−04 4.882810E−04 4.882810E−04 4.882810E−04 4.882810E−04
F18 1.263170E−06 1.150490E−06 1.109130E−06 9.446640E−07 2.042150E−06
F19 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06
F20 1.126540E−05 3.881110E−04 1.149920E−04 2.105260E−03 1.477280E−04
F21 3.112320E−05 9.753870E−01 3.588840E−04 5.709650E−02 3.709350E−01
F22 1.734400E−06 2.765270E−03 1.734400E−06 2.765270E−03 5.709650E−02
F23 3.112320E−05 3.112320E−05 3.112320E−05 3.588840E−04 3.588840E−04
F24 1.734400E−06 1.726770E−06 1.720260E−06 1.540100E−06 1.734400E−06
F25 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06
F26 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06
F27 1.734400E−06 1.734400E−06 8.290130E−01 1.734400E−06 1.734400E−06
F28 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06
F29 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06
F30 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06
F31 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06 1.734400E−06

Figure 4: (Continued)
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Figure 4: Convergence curves of ECSMA and other state-of-the-art peers

In summary, the superiority of ECSMA not only in convergence speed as well as convergence
accuracy is well demonstrated but also in avoiding falling into local optimum and optimization
capability is illustrated through a series of benchmark function comparison experiments.

5 ECSMA for the Structural Design Issues

To demonstrate the practical performance of the proposed method, the ECSMA-based model
is applied to several engineering optimization problems. Engineering optimization problems differ in
that the optimal solution must be obtained while satisfying the constraints. So, the value needs to be
within a certain range. Four engineering problems as follows.

5.1 Structure Design of Welded Beam (WB)
The idea of the structural design problem is to optimize the structure of the WB so that the material

consumption of the WB is minimized. The main parameters involved are the length of the bar (l), the
thickness of the bar (b), the thickness of the weld (h), the height of the bar (t). Further, the primary
constraints are deflection rate (δ), bending stress in the beam (θ ), shear stress (τ ), bucking load (Pc).
The specific formulae and constraints are as follows:

Consider −→x = [x1x2x3x4] = [hltb]

Objective f (
−→x )min = 1.10471x2x2

1 + 0.04811x3x4(14.0 + x2)

Subject to g1

(−→x ) = τ
(−→x ) − τmax ≤ 0

g2

(−→x ) = σ
(−→x ) − σmax ≤ 0
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g3

(−→x ) = δ
(−→x ) − δmax ≤ 0

g4

(−→x ) = x1 − x4 ≤ 0

g5

(−→x ) = P − PC(
−→x ) ≤ 0

g6

(−→x ) = 0.125 − x1 ≤ 0

g7

(−→x ) = 1.10471x2
1 + 0.04811x3x4 (14.0 + x2) − 5.0 ≤ 0

Variable ranges:

0.1 ≤ x1 ≤ 2,

0.1 ≤ x2 ≤ 10,

0.1 ≤ x3 ≤ 10,

0.1 ≤ x4 ≤ 2

where

τ
(−→x ) =

√
(τ ′)2 + 2τ ′τ ′′ x2

2R
+ (τ ′′)2,

τ ′ = P√
2x1x2

, τ ′′ = MR
J

, M = P(L + x2

2
),

R =
√

x2
2

4
+

(
x1 + x3

2

)2

,

J = 2

{√
2x1x2

[
x2

2

4
+

(
x1 + x3

2

)2
]}

,

σ
(−→x ) = 6PL

x4x3
2
, δ

(−→x ) = 6PL3

Ex2
3x4

,

PC

(−→x ) =
4.013E

√
x2

3x
6
4

36
L2

(1 − x3

2L

√
E

4G
),

P = 60001b, L = 14in..δmax = 0.25in..

E = 30 × 16psi, G = 12 × 106psi

τmax = 13600psi, σmax = 30000psi

This structural design problem has been studied extensively as a constrained optimization
problem. Mirjalili et al. [71] used SSA to optimize this problem. Rashedi et al. [8] proposed GSA
to solve the problem. GSA could obtain an optimum cost of 1.879950.

Table 5 shows the results of ECSMA and other similar algorithms for solving WB. ECSMA’s
performance is the best. And, best cost is 1.715213. Four parameters: h = 0.195446, l = 3.419576, t
= 9.132268, and b = 0.205258. Finally, ECSMA can satisfy the constraints and solve this problem to
obtain the minimum manufacturing cost for WB.
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Table 5: Comparison between other widely used methods for the WB case

Technique Best variables Best cost

h l t b

ECSMA 0.195446 0.195446 0.195446 0.195446 0.195446
Simple method 0.279200 5.625600 7.751200 0.279600 2.530700
WOA 0.205396 3.484293 9.037426 0.206276 1.730499
SSA 0.205700 3.471400 9.036600 0.205700 1.724910
GSA 0.182129 3.856979 10.00000 0.202376 1.879950
CAEP 0.205700 3.470500 9.036600 0.205700 1.724852
WCA 0.205728 3.470522 9.036620 0.205729 1.724856

5.2 Structure Design of PV Design
The cylindrical PV model needs to optimize the constraint variables to reduce the cost. These

variables are section range minus head (l), head thickness (Th), shell thickness (Ts) and inner radius (r).
The model can be described as follows:

Consider −→x = [x1x2x3x4] = [TsThRL]

Objective: f (
−→x )min = 0.6224x1x3x4 + 1.7781x3x2

1 + 3.1661x4x2
1 + 19.84x3x2

1

Subject to g1

(−→x ) = −x1 + 0.0193x3 ≤ 0

g2

(−→x ) = −x3 + 0.00954x3 ≤ 0

g3

(−→x ) = −πx4x2
3 − 4

3
πx3

3 + 1296000 ≤ 0

g4

(−→x ) = x4 − 240 ≤ 0

Variable ranges: 0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200.

