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ABSTRACT

With the rapid development of communication technology, the problem of antenna array optimization plays a
crucial role. Among many types of antennas, line antenna arrays (LAA) are the most commonly applied, but
the side lobe level (SLL) reduction is still a challenging problem. In the radiation process of the linear antenna
array, the high side lobe level will interfere with the intensity of the antenna target radiation direction. Many
conventional methods are ineffective in obtaining the maximum side lobe level in synthesis, and this paper proposed
a quantum equilibrium optimizer (QEO) algorithm for line antenna arrays. Firstly, the linear antenna array model
consists of an array element arrangement. Array factor (AF) can be expressed as the combination of array excitation
amplitude and position in array space. Then, inspired by the powerful computing power of quantum computing,
an improved quantum equilibrium optimizer combining quantum coding and quantum rotation gate strategy is
proposed. Finally, the proposed quantum equilibrium optimizer is used to optimize the excitation amplitude of
the array elements in the linear antenna array model by numerical simulation to minimize the interference of the
side lobe level to the main lobe radiation. Six different metaheuristic algorithms are used to optimize the excitation
amplitude in three different arrays of line antenna arrays, the experimental results indicated that the quantum
equilibrium optimizer is more advantageous in obtaining the maximum side lobe level reduction. Compared
with other metaheuristic optimization algorithms, the quantum equilibrium optimizer has advantages in terms
of convergence speed and accuracy.
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1 Introduction

With the booming development of wireless technology, communication technology is gradually
transforming from 2G to 5G [1]. In the process of wireless communication technology development,
the antenna plays a vital role. For long distance communication, it is necessary to reduce the waste
of energy by optimizing the antenna array. In order to obtain the maximum antenna radiation
energy for a specific signal receiving point, it is necessary to reduce the SLL in the direction of
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disinterest so that the radiation energy is concentrated [2]. The radiation intensity and directionality
of a single element antenna are challenging to maintain stability, while the antenna array can achieve
the purpose by combining multiple elements [3]. The antenna array can have a narrow beam form
and minimum SLL interference by adjusting the excitation amplitude and spacing of each array
element as well as the geometric layout [4]. Most problems in engineering and technology can be
attributed to optimization problems, and the optimization of linear antenna arrays is no exception.
How to obtain high intensity radiation in a specific direction and the maximum reduction of SLL
is gradually becoming a hot topic of research [5]. Modern antenna array design relies heavily on
electromagnetic simulation models, but electromagnetic simulation is computationally expensive due
to electromagnetic mutual inductance and other factors. The traditional numerical optimization
method uses gradient information to adjust the antenna array design, but under the current computing
conditions, the time cost of this optimization process is unacceptably high. How to efficiently use
physics-based mathematical models to speed up the design process of antenna arrays is an important
background for research [6]. Therefore, it is a challenging task to select an efficient computational
method for numerical optimization. With the development of optimization theory and computer
technology, some meta-heuristic optimization algorithms began to appear and attract the attention
of scholars.

Metaheuristic algorithms are mainly inspired by natural phenomena and can be broadly classified
into four categories. Evolutionary algorithms inspired by Darwinian evolutionary theory, mainly
include genetic algorithm (GA) [7], evolutionary strategies (ES) [8], differential evolutionary algorithm
(DE) [9], evolutionary planning (EP) [10], etc. Algorithms inspired by the intelligent behavior of
biological swarms mainly include the particle swarm algorithm (PSO) [11], artificial bee colony
algorithm (ABC) [12], chameleon algorithm (CSA) [13], barnacle mating algorithm (BMO) [14],
whale optimization algorithm (WOA) [15], slap swarm algorithm (SSA) [16], gray wolf optimizer
(GWO) [17], slime mould algorithm (SMA) [18], etc. Algorithms inspired by physical and chemical
laws, mainly include artificial electric field algorithm (AEFA) [19], equilibrium optimizer (EO)
[20], simulated annealing algorithm (SA) [21], big bang-big crunch (BBBC) [22], lightning search
algorithm (LSA) [23], heat transfer search (HTS) [24], etc. The algorithms inspired by simulated human
behavior mainly include teaching-learning-based optimization algorithm (TLBO) [25], brain storming
algorithm (BSO) [26], volleyball premier league algorithm (VPLA) [27], etc. It is known from the
No Free Lunch Theorem that no single meta-heuristic algorithm can perform well on all problems
[28]. Therefore, meta-heuristic algorithms and their improved versions are continuously proposed by
scholars for different optimization problems. Similarly, finding a more efficient method for solving the
optimization problem of linear antenna arrays is still a hot research topic.