ECSMA was used to optimize the problem. The experimental results of ECSMA were compared
with CDE, ACO [72,73], EWOA, MFO [74], MDDE. In Table 6, the comparison outcomes are shown
in detail. The consequence of ECSMA is superior to other algorithms, which demonstrate that our
proposed ECSMA can effectively handle this problem.

Table 6: Comparison with other widely used methods of the PV design problem

Algorithm Optimal values for variables Optimum cost

Ts Th R L

ECSMA 1.414263 0.656058 65.15476 10.48867 5709.646
CDE 0.812500 0.437500 42.098400 176.637600 6059.7340
ACO 0.8125 0.4375 42.1036 176.5727 6059.0888
EWOA 0.901034 0.452897 46.67809 127.0967 6160.209
MFO 0.8125 0.4375 42.0984 176.6366 6059.7143
MDDE 0.8125 0.4375 42.0984 176.6360 6059.7017
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5.3 Structure Design of I-Beam
This experimental design minimizes the vertical deflection of the I-beam. And the model requires

solving structural parameters such as length, height and thickness. The model is as follows:

Consider −→x = [x1 x2 x3 x4] = [b h tw tf ]

Objective: f (
−→x )min = 5000

tw(h − 2tf )
3

12
+ bt3

f

6
+ 2btf

(
h − tf

2

)2

Subject to g(
−→x ) = 2btw + tw(h − 2tf ) ≤ 0

Variable range 10 ≤ x1 ≤ 50, 10 ≤ x2 ≤ 80, 0.9 ≤ x3 ≤ 5, 0.9 ≤ x4 ≤ 5

The meta-heuristic methods can be adopted in combination with mathematical models to solve
the design problem of I-beam (IBD). Meta-heuristic methods include RCBA [59], WEMFO, SCA [6],
CS [75], HBO [76], CLSGMFO [26]. The constraint correction equation of the loss function is adopted
to deal with the IBD problem. The experimental comparison results of ECSMA and other optimizers
are illustrated in Table 6. Further, we use the same penalty function to ensure a fair comparison.

Table 7 indicates that ECSMA is superior to other optimizers compared when handling IBD
problems and ultimately yields the most efficient design.

Table 7: Comparison with other widely used methods for the I-beam problem

Algorithm Optimal values for variables Optimum weight

b h tw tf

ECSMA 50.00000 80.00000 1.764406 5.000000 0.006626
RCBA 50.0000 80.0000 4.8149 5.0000 0.0066270
WEMFO 50.0000 80.0000 1.761606 5.0000 0.006626
SCA 50.0000 80.0000 1.760880 5.0000 0.006627
HBO 50.0000 80.0000 1.760220 5.0000 0.006627
CLSGMFO 38.0000 44.0000 3.775681 4.0000 0.006626

5.4 Cantilever Beam Design Problem
In this engineering structural design problem, we use ECSMA to obtain the minimum quantity

of materials of the cantilever beam. The cantilever beam is composed of five hollow square blocks
vertically stacked together, and the inner diameter is arranged in increasing order. The mathematical
model equation of the problem is as follows:

Consider −→x = [x1x2x3x4x5]

Minimize f
(−→x ) = 0.0624(x1 + x2 + x3 + x4 + x5)

Subject to g
(−→x ) = 61

x3
1

+ 27
x3

2

+ 19
x3

3

+ 7
x3

4

+ 1
x3

5

− 1 ≤ 0

Variable range 0.01 ≤ x1, x2, x3, x4, x5 ≤ 100

ECSMA is used to deal with this optimization problem. At the same time, the results of ECSMA
with CS, GCA_II [77], GCA_I [77], MMA [77], SOS, and SSA [71] are listed in Table 8.
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Table 8: Comparison with other widely used methods for the cantilever beam problem

Algorithm Optimal values for variables Optimum weight

x1 x2 x3 x4 x5

ECSMA 6.09864 5.300626 4.412439 3.518830 2.148634 1.34030
SSA 6.015135 5.3093047 4.4950067 3.5014263 2.1527879 1.339956
SOS 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996
MMA 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400
GCA_I 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400
GCA_II 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400
CS 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999

As outlined in Table 8, it indicates that ECSMA possesses more stability and effectiveness than
counterparts compared. Therefore, our method provides more economical results so that it can also be
applied to more other fields in the future, such as power flow optimization [78], road network planning
[79], information retrieval services [80,81], human activity recognition [82], structured sparsity opti-
mization [83], dynamic module detection [84,85], recommender system [86,87], tensor completion [88],
colorectal polyp region extraction [89], image-to-image translation [90], smart contract vulnerability
detection [91], and medical data processing [92].

Finally, the experimental results of solving four classical structural design problems with the model
designed in this paper demonstrate the feasibility and practicability of ECSMA. The experimental
results demonstrate the ability of SMA to solve constrained problems, and ECSMA continues the
advantage of SMA in solving for even trends.

6 Conclusions and Future Works

In this study, the ECSMA is designed for the lack of exploration and exploitation ability of
the original SMA. In ECSMA, the elite strategy can facilitate the exploitation capability of SMA,
and chaos stochastic mechanism is adopted to enhance the randomness, to improve the exploration
ability during the early period. The introduction of the two strategies gives SMA a better balance
of exploration and exploitation capabilities. The experimental results on the benchmark function
set (including unimodal function, multimodal function, and dimensionally determined multimodal
function) show that the two strategies introduced can effectively tackle the problem of function
optimization, alleviate the premature convergence of SMA by jumping out of local optimum, and
provide better accuracy and diversity of SMA. When handling the above four structure design
problems, the simulation outcomes also demonstrate that ECSMA can achieve better accuracy of
the calculation results, which has a certain practical value in a real-world application. However, since
two improvement strategies are introduced, they inevitably cause an increase in the complexity of the
algorithm, which makes ECSMA limited in some scenarios.