In 2019, Afshin Faramaki et al. proposed a novel physics-based optimization algorithm inspired
by the mass balance equation in a container called the equilibrium optimizer [20]. Since its proposed
simple structure and fast computing speed has attracted the attention of many scholars. In [29], Abdel-
Basset et al. proposed a linear reduction diversity technique and local minima elimination method for
basic equilibrium optimizer and applied the proposed improved equilibrium optimizer algorithm to
solar cells. In [30], Gupta et al. used Gaussian variation and reconstruction concepts to compensate
for the shortcomings of the basic equilibrium optimizer and applied them to multilayer perceptions
training. In [31], Gao et al. proposed a binary version of the equilibrium optimizer and applied
it to the feature selection problem to analyze the optimal choice of the transfer function. In [32],
Wunnava et al. proposed an adaptive equilibrium optimizer that implements adaptive decentralized
decision making for search agents. The proposed algorithm is also applied to multilevel shareholding
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segmentation of image histograms. In [33], Abdul-hamied et al. proposed a population-based equilib-
rium optimizer for the hybrid grid optimization problem. The problem combines economic-technical
and environmental requirements to minimize the cost of power generation in the power system. In
[34], Fan et al. introduced elite reverse learning with novel population update rules for the imbalance
between exploration and exploitation of the basic equilibrium optimizer. The modified equilibrium
optimizer is then tested on a classical function problem to verify that it has a fast convergence speed
and optimality search accuracy. In [35], Elsheikh et al. used an equilibrium optimizer to tune the
parameters of a random vector functional link network and predicted the quality metrics of sheet
cuttings. In [36], Yin et al. hybridized the equilibrium optimizer with the smile mould algorithm and
added a stochastic difference variation operator to make the algorithm escape from local optima.
Finally, the proposed method search capability was verified in nine engineering design problems. In
[37], Tang et al. proposed an equilibrium optimizer algorithm mixing multiple swarm strategies and
applied it to the path planning problem. In [38], Abdel-Basset et al. proposed a multi-objective variant
of the equilibrium optimizer that uses an archiving mechanism to retain the optimal solution and uses
a crowded distance approach to maintain the diversity of solutions.

From the above, it is clear that the equilibrium optimizer has been successfully applied in
many fields, but the basic equilibrium optimizer algorithm still has some shortcomings. Due to
the existence of average candidate solutions in the equilibrium pool, the algorithm has a strong
exploitation capability, which leads the equilibrium optimizer to converge early and fall into a local
optimum. To address the shortcomings of the basic equilibrium optimizer algorithm and inspired
by quantum computing, a novel quantum equilibrium optimizer algorithm is proposed. The idea of
quantum coding is introduced in QEO to improve the basic equilibrium optimizer, which improves
the equilibrium optimizer’s population diversity. Second, the original equilibrium pooling strategy is
improved and combined with a quantum rotation gate to help the algorithm jump out of local optima.
In the quantum equilibrium optimizer, the equilibrium optimizer update formula is mainly responsible
for the change of the quantum phase angle, and the change of the probability amplitude is realized by
the incremental calculation of the quantum rotation gate strategy.

In order to verify the feasibility and effectiveness of the QEO, this paper solves the problem
of maximum SLL reduction for linear antenna arrays using the proposed algorithm. Three sets of
LAA with a different number of array elements were selected as test examples, and QEO was used to
compare with six novel meta-heuristic algorithms. The experimental statistics show that QEO has the
advantages of fast convergence and high search accuracy and robustness.

The main contributions of this paper can be summarized as follows:

1. Inspired by quantum computing to improve the original equilibrium optimizer seeking capa-
bility, a quantum coded version of the equilibrium optimizer algorithm is proposed.

2. Introducing the idea of quantum coding, each individual in QEO corresponds to two positions
in the search space, and the quantum coding mechanism improves the diversity of the
population.

3. Performing the incremental phase angle calculations through the combination of quantum
rotation gate strategy and quantum equilibrium pool, which effectively helps the algorithm to
jump out of local optimum and avoid premature convergence.

4. QEO is used for linear antenna array optimization to maximize the SLL reduction. Three sets
of LAA with a different number of array elements are selected for testing and compared with
six novel meta-heuristic algorithms.
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This paper is organized as follows. Section 2 expedites improving and applying different meta-
heuristic algorithms for LAA optimization problems. Section 3 defines the maximum SLL reduction
problem and the mathematical model. Section 4 describes the basic equilibrium optimizer. Section 5
describes the quantum equilibrium optimizer in detail. Section 6 shows the experimental results and
statistical analysis results. The conclusion of our work is given in Section 7.

2 Related Works
2.1 Antenna Array Optimization

This section describes other metaheuristic algorithms and their modifications for antenna array
optimization problems. In [39], Panduro et al. used a genetic algorithm for the design of non-uniform
circular arrays and obtained a large reduction of SLL. In [40], Khodier et al. used the particle
swarm algorithm to synthesize the minimum side lobe level and compared it with other algorithms
to verify the effectiveness of the particle swarm algorithm. In [41], Guney et al. used the honeybee
algorithm to adjust the phase and amplitude of the array elements, and the effectiveness of the
method was verified on a Chebyshev antenna model. In [42], Singh et al. used the Biogeography-based
optimization algorithm to adjust the optimal excitation amplitude of the antenna array elements and
effectively synthesized the antenna radiation map. In [43], Pappula et al. used a cat swarm optimization
algorithm for the optimal array element location to suppress the SLL, which has applications in
electromagnetic optimization. In [44], Singh et al. used the cuckoo optimization algorithm (COA)
to optimize the linear and circular arrays, and the experimental results showed that COA has superior
performance. In [45], Dib et al. used a symbiotic bio-search algorithm to synthesize the radiation
map of symmetric antenna arrays and effectively obtained a radiation map with low interference. In
[46], Saxena et al. introduced the gray wolf optimization algorithm into the field of electromagnetic
and antenna optimization to optimize the excitation amplitude and array element position to achieve
the minimum SLL optimization. In [47], Salgotra et al. proposed an extended version of the gray
wolf optimizer (GWO-E) that utilizes multiple swarm partitioning and adversarial learning strategies
to improve the performance of the algorithm. Experiments show that GWO-E obtains the largest
SLL reduction in a non-uniform antenna array. In [48], Wu et al. used a spider monkey optimization
algorithm to optimize the synthesized sparse line array in order to reduce the side level of the
whole array. In [49], Sun et al. used the weed invasion algorithm for beam synthesis of LAA with
circular antenna array (CAA) and obtained better synthesis characteristics in a real environment.
In [50], Durmus et al. applied the equilibrium optimizer algorithm to symmetric LAA with non-
uniform CAA for radiation map synthesis to achieve narrow half-power beam widths. In [51],
Sharaqa et al. used a bio-geographic optimization algorithm (BBO) to optimize the maximum SLL
reduction and validated the effectiveness of BBO in comparison with other well-known optimization
methods. In [52], Das et al. determination of excitation amplitude and antenna array spacing to
reduce SLL values using the moth flame optimization method. In [53], Subhashini et al. used the
runner-root algorithm (RRA) for linear antenna array optimization and obtained good results. In [54],
Almagboul et al. proposed to optimize the beamformer weights using an atomic search optimization
algorithm to minimize the SLL value. In [55], Singh et al. proposed a novel algorithm by fusing a
differential evolutionary algorithm with harmonic search to synthesize the loop antenna array to
minimize the SLL. In [56], Vegesna et al. improved flower pollination algorithms for beam forming
techniques with highly minimized SLL. In [57], Liang et al. introduced migration strategy and elite
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learning mechanism in Biogeography-based optimization algorithm and proposed a new method with
an adaptive variation strategy. The proposed method is then tested on a classical function and used for
the antenna array beam optimization problem. In summary, the antenna array optimization problem
has gradually become a hot area of research. The linear antenna array is the most basic antenna
geometric arrangement and the most practical geometric arrangement, but it still suffers from the
defect of insufficient maximum SLL reduction. Finding a more effective method to solve the linear
antenna array optimization problem is still a hot research topic.

2.2 Quantum-Inspired Metaheuristic Algorithm
The concept of “quantum” first appeared in the last century in the field of physics, and it is in