In the future, GPU parallel approaches and multi-threaded parallel processing will be considered
to solve more complex problems. In addition, given that SMA is a relatively new algorithm, its in-depth
study and application in multiple disciplines still need to be fully explored.
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Table A1: Description of the 23 benchmark functions and CEC2014

ID Function equation Range f min

23 Classical functions

F1 f1 (x) = ∑n

i=1 x2
i [−100,100] 0

F2 f2 (x) = ∑n

i=1 |xi| + ∏n

i=1 |xi| [−10,10] 0
F3 f3 (x) = ∑n

i=1

(∑i

j−1 xj

)2
[−100,100] 0
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Table A1 (continued)

ID Function equation Range f min

F4 f4 (x) = maxi {|xi| , 1 ≤ i ≤ n} [−100,100] 0
F5 f5 (x) = ∑n−1

i=1 [100(xi+1 − x2
i )

2 + (xi − 1)2] [−30,30] 0
F6 f6 (x) = ∑n

i=1([xi + 0.5])2 [−100,100] 0
F7 f7 (x) = ∑n

i=1 ix4
i + random[0, 1) [−1.28,1.28] 0

F8 f8 (x) = ∑n

i=1 −xi sin(
√|xi|) [−500,500] −418.9829 × n

F9 f9 (x) = ∑n

i=1[x
2
i − 10 cos (2πxi) + 10] [−5.12,5.12] 0

F10 f10 (x) = −20 exp

{
−0.2

√
1
n

∑n

i=1 xi

}

−exp
{

1
n

∑n

i=1 cos (2πxi)

}
+ 20 + e

[−32,32] 0

F11 f11 (x) = 1
4000

∑n

i=1 x2
i − ∏n

i=1 cos
(

xi√
i

)
+ 1 [−600,600] 0

F12 f12 (x) = π

n
{10 sin (ay1) + ∑n−1

i=1 (yi − 1)2[1 +
10sin2(πyi+1)] + (yn − 1)2} + ∑n

i=1 μ(xi, 10, 100, 4)}
yi = 1 + xi + 1

4

μ (xi, a, k, m) =
⎧⎨
⎩

k (xi − a)
m xi > a

0 −a < xi < a
k (−xi − a)

m xi < −a

[−50,50] 0

F13 f13 (x) = 0.1{sin2 (3πxi) + ∑n

i=1(xi − 1)2[1 + sin2(3πxi +
1)] + (xn − 1)2[1 + sin2(2πxn)] + ∑n

i=1 μ(xi, 5, 100, 4)

[−50,50] 0

F14 f14 (x) =
(

1
500

+ ∑25

j=1

1

j + ∑2

i=1(xi − aij)6

)−1

[−65,65] 1

F15 f15 (x) = ∑11

i=1

[
ai − x1(b2

i + bix2)

b2
i + bix3 + x4

]2

[−5,5] 0.00030

F16 f16 (x) = 4x2
1 − 2.1x4

i + 1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2 [−5,5] −1.0316

F17 f17 (x) = (x2 − 5.1
4π 2

x2
1 + 5

π
x1 − 6)2 +

10
(

1 − 1
8π

)
cos x1 + 10

[−5,5] 0.398

F18 f18 (x) = [1 + (x1 + x2 + 1)
2
(19 − 14x1 + 3x2

1 − 14x2 +
6x1x2 + 3x2

2)] × [30 + (2x1 − 3x2)
2 × (18 − 32x1 +

12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

[−2,2] 3
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Table A1 (continued)

ID Function equation Range f min

F19 f19 (x) = −∑4

i=1 ci exp(−∑3

j=1 aij(xj−pij)
2) [1,3] −3.86

F20 f20 (x) = −∑4

i=1 ci exp(−∑6

j=1 aij(xj−pij)
2) [0,1] −3.32

F21 f21 (x) = −∑5

i=1[(X − ai) (X − ai)
T + ci]−1 [0,10] −10.1532

F22 f22 (x) = −∑7

i=1[(X − ai) (X − ai)
T + ci]−1 [0,10] −10.4028

F23 f23 (x) = −∑10

i=1[(X − ai) (X − ai)
T + ci]−1 [0,10] −10.5363

CEC’14 test functions

F24 Composition Function 1 (N = 5) [−100, 100] 2300
F25 Composition Function 2 (N = 3) [−100, 100] 2400
F26 Composition Function 3 (N = 3) [−100, 100] 2500
F27 Composition Function 4 (N = 5) [−100, 100] 2600
F28 Composition Function 5 (N = 5) [−100, 100] 2700
F29 Composition Function 6 (N = 5) [−100, 100] 2800
F30 Composition Function 7 (N = 3) [−100, 100] 2900
F31 Composition Function 8 (N = 3) [−100, 100] 3000

Table A2: Experiment results of ECSMA with peers

F1 F2

AVG STD AVG STD

ECSMA 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
IGWO 0.000000E+00 0.000000E+00 3.180000E−205 0.000000E+00
OBLGWO 6.050000E−294 0.000000E+00 7.970000E−130 3.080000E−129
CWOA 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
IWOA 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
RCBA 1.270000E−02 3.780000E−03 5.960000E−01 1.530000E−01
CMFO 1.390000E+02 1.430000E+02 1.240000E+00 4.080000E+00
JADE 7.700000E−152 4.220000E−151 1.920000E−60 9.290000E−60
ALCPSO 9.860000E−148 4.780000E−147 1.280000E−03 6.010000E−03
DE 7.420000E−127 8.780000E−127 3.370000E−75 3.140000E−75
BA 6.510000E−01 5.670000E−01 3.870000E+00 1.580000E+00
GWO 0.000000E+00 0.000000E+00 7.350000E−286 0.000000E+00
WOA 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

F3 F4

AVG STD AVG STD

ECSMA 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
IGWO 1.250000E−78 4.940000E−78 2.330000E−19 1.280000E−18
OBLGWO 1.820000E−277 0.000000E+00 2.560000E−149 1.260000E−148

(Continued)
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Table A2 (continued)

CWOA 5.370000E+01 1.110000E+02 1.560000E+01 1.710000E+01
IWOA 1.230000E+02 2.470000E+02 4.220000E−04 1.900000E−03
RCBA 3.340000E+00 1.060000E+00 2.300000E−01 7.230000E−02
CMFO 4.100000E+04 1.180000E+04 5.340000E+01 1.170000E+01
JADE 1.290000E−45 3.680000E−45 3.640000E−12 1.840000E−11
ALCPSO 2.880000E−08 4.070000E−08 5.440000E−04 5.200000E−04
DE 2.460000E+03 9.570000E+02 6.650000E−12 5.900000E−12
BA 4.080000E−01 2.790000E−01 4.310000E+00 3.910000E+00
GWO 7.480000E−144 4.060000E−143 1.100000E−121 4.910000E−121
WOA 8.350000E+01 1.560000E+02 9.740000E+00 2.100000E+01

F5 F6

AVG STD AVG STD

ECSMA 4.030000E−04 8.670000E−04 1.150000E−10 1.520000E−10
IGWO 2.350000E+01 1.670000E−01 1.910000E−05 5.880000E−06
OBLGWO 2.610000E+01 4.240000E−01 5.780000E−05 2.030000E−05
CWOA 2.550000E+01 9.940000E−01 2.210000E−01 2.960000E−01
IWOA 2.380000E+01 4.580000E−01 6.670000E−06 2.460000E−06
RCBA 8.930000E+01 1.160000E+02 1.240000E−02 3.870000E−03
CMFO 3.460000E+04 6.910000E+04 2.020000E+02 3.340000E+02
JADE 4.550000E+00 1.460000E+01 2.050000E−34 7.820000E−34
ALCPSO 3.760000E+01 3.100000E+01 1.860000E−30 6.160000E−30
DE 4.420000E+01 2.700000E+01 0.000000E+00 0.000000E+00
BA 3.940000E+02 4.960000E+02 8.400000E−01 5.400000E−01
GWO 2.620000E+01 8.180000E−01 5.160000E−01 2.530000E−01
WOA 2.460000E+01 2.270000E−01 1.400000E−05 6.630000E−06

F7 F8

AVG STD AVG STD

ECSMA 7.330000E−06 7.150000E−06 −1.260000E+04 1.530000E−06
IGWO 3.330000E−04 2.250000E−04 −7.580000E+03 6.880000E+02
OBLGWO 3.320000E−05 2.560000E−05 −1.260000E+04 4.990000E−01
CWOA 3.230000E−04 3.290000E−04 −1.160000E+04 1.660000E+03
IWOA 2.090000E−04 1.670000E−04 −1.240000E+04 4.720000E+02
RCBA 1.330000E−01 5.930000E−02 −7.710000E+03 6.670000E+02
CMFO 1.120000E+00 4.530000E−01 −8.100000E+03 2.970000E+03
JADE 2.020000E−03 9.780000E−04 −1.220000E+04 1.670000E+02
ALCPSO 8.240000E−02 1.880000E−02 −1.130000E+04 4.130000E+02
DE 3.080000E−03 6.910000E−04 −1.250000E+04 1.040000E+02
BA 1.460000E+01 6.490000E+00 −7.120000E+03 4.990000E+02
GWO 8.320000E−05 4.500000E−05 −6.150000E+03 5.690000E+02
WOA 2.830000E−04 2.430000E−04 −1.240000E+04 2.380000E+02

(Continued)
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Table A2 (continued)

F9 F10

AVG STD AVG STD

ECSMA 0.000000E+00 0.000000E+00 8.880000E−16 0.000000E+00
IGWO 0.000000E+00 0.000000E+00 5.390000E−15 1.600000E−15
OBLGWO 0.000000E+00 0.000000E+00 8.880000E−16 0.000000E+00
CWOA 0.000000E+00 0.000000E+00 3.730000E−15 1.960000E−15
IWOA 0.000000E+00 0.000000E+00 2.660000E−15 2.030000E−15
RCBA 2.130000E+01 5.060000E+00 1.280000E−01 2.970000E−02
CMFO 7.250000E+01 2.800000E+01 1.400000E+00 2.010000E+00
JADE 0.000000E+00 0.000000E+00 1.380000E−01 3.630000E−01
ALCPSO 2.500000E+01 9.580000E+00 8.080000E−01 7.290000E−01
DE 3.320000E−02 1.820000E−01 7.520000E−15 1.230000E−15
BA 2.520000E+02 1.900000E+01 2.560000E+00 3.350000E+00
GWO 0.000000E+00 0.000000E+00 7.880000E−15 6.490000E−16
WOA 0.000000E+00 0.000000E+00 3.260000E−15 2.150000E−15