quantum computers that quantum properties are fully exploited [58]. This concept has attracted the
attention of many scholars and introduced quantum theory into meta-heuristic algorithms. In [59],
Yu et al. introduced the idea of quantum rotating gate to encode the population for the defect that the
basic dragonfly optimization algorithm easily falls into local optimum. In [60], Zhang et al. proposed a
quantum-inspired satin bowerbird optimizer algorithm to encode populations based on the quantum
bits of Bloch spheres. In [61], Deng et al. proposed an efficient DE algorithm for solving large-scale
optimization problems by introducing quantum computing features and co-evolutionary ideas to
improve DE for the shortcomings of differential evolutionary algorithms. In [62], Zhou et al. proposed
a quantum wind-driven optimization algorithm for unmanned aerial vehicle path planning problems
with quantum non-gates for variation. In [63], Coelho et al. proposed a mutation-based quantum
particle swarm algorithm (QPSO) inspired by quantum mechanics to prevent premature convergence
of the algorithm. In [64], Zou et al. introduced dynamic population optimization strategies in TLBO
and used quantum learning strategies to maintain population diversity. In [65], Yu et al. introduced the
quantum rotating gate strategy and the water cycle mechanism into the basic smile mould algorithm
to compensate for the early convergence. In [66], Cui et al. proposed a quantum-inspired moth flame
optimizer for clustering on the UCI benchmark dataset to test efficiency. In [67], Li et al. proposed a
new quantum coded pathfinder optimization algorithm for parameter optimization problem in proton
exchange membrane fuel cells (PEMFC). Some scholars combine quantum computing ideas with
meta-heuristic algorithms in the field of antenna optimization. In [68], Ho et al. proposed an improved
quantum particle swarm algorithm that escapes from local optima by introducing diversification and
intensification phases, and applied it to the optimization problem of a 28-element LAA. In [69],
Patidar et al. used the quantum particle swarm method to optimize a broadband frequency-invariant
pattern. In [70], Gao et al. combined the TLBO algorithm with quantum theory, made the population
evolve in a good direction through the method of quantum revolving gate, and finally applied it to
linear array pattern synthesis. In [71], Liu et al. combined quantum computing ideas with genetic
algorithms to optimize the maximum signal output power. In [72], Mikki et al. used quantum particle
swarm optimization for linear array antenna synthesis problems. The above articles have successfully
integrated quantum ideas and heuristic algorithms and applied to the field of antennas, but there
are still shortcomings in maximizing the effect of reducing SLL. While reducing the SLL problem is
not novel, more efficient methods are absolutely needed. Therefore, this paper combines the physics-
based equilibrium optimizer algorithm with quantum ideas for the first time, and proposes an efficient
quantum equilibrium optimizer for reducing the SLL value, and fully compares it with other methods
to show the advantages of QEO.



390 CMES, 2023, vol.137, no.1

3 Problem Description

In this section, the mathematical model of SLL reduction for a linear antenna array is presented.
The optimization process starts from the initialization of the problem, and a suitable fitness function
should be selected as the optimization objective for each optimization problem. The linear antenna
array is shown in Fig. 1, which contains 2M array elements.

Figure 1: Linear antenna array with 2M elements

3.1 Antenna Factor
In a linear antenna array, all the elements are placed in a straight line. For the linear antenna,

the array factor can be expressed as the combination of array excitation amplitude and position in
array space. The linear antenna array element has the characteristics of uniform radiation pattern, but
the array element excitation is concentrated in the center of the array when radiating together as an
antenna array. The array factor can be expressed as follows [73]:

AF (ϕ) = 2
M∑

n=1

In cos (kd cos (ϕ) + ψn) (1)

where k = 2π/λ is the wave number, In is excitation amplitude of elements, d represents the position
of each element in the line array, ψn indicates the phase of each element, ϕ is the azimuth angle.

3.2 Fitness Function
In this paper, the excitation amplitude of the array elements in the linear antenna array is adjusted

to make the antenna highly radioactivity in a specific direction. The optimization objective is to get
the maximum SLL reduction and the fitness function can be expressed as:

fitness = max
{

20 log10

|AF (ϕSL) |
|AF (ϕML) |

}
(2)

s.t. ϕML = arg max |AF (ϕ) |, ϕ ∈ [0, π ] (3)

ϕSL ∈ [0, ϕFN1] ∪ [0, ϕFN2] (4)

0 < Ii < 1, ∀i ∈ M (5)

where ϕSL and ϕML are the interval between the values of the side lobe and the main lobe; ϕFN1 and ϕFN2

are the first nulls of the pattern; λ is wave length and array spacing fixed d = 0.5λ; In order to ensure
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the maximum width of the first nulls of the pattern in the optimization process, ϕFN1 and ϕFN2 select the
appropriate value.

4 Equilibrium Optimizer

The equilibrium optimizer [20] was first proposed to solve continuous optimization problems.
The equilibrium optimizer has the advantages of strong computational stability and searching speed.
The concentration update of the particle depends on the mass balance equation. The particle in the
container (search agent) randomly updates its particle concentration until it reaches an equilibrium
state (optimal result).