F11 F12

AVG STD AVG STD

ECSMA 0.000000E+00 0.000000E+00 7.920000E−07 8.720000E−07
IGWO 0.000000E+00 0.000000E+00 1.640000E−06 5.930000E−07
OBLGWO 0.000000E+00 0.000000E+00 3.880000E−04 1.240000E−03
CWOA 0.000000E+00 0.000000E+00 5.460000E−03 6.450000E−03
IWOA 1.070000E−03 4.650000E−03 1.140000E−06 5.120000E−07
RCBA 1.600000E−02 1.350000E−02 8.660000E+00 3.140000E+00
CMFO 2.580000E+00 2.160000E+00 3.310000E+04 9.270000E+04
JADE 3.860000E−03 6.060000E−03 1.040000E−02 4.170000E−02
ALCPSO 1.290000E−02 1.640000E−02 3.490000E−02 1.010000E−01
DE 0.000000E+00 0.000000E+00 1.570000E−32 5.570000E−48
BA 1.280000E−02 1.300000E−02 8.700000E+00 3.370000E+00
GWO 0.000000E+00 0.000000E+00 2.890000E−02 1.860000E−02
WOA 2.350000E−03 6.440000E−03 1.990000E−06 6.380000E−07

F13 F14

AVG STD AVG STD

ECSMA 2.960000E−08 1.690000E−08 9.980000E−01 3.580000E−16
IGWO 2.620000E−02 4.720000E−02 9.980000E−01 4.310000E−15
OBLGWO 6.560000E−02 9.370000E−02 9.980000E−01 1.280000E−11
CWOA 5.460000E−01 4.570000E−01 4.000000E+00 3.890000E+00
IWOA 1.480000E−03 3.800000E−03 9.980000E−01 9.550000E−15
RCBA 6.220000E−03 4.850000E−03 7.520000E+00 5.790000E+00
CMFO 4.390000E+05 9.230000E+05 3.230000E+00 2.650000E+00
JADE 1.390000E−32 2.030000E−33 9.980000E−01 0.000000E+00

(Continued)
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Table A2 (continued)

ALCPSO 6.590000E−03 8.940000E−03 9.980000E−01 1.300000E−16
DE 1.350000E−32 5.570000E−48 1.030000E+00 1.810000E−01
BA 1.440000E−01 9.810000E−02 2.900000E+00 2.680000E+00
GWO 4.080000E−01 2.050000E−01 4.000000E+00 3.890000E+00
WOA 1.140000E−03 3.350000E−03 1.130000E+00 5.030000E−01

F15 F16

AVG STD AVG STD

ECSMA 3.200000E−04 5.050000E−05 -1.030000E+00 4.080000E−16
IGWO 4.910000E−04 3.730000E−04 -1.030000E+00 3.020000E−13
OBLGWO 4.620000E−04 3.460000E−04 -1.030000E+00 2.670000E−08
CWOA 4.880000E−04 3.150000E−04 -1.030000E+00 7.770000E−16
IWOA 3.390000E−04 1.670000E−04 -1.030000E+00 1.190000E−14
RCBA 4.020000E−03 7.440000E−03 -1.030000E+00 5.490000E−08
CMFO 1.920000E−03 2.310000E−03 -1.030000E+00 6.780000E−16
JADE 9.760000E−04 3.660000E−03 -1.030000E+00 6.780000E−16
ALCPSO 4.110000E−04 2.830000E−04 -1.030000E+00 6.320000E−16
DE 3.840000E−04 1.560000E−04 -1.030000E+00 6.780000E−16
BA 4.160000E−03 7.370000E−03 -1.030000E+00 1.020000E−04
GWO 5.050000E−03 8.590000E−03 -1.030000E+00 7.220000E−11
WOA 4.260000E−04 2.520000E−04 -1.030000E+00 2.680000E−14

F17 F18

AVG STD AVG STD

ECSMA 3.980000E−01 2.380000E−14 3.000000E+00 9.900000E−15
IGWO 3.980000E−01 2.860000E−11 3.000000E+00 5.240000E−14
OBLGWO 3.980000E−01 7.390000E−08 3.000000E+00 3.410000E−06
CWOA 3.980000E−01 3.370000E−11 3.000000E+00 2.900000E−05
IWOA 3.980000E−01 5.900000E−11 3.000000E+00 1.980000E−09
RCBA 3.980000E−01 7.800000E−09 3.000000E+00 1.310000E−06
CMFO 3.980000E−01 0.000000E+00 3.000000E+00 1.370000E−15
JADE 3.980000E−01 0.000000E+00 3.000000E+00 1.940000E−15
ALCPSO 3.980000E−01 0.000000E+00 3.000000E+00 1.860000E−15
DE 3.980000E−01 0.000000E+00 3.000000E+00 2.040000E−15
BA 3.980000E−01 4.600000E−05 3.010000E+00 9.640000E−03
GWO 3.980000E−01 1.180000E−09 3.000000E+00 1.590000E−07
WOA 3.980000E−01 7.400000E−10 3.000000E+00 1.400000E−07

(Continued)
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Table A2 (continued)

F19 F20

AVG STD AVG STD

ECSMA −3.860000E+00 1.670000E−09 −3.230000E+00 5.350000E−02
IGWO −3.860000E+00 3.790000E−09 −3.250000E+00 5.990000E−02
OBLGWO −3.860000E+00 1.500000E−06 −3.210000E+00 3.630000E−02
CWOA −3.860000E+00 2.890000E−03 −3.240000E+00 8.250000E−02
IWOA −3.860000E+00 2.980000E−03 −3.260000E+00 6.410000E−02
RCBA −3.860000E+00 7.560000E−06 −3.260000E+00 6.070000E−02
CMFO −3.860000E+00 2.000000E−03 −3.290000E+00 5.540000E−02
JADE −3.860000E+00 2.710000E−15 −3.290000E+00 5.350000E−02
ALCPSO −3.860000E+00 2.550000E−15 −3.280000E+00 5.700000E−02
DE −3.860000E+00 2.710000E−15 −3.320000E+00 1.220000E−03
BA −3.850000E+00 4.240000E−03 −2.990000E+00 8.510000E−02
GWO −3.860000E+00 2.400000E−03 −3.260000E+00 6.750000E−02
WOA −3.860000E+00 1.460000E−03 −3.280000E+00 6.640000E−02

F21 F22

AVG STD AVG STD

ECSMA −1.020000E+01 1.330000E−09 −1.040000E+01 5.500000E−10
IGWO −8.470000E+00 2.430000E+00 −1.000000E+01 1.350000E+00
OBLGWO −1.020000E+01 4.320000E−05 −1.040000E+01 7.420000E−05
CWOA −9.730000E+00 1.630000E+00 −1.040000E+01 1.530000E−05
IWOA −1.020000E+01 5.270000E−07 −1.020000E+01 9.700000E−01
RCBA −9.480000E+00 1.750000E+00 −9.210000E+00 2.740000E+00
CMFO −8.630000E+00 2.360000E+00 −9.350000E+00 2.150000E+00
JADE −8.560000E+00 2.750000E+00 −9.750000E+00 2.020000E+00
ALCPSO −8.350000E+00 2.550000E+00 −9.700000E+00 1.830000E+00
DE −9.980000E+00 9.220000E−01 −1.040000E+01 1.810000E−15
BA −7.470000E+00 2.220000E+00 −8.610000E+00 1.910000E+00
GWO −8.800000E+00 2.280000E+00 −1.040000E+01 1.470000E−06
WOA −1.020000E+01 1.180000E−06 −1.040000E+01 5.140000E−06

F23 F24

AVG STD AVG STD

ECSMA −1.050000E+01 6.210000E−10 2.500000E+03 0.000000E+00
IGWO −1.020000E+01 1.370000E+00 2.620000E+03 2.320000E+00
OBLGWO −1.050000E+01 4.590000E−05 2.620000E+03 1.700000E+00
CWOA −1.050000E+01 1.570000E−03 2.640000E+03 5.040000E+01
IWOA −1.050000E+01 1.410000E−06 2.620000E+03 3.720000E+00
RCBA −8.870000E+00 3.130000E+00 2.620000E+03 6.750000E−03
CMFO −8.500000E+00 3.010000E+00 2.640000E+03 3.490000E+01
JADE −9.700000E+00 2.200000E+00 2.620000E+03 1.820000E−12

(Continued)
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Table A2 (continued)

ALCPSO −1.000000E+01 1.640000E+00 2.620000E+03 2.260000E−02
DE −1.040000E+01 9.790000E−01 2.620000E+03 9.850000E−02
BA −8.820000E+00 1.900000E+00 2.620000E+03 4.810000E−03
GWO −1.050000E+01 1.790000E−06 2.630000E+03 1.280000E+01
WOA −1.050000E+01 1.710000E−06 2.630000E+03 9.440000E+00

F25 F26

AVG STD AVG STD

ECSMA 2.600000E+03 0.000000E+00 2.700000E+03 0.000000E+00
IGWO 2.600000E+03 3.280000E−03 2.710000E+03 1.950000E+00
OBLGWO 2.600000E+03 0.000000E+00 2.700000E+03 0.000000E+00
CWOA 2.600000E+03 3.490000E+00 2.710000E+03 1.720000E+01
IWOA 2.600000E+03 3.220000E+00 2.720000E+03 1.360000E+01
RCBA 2.680000E+03 4.420000E+01 2.730000E+03 1.440000E+01
CMFO 2.670000E+03 1.370000E+01 2.730000E+03 1.080000E+01
JADE 2.630000E+03 6.340000E+00 2.710000E+03 3.910000E+00
ALCPSO 2.640000E+03 6.260000E+00 2.710000E+03 3.660000E+00
DE 2.630000E+03 2.900000E+00 2.710000E+03 1.160000E+00
BA 2.660000E+03 2.010000E+01 2.730000E+03 1.300000E+01
GWO 2.600000E+03 1.000000E−03 2.710000E+03 5.460000E+00
WOA 2.600000E+03 2.990000E+00 2.710000E+03 1.920000E+01

F27 F28

AVG STD AVG STD

ECSMA 2.700000E+03 1.390000E−01 2.900000E+03 0.000000E+00
IGWO 2.700000E+03 1.220000E−01 3.110000E+03 3.640000E+00
OBLGWO 2.700000E+03 1.350000E−01 3.180000E+03 3.490000E+02
CWOA 2.750000E+03 5.050000E+01 3.850000E+03 3.370000E+02
IWOA 2.700000E+03 1.160000E−01 3.600000E+03 3.650000E+02
RCBA 2.720000E+03 6.110000E+01 3.920000E+03 4.720000E+02
CMFO 2.710000E+03 1.820000E+01 3.820000E+03 3.800000E+02
JADE 2.720000E+03 3.780000E+01 3.120000E+03 5.000000E+01
ALCPSO 2.760000E+03 6.150000E+01 3.480000E+03 2.390000E+02
DE 2.700000E+03 4.600000E−02 3.230000E+03 8.930000E+01
BA 2.700000E+03 1.820000E+01 4.020000E+03 1.990000E+02
GWO 2.750000E+03 5.050000E+01 3.340000E+03 1.170000E+02
WOA 2.700000E+03 1.820000E+01 3.770000E+03 3.620000E+02

F29 F30

AVG STD AVG STD

ECSMA 3.000000E+03 0.000000E+00 3.100000E+03 0.000000E+00
IGWO 3.860000E+03 1.790000E+02 1.570000E+06 4.030000E+06

(Continued)
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Table A2 (continued)