4.1 Inspiration
The equilibrium optimizer’s inspiration comes from the dynamic mass balance equation in the

container for a control volume that describes the conservation of mass entering. The equation is
defined as follows:

V
dC
dt

= QCeq − QC + G (6)

where C is the concentration of particles, V is volume, V
dc
dt

is the rate of mass change, Q is the flow

of volume,Ceq represents the equilibrium condition of particles, and G is the mass generation rate.

After obtaining the mass balance equation, the turnover rate
(

λ = Q
V

)
is introduced to rearrange

the equation, and the solution time of the rearranged equation is solved as an integral of the function
to obtain as follows:

C = Ceq + (
C0 − Ceq

)
F + G

λV
(1 − F) (7)

where F is expressed as follows:

F = exp [−λ (t − t0)] (8)

where t0 and C0 is initiate time and start concentration.

4.2 Inspiration
As with most optimization methods, the searching flow path starts with initializing the container

particle.

Cinitial = Cmin + rand (Cmax − Cmin) (9)

where Cinitial is the initial concentration of the particle, Cmin and Cmax are the maximum and minimum
values of particle concentration, rand is a random number.

4.3 Equilibrium Pool
After that, the particle concentration is evaluated and four better fitness particles are chosen to

constitute the equilibrium pool. The first four candidate solutions in the equilibrium pool are the
particles with the best fitness values identified. However, and the last one of the equilibrium pool is the
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arithmetic mean of the four previous candidates as given in Eq. (10). Each iteration selects equilibrium
candidate solutions with equal probability from the equilibrium pool.
−→
C avg =

(−→
C eq(1) + −→

C eq(2) + −→
C eq(3) + −→

C eq(4)

)
/4 (10)

−→
C eq,pool =

{−→
C eq(1),

−→
C eq(2),

−→
C eq(3),

−→
C eq(4),

−→
C avg

}
(11)

where
−→
C avg is the arithmetic mean,

−→
C eq(1),

−→
C eq(2),

−→
C eq(3)

−→
, Ceq(4) are the first four candidate solutions.

−→
C eq,pool

is an equilibrium pool.

4.4 Exponential Term
Exponential terms help enhance the exploration capabilities of the EO, and it is described as

follows:
−→
F = a1sign

(−→
r − 0.5

) [
e−→

λt − 1
]

(12)

where a1 is a constant value, sign
(−→

r − 0.5
)

is a symbolic function in Eq. (12) has an effect on the

searching direction, and time t is a nonlinear parameter.
−→
r and

−→
λ are a random vector between 0 and

1. It is calculated as follows:

t =
(

1 − Iter
Max_iter

)(a2
Iter

Max_iter)

(13)

where a2 is a constant value that controls exploitation capabilities, experiments show that when a1 = 2
and a2 = 1, EO has better optimization capability.

4.5 Generation Rate
The mass generation rate is helpful in improving the exploitation ability of the algorithm, and it

is described as follows:
−→
G = −→

G 0e−−→
k (t−t0) (14)

−→
G = −→

G0

−→
F (15)

−→
G0 = −−→

GCP
( −→

Ceq − −→
λ

−→
C

)
(16)

−−→
GCP =

{
0.5r1, r2 ≥ GP

0, r2 < GP
(17)

where r1 and r2 are the random number, GCP is the generation rate control parameter.

The updating rule of EO is given as:

−→
C = −→

C eq +
(−→

C0 − −→
Ceq

) −→
F +

−→
G

−→
λ V

(
1 − −→

F
)

(18)
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The first term in Eq. (18) selects a balanced candidate from the equilibrium pool. The existence
of the equilibrium pool strategy enhances the exploration capability of the algorithm. The second is
responsible for improving the global exploration capability of the algorithm, and the symbolic function
controls different exploration directions. The third improves the exploitation capability of algorithms
to control small changes in particle concentrations. The pseudocode of the basic EO is illustrated in
Table 1.

Table 1: The pseudocode of the basic EO

EO pseudo-code

01 Initialization {
02 initialize population according to Eq. (9)
03 parameter define t, a1 = 2, a2 = 1 and GP = 0.5}
04 Main loop (Iter < Max_iter)
05 While
06 compute the fitness of all particles in a container;

07 find
−→
C eq(1),

−→
C eq(2),

−→
C eq(3) and

−→
C eq(4)

08 compute the arithmetic means by Eq. (10) and construct the equilibrium pool;
09 applied the memory saving strategy (Iter > 1)

10 updates t according to Eq. (13)
11 For each particle
12 update particle concentration according to Eq. (18)
13 End for
14 Iter = Iter + 1
15 End while

16 Return
−→
C eq(1)

4.6 Particle’s Memory Saving
This strategy is similar to the individual optimal location preservation strategy of PSO, which

records the best location searched by individuals.