OBLGWO 3.500000E+03 5.870000E+02 4.910000E+06 4.350000E+06
CWOA 5.060000E+03 8.760000E+02 6.610000E+06 5.000000E+06
IWOA 4.630000E+03 6.110000E+02 6.320000E+06 4.590000E+06
RCBA 5.540000E+03 1.050000E+03 1.350000E+07 1.820000E+07
CMFO 5.580000E+03 6.350000E+02 4.450000E+07 2.220000E+07
JADE 3.670000E+03 9.210000E+01 3.750000E+03 3.940000E+02
ALCPSO 4.390000E+03 5.010000E+02 3.260000E+06 6.110000E+06
DE 3.640000E+03 2.610000E+01 6.050000E+03 7.010000E+03
BA 5.420000E+03 6.590000E+02 3.600000E+07 3.350000E+07
GWO 3.920000E+03 2.470000E+02 1.070000E+06 2.350000E+06
WOA 5.040000E+03 7.680000E+02 6.100000E+06 4.750000E+06

F31 +/−/= RANK
AVG STD

ECSMA 3.200000E+03 0.000000E+00 ∼ 1
IGWO 2.870000E+04 1.470000E+04 26/0/5 6
OBLGWO 1.990000E+04 9.190000E+03 22/0/9 7
CWOA 1.670000E+05 9.420000E+04 25/0/6 10
IWOA 2.960000E+04 1.370000E+04 25/1/5 4
RCBA 1.130000E+04 3.440000E+03 29/0/2 12
CMFO 2.510000E+05 3.340000E+05 24/3/4 11
JADE 5.620000E+03 1.150000E+03 19/7/5 2
ALCPSO 1.510000E+04 1.810000E+04 22/6/3 5
DE 6.780000E+03 1.380000E+03 18/9/4 3
BA 1.180000E+04 4.130000E+03 30/0/1 13
GWO 4.410000E+04 2.590000E+04 26/0/3 9
WOA 1.070000E+05 9.970000E+04 26/0/5 8

Table A3: Experiment results of ECSMA with state-of-the-art peers

F1 F2
AVG STD AVG STD

ECSMA 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
SADE 4.200000E-20 1.290000E-19 1.800000E-11 8.600000E-11
MPEDE 4.590000E-29 1.260000E-28 2.110000E-06 1.160000E-05
EPSDE 2.340000E-46 4.950000E-46 1.140000E-26 3.500000E-26
LSHADE 7.570000E-31 2.980000E-30 3.330000E-09 1.680000E-08
LSHADE_cnEpSi 3.310000E-21 5.970000E-21 3.470000E-05 6.640000E-05
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Table A3 (continued)

F3 F4
AVG STD AVG STD

ECSMA 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
SADE 9.510000E+02 2.840000E+02 8.090000E+00 4.790000E+00
MPEDE 5.400000E+00 8.060000E+00 2.840000E+01 2.880000E+00
EPSDE 4.760000E+03 2.600000E+04 1.740000E+01 1.310000E+01
LSHADE 1.400000E-01 9.890000E-02 3.330000E+01 4.160000E+00
LSHADE_cnEpSi 2.530000E-01 2.380000E-01 2.060000E+01 2.560000E+00

F5 F6
AVG STD AVG STD

ECSMA 1.110000E-03 7.350000E-04 1.560000E-06 1.050000E-06
SADE 2.680000E+02 6.910000E+01 7.190000E-19 3.910000E-18
MPEDE 9.150000E+01 5.580000E+01 1.590000E-26 8.680000E-26
EPSDE 1.700000E+02 4.960000E+01 4.190000E-31 2.520000E-31
LSHADE 7.540000E+01 4.570000E+01 2.170000E-31 7.720000E-32
LSHADE_cnEpSi 1.610000E+02 5.460000E+01 3.670000E-21 7.750000E-21

F7 F8
AVG STD AVG STD

ECSMA 5.990000E-06 5.550000E-06 -4.190000E+04 1.100000E-04
SADE 1.700000E-01 4.140000E-02 -4.080000E+04 4.380000E+02
MPEDE 1.490000E-01 6.730000E-02 -3.370000E+04 1.320000E+03
EPSDE 2.080000E-01 1.430000E-01 6.550000E+04 6.550000E+04
LSHADE 3.740000E-01 3.810000E-01 -5.950000E+03 4.590000E+02
LSHADE_cnEpSi 3.570000E-01 5.120000E-01 -4.030000E+04 6.590000E+02

F9 F10
AVG STD AVG STD

ECSMA 0.000000E+00 0.000000E+00 8.880000E-16 0.000000E+00
SADE 3.080000E+01 7.250000E+00 4.750000E+00 7.420000E-01
MPEDE 1.290000E+02 2.530000E+01 7.090000E+00 1.360000E+00
EPSDE 1.480000E+02 4.340000E+01 4.090000E+00 1.240000E+00
LSHADE 1.500000E+03 8.270000E+02 1.920000E-13 1.510000E-14
LSHADE_cnEpSi 1.000000E+01 7.030000E+00 1.080000E+01 1.220000E+00

F11 F12
AVG STD AVG STD

ECSMA 0.000000E+00 0.000000E+00 6.640000E-06 9.440000E-06
SADE 1.480000E-01 3.240000E-01 1.040000E-01 2.430000E-01
MPEDE 1.100000E-01 1.420000E-01 1.720000E+00 2.380000E+00
EPSDE 9.130000E-02 1.750000E-01 9.740000E-02 2.650000E-01

(Continued)
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Table A3 (continued)

LSHADE 5.530000E-02 7.440000E-02 2.820000E+00 3.800000E+00
LSHADE_cnEpSi 7.120000E-03 1.390000E-02 2.680000E+00 2.850000E+00

F13 F14
AVG STD AVG STD

ECSMA 1.950000E-06 1.270000E-06 9.980000E-01 3.070000E-16
SADE 2.500000E-01 6.920000E-01 9.980000E-01 0.000000E+00
MPEDE 1.310000E+01 1.650000E+01 9.980000E-01 0.000000E+00
EPSDE 5.150000E-01 1.070000E+00 9.980000E-01 0.000000E+00
LSHADE 7.120000E+00 1.460000E+01 9.980000E-01 0.000000E+00
LSHADE_cnEpSi 6.370000E+01 3.800000E+01 9.980000E-01 0.000000E+00

F15 F16
AVG STD AVG STD

ECSMA 3.170000E-04 5.240000E-05 -1.030000E+00 4.630000E-16
SADE 3.070000E-04 6.520000E-20 -1.030000E+00 6.780000E-16
MPEDE 1.740000E-03 5.070000E-03 -1.030000E+00 6.780000E-16
EPSDE 9.410000E-04 3.280000E-04 -1.030000E+00 6.780000E-16
LSHADE 9.940000E-04 4.000000E-05 -1.030000E+00 6.780000E-16
LSHADE_cnEpSi 9.110000E-04 3.300000E-03 -1.030000E+00 6.780000E-16

F17 F18
AVG STD AVG STD

ECSMA 3.980000E-01 4.830000E-14 3.000000E+00 7.990000E-15
SADE 3.980000E-01 0.000000E+00 3.000000E+00 1.910000E-15
MPEDE 3.980000E-01 0.000000E+00 3.000000E+00 1.810000E-15
EPSDE 3.980000E-01 0.000000E+00 3.000000E+00 1.310000E-15
LSHADE 3.980000E-01 0.000000E+00 3.000000E+00 1.240000E-15
LSHADE_cnEpSi 3.980000E-01 0.000000E+00 3.000000E+00 1.330000E-15

F19 F20
AVG STD AVG STD

ECSMA -3.860000E+00 7.360000E-10 -3.240000E+00 5.700000E-02
SADE -3.860000E+00 2.710000E-15 -3.310000E+00 3.020000E-02
MPEDE -3.860000E+00 2.710000E-15 -3.270000E+00 6.030000E-02
EPSDE -3.860000E+00 2.710000E-15 -3.290000E+00 5.540000E-02
LSHADE -3.860000E+00 2.710000E-15 -1.780000E+00 1.640000E+00
LSHADE_cnEpSi -3.860000E+00 2.710000E-15 -3.280000E+00 5.700000E-02

(Continued)
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Table A3 (continued)

F21 F22
AVG STD AVG STD

ECSMA -1.020000E+01 4.560000E-10 -1.040000E+01 2.350000E-10
SADE -9.900000E+00 1.360000E+00 -1.040000E+01 1.810000E-15
MPEDE -8.230000E+00 3.060000E+00 -9.830000E+00 1.770000E+00
EPSDE -9.820000E+00 1.280000E+00 -1.040000E+01 1.810000E-15
LSHADE -9.230000E+00 2.140000E+00 -9.780000E+00 1.910000E+00
LSHADE_cnEpSi -8.650000E+00 2.830000E+00 -9.350000E+00 2.420000E+00

F23 F24
AVG STD AVG STD

ECSMA -1.050000E+01 1.500000E-10 2.500000E+03 0.000000E+00
SADE -1.030000E+01 1.220000E+00 2.650000E+03 1.960000E-01
MPEDE -1.030000E+01 1.220000E+00 2.650000E+03 3.940000E-03
EPSDE -1.030000E+01 1.220000E+00 2.650000E+03 3.410000E-10
LSHADE -1.000000E+01 2.000000E+00 2.650000E+03 1.600000E-02
LSHADE_cnEpSi -1.000000E+01 2.060000E+00 2.650000E+03 3.970000E-03

F25 F26
AVG STD AVG STD

ECSMA 2.600000E+03 0.000000E+00 2.700000E+03 0.000000E+00
SADE 2.820000E+03 1.030000E+01 2.770000E+03 9.580000E+00
MPEDE 2.850000E+03 1.580000E+01 2.800000E+03 2.000000E+01
EPSDE 2.830000E+03 1.340000E+01 2.780000E+03 3.440000E+01
LSHADE 2.860000E+03 1.760000E+01 2.810000E+03 2.260000E+01
LSHADE_cnEpSi 2.870000E+03 1.630000E+01 2.810000E+03 1.430000E+01

F27 F28
AVG STD AVG STD

ECSMA 2.790000E+03 2.520000E+01 2.900000E+03 2.310000E-12
SADE 2.800000E+03 8.900000E-02 4.910000E+03 1.480000E+02
MPEDE 2.800000E+03 4.640000E-02 5.570000E+03 2.220000E+02
EPSDE 2.780000E+03 9.910000E+01 6.530000E+03 6.160000E+01
LSHADE 2.800000E+03 3.450000E-02 5.380000E+03 2.040000E+02
LSHADE_cnEpSi 2.800000E+03 8.990000E-02 5.660000E+03 1.590000E+02

F29 F30
AVG STD AVG STD

ECSMA 3.000000E+03 2.310000E-12 3.100000E+03 0.000000E+00
SADE 6.480000E+03 4.740000E+02 6.220000E+03 7.860000E+02
MPEDE 8.290000E+03 8.970000E+02 2.100000E+07 4.830000E+07
EPSDE 3.800000E+03 3.100000E+02 3.180000E+03 4.710000E+01
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Table A3 (continued)

LSHADE 7.690000E+03 1.200000E+03 2.960000E+06 1.620000E+07
LSHADE_cnEpSi 1.010000E+04 9.960000E+02 5.610000E+06 3.070000E+07

F31
AVG STD

ECSMA 3.200000E+03 0.000000E+00
SADE 3.090000E+04 8.260000E+03
MPEDE 1.690000E+04 7.530000E+03
EPSDE 6.000000E+03 4.390000E+02
LSHADE 1.470000E+04 2.280000E+03
LSHADE_cnEpSi 1.570000E+04 2.220000E+03
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