5 Quantum-Inspired Equilibrium Optimizer

In this section, a novel quantum meta-heuristic algorithm is proposed, the quantum equilibrium
optimizer. QEO introduces the idea of quantum computing into the basic equilibrium optimizer,
and uses the efficient computational performance of quantum computing to improve the optimiza-
tion search capability of the basic equilibrium optimizer. After using quantum coding, a particle
corresponds to two probability amplitude of quantum bits, it represents two positions in the opti-
mization space, where the quantum probability amplitude is used to update the particle position
and adjust the change of angle through the quantum rotation gate strategy. Inspired by quantum
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computing, a quantum equilibrium pooling strategy is proposed to realize the variation of quantum
probability amplitude. The strategy improves the diversity of the population and avoids late premature
convergence.

5.1 Quantum Computing and Chromosome Coding
The smallest unit in quantum computing is the quantum bit, which can be expressed as “0” and

“1” for two states of quantum existence. A quantum bit can be expressed as follows:

|ψ〉 = α|0〉 + β|1〉 (19)

where α and β are the probability symbols of the quantum bits being 0 and 1, respectively; Due to
the variable nature of the probability amplitude, it satisfies the equation |α|2 + |β|2 = 1. The encoding
of the individual quantum equilibrium optimizer inspired by the above quantum computing ideas is
obtained as follows:

Xi =
[
α1 α2 . . . αD

β1 β2 · · · βD

]
=

[
cos θ(i,1) cos θ(i,2) . . . cos θ(i,D)

sin θ(i,1) sin θ(i,2) · · · sin θ(i,D)

]
(20)

where θ = 2π × rand, rand is a random number between 0 and 1, i is the population size, D is the
problem dimension.

Thus, quantum chromosomes correspond to two positions in quantum space, as follows:

Pic = (
cos θ(i,1), cos θ(i,2), . . . , cos θ(i,D)

)
(21)

Pis = (
sin θ(i,1), sin θ(i,2), . . . , sin θ(i,D)

)
(22)

5.2 Solution Space Transformation
In QEO, obtaining the particle positions corresponding to the problem requires mapping the

quantum space of the quantum chromosome to the problem space σQEO = [a, b]. The quantum
chromosome solution space transformation equation is as follows:

Xic = 1
2

[b (1 + αi) + a (1 − αi)] (23)

Xis = 1
2

[b (1 + βi) + a (1 − βi)] (24)

where Xic is the quantum state |0〉 calculated by the probability amplitude αi, Xis is the quantum state
|1〉 calculated by the probability amplitude βi.

5.3 Updating Process
In order to improve the defect that the basic equilibrium optimizer algorithm tends to converge

prematurely in the late iteration, this paper introduces a quantum rotation gate strategy with a
quantum equilibrium pool strategy inspired by quantum computing. The angle variation of the
quantum probability amplitude is adjusted by the quantum rotation gate, and the variation of the
position is realized by the quantum equilibrium pool strategy.
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5.3.1 Quantum Equilibrium Pool

We construct the quantum equilibrium pool for the phase angles of the quanta, calculate the phase
angles of the four particles with the best adaptation values and save them in the quantum equilibrium

pool. To improve the global exploration capability of the algorithm, the random phase angles
−→
θrand are

randomly selected from the quantum population. The quantum equilibrium pool is constructed as
follows:
−→
θ eq,pool =

{−→
θ eq1,

−→
θ eq2,

−→
θ eq3,

−→
θ eq4,

−→
θ rand

}
(25)

5.3.2 Updating Formulas of Phase Angle

In the quantum equilibrium optimizer, the phase angle update equation is as follows:

−→
θi (t + 1) = −→

θeq +
(−→

θi (t) − −→
θeq

)
× −→

F +
−→
G

−→
λ V

(
1 − −→

F
)

(26)

where
−→
θeq denotes the randomly selected phase angle from the quantum equilibrium pool; θi denotes

the phase angle of i-th particle in the quantum population.

5.3.3 Quantum Rotation Gate Strategy

In this section, the quantum rotation gate strategy is used to adjust the probability amplitude
and to calculate the phase angle increment before adjusting the probability magnitude. To address
the shortcomings of the basic equilibrium optimizer with insufficient convergence accuracy and
exploration capability, the quantum equilibrium pool variation strategy is introduced to calculate the
rotation gate increments. The combination of powerful computational power of quantum computing
and optimization algorithm makes QEO the ability to escape the optimal local solution, which
effectively improves the algorithm search accuracy.
−→
Δθi = (b − a) ×

−→
rand ×

( −→
θrand − −→

θeq,pool

)
(27)

where
−→
Δθi phase angle is increment, a and b are the lower and upper bounds of the problem space,

respectively.
−→

rand Represents a random vector of 0 to 1,
−→

θeq,pool is the equilibrium candidate phase angle
in the quantum equilibrium pool. The probability amplitude update equation through the quantum
rotation gate is as follows:⎡
⎣cos

(−→
θi (t + 1)

)
sin

(−→
θi (t + 1)

)
⎤
⎦ =

⎡
⎣cos

( −→
	θi (t + 1)

)
− sin

( −→
	θi (t + 1)

)
sin

( −→
	θi (t + 1)

)
cos

( −→
	θi (t + 1)

)
⎤
⎦

⎡
⎣cos

(−→
θi (t)

)
sin

(−→
θi (t)

)
⎤
⎦

=
⎡
⎣cos

(−→
θi (t + 1) + −→

	θi (t + 1)
)

sin
(−→

θi (t + 1) + −→
	θi (t + 1)

)
⎤
⎦ (28)
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The corresponding quantum chromosome positions are as follows:
−→
Pic = (

cos (θ1 (t + 1) + Δθ1 (t + 1)) , . . . , cos
(
θj (t + 1) + Δθj (t + 1)

))
(29)

−→
Pis = (

sin (θ1 (t + 1) + Δθ1 (t + 1)) , . . . , sin
(
θj (t + 1) + Δθj (t + 1)

))
(30)

5.4 The Flow Chart and Pseudocode of QEO
In order to show the QEO algorithm more clearly, Table 2 and Fig. 2 respectively show the

pseudocode and flow chart of the quantum equilibrium optimizer.

Table 2: The pseudocode of the QEO

QEO pseudo-code

01 Initialization N (population size); M (max number of generations);
02 parameter define t, a1 = 2, a2 = 1 and GP = 0.5
03 The population is initialized by quantum coding according to Eq. (20)
04 The solution space transformation between Pic and Pis according to Eqs. (23) and (24)
05 Compute the fitness function for Xic and Xis

06 Construct a quantum equilibrium pool
−→
θ eq1,

−→
θ eq2,

−→
θ eq3,

−→
θ eq4 and

−→
θ rand

07 Main loop
08 While (Iter < M)

09 updates t according to Eq. (13)
10 For each particle
11 update particle concentration according to Eq. (26)
12 the phase Angle increment is calculated according to Eq. (27)
13 updated by a quantum rotation gate strategy according to Eq. (28)
14 two sets of quantum chromosomes were updated by probability amplitude.
15 The solution space transformation between Pic and Pis according to Eqs. (23) and (24)
16 Compute the fitness function for Xic and Xis

17 End for
18 Quantum rotation gate strategy to calculate the phase angle increment and probability

amplitude
19 applied the memory saving strategy (Iter > 1)

20 Save the best four phase angles so far to construct the quantum equilibrium pool
21 Iter = Iter + 1
22 End while
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Figure 2: The flow chart of QEO

6 Experimental Results and Discussions

For validating the robustness and effectiveness of the proposed algorithm in solving the maximum
SLL optimization problem, the QEO was tested on 16, 24 and 32 elements LAA. Our experiments
application MATLAB 2019a and run-on CPU Intel Core i7-9700 processor 3.0 GHz, 16 GB RAM.

6.1 Performance Metrics
The performance of different comparison algorithms in the maximum SLL optimization problem

was evaluated using the following measures:

• Max and Min: Maximum values and minimum values in the calculation results of thirty
independent runs.

• Ave: The average value of the calculation results of thirty independent runs, which is calculated
as follows:

Ave = 1
runs

runs∑
i=1

Fi (31)
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where runs is the number of runs and Fi is the obtained value for each run.

• STD: It is used to show the computational stability of the algorithm. The formula is as follows:

Std =
√√√√ 1

runs − 1

runs∑
i=1

(Fi − Ave)2 (32)

• Wilcoxon’s rank-sum: WRS is a nonparametric test that takes a p-value that controls acceptance
or rejection of the alternative hypothesis.

6.2 Comparative Algorithms
The experiment compared QEO with other novel algorithms, such as EO [20], SMA [18], PSO

[11], SCA [74], WOA [15], GWO [17]. N is the population size and T is the maximum iterations. It is
worth mentioning that the 16, 24 and 32 elements LAA, the population size is set to 30 and maximum
iterations are set to 100. The parameter settings of the comparative algorithms in the experiment
are shown in Table 3. The experimental parameter settings of the comparison algorithm are from its
references. The experimental results come from all the algorithms running independently for 30 times
under the same conditions, and the results were statistically analyzed.

Table 3: Parameter values for the comparative algorithms

Algorithm Parameter Value Algorithm Parameter Value

QEO Constant a1 2 EO Constant a1 2
Constant a2 1 Constant a2 1
Control volume V 1 Control volume V 1
GP 0.5 GP 0.5

SMA Constant z 0.03 PSO Inertia weight w 0.5
Constant a [−1,1] coefficient (c1, c2) 1,2
Constant b [0,1] WOA Convergence factor a [2,0]

GWO Convergence factor a [2,0] Random number l [−2, −1]
SCA Constant a 2 Logarithmic spiral b 1

6.3 Results and Discussion
In this section, we investigated the LAA optimization problem, namely verifying the effectiveness

of the quantum equilibrium optimizer in reducing the SLL of LAA. QEO is tested with six other novel
meta-heuristic algorithms in a linear array with different arrays of elements and four performance
evaluation metrics are used to evaluate the optimization capability of the algorithms. The optimization
results of different algorithms in the 16-element LAA with the excitation amplitude can be seen in
Table 4. QEO obtains the optimal SLL value is −29.6939 dB, while the conventional method obtains
the SLL is −13.1529 dB, and QEO improves 16.5410 dB compared to the conventional method. And
the maximum SLL obtained by EO, SMA, PSO, SCA, WOA, and GWO is −28.4299, −28.3060,
−23.7392, −25.6562, −28.7441, and −28.5342 dB. Beam patterns after optimization of the excitation
amplitude by different algorithms are shown in Fig. 3. It can be seen that the QEO SLL is the smallest
and the main beam has good radiation capability. The optimization results of different algorithms in
24-element LAA are shown in Table 5. Compared to the conventional values without optimization,
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the maximum SLL of QEO, EO, SMA, PSO, SCA, WOA, and GWO is reduced by 16.49, 14.75, 13.56,
8.12, 9.37, 12.59, and 13.71 dB, respectively. Compared to the conventional method, QEO showed the
largest reduction. The QEO-optimized beam patterns partials beam is lower and the main beam has
the best radiation intensity compared to other algorithms as seen in Fig. 4. As seen in Table 6 in the 32-
element LAA, the maximum SLL obtained by QEO is significantly better than the other algorithms.
As seen in Fig. 5, the optimized beam patterns of the proposed method are significantly better than
other algorithms waveform levels are more distinct. As the number of LAA elements increases, QEO
is able to adapt well to the computational difficulties associated with the increased problem size and
obtains a larger SLL reduction compared to other algorithms. Figs. 6–8 show the three-dimensional
antenna patterns of different array elements obtained by different optimization algorithms. From the
figure, it can be observed that the QEO obtains the smallest side lobe level.

Table 4: Results for 16-elements LAA

Algorithm Optimized excitation amplitudes Maximum SLL

Conv. 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00 −13.1529
QEO 0.30, 0.32, 0.46, 0.61, 0.74, 0.86, 0.95, 1.00 −29.6939
EO 0.30, 0.30, 0.42, 0.55, 0.67, 0.77, 0.84, 0.88 −28.4299
SMA 0.30, 0.30, 0.47, 0.61, 0.76, 0.91, 0.98, 1.00 −28.3060
PSO 0.30, 0.30, 0.43, 0.62, 1.00, 1.00, 1.00, 1.00 −23.7392
SCA 0.32, 0.34, 0.45, 0.60, 0.83, 0.80, 1.00, 1.00 −25.6562
WOA 0.30, 0.30, 0.44, 0.63, 0.77, 0.90, 0.97, 1.00 −28.7441
GWO 0.30, 0.30, 0.44, 0.57, 0.70, 0.81, 0.89, 0.94 −28.5342

Figure 3: 2D beam patterns for 16-elements LAA
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Table 5: Results for 24-elements LAA

Algorithm Optimized excitation amplitudes Maximum SLL

Conv. 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00 −13.1529
QEO 0.30, 0.30, 0.31, 0.45, 0.52, 0.63, 0.72, 0.80, 0.89, 0.93, 0.99, 1.00 −30.5404
EO 0.31, 0.30, 0.31, 0.38, 0.54, 0.63, 0.69, 0.85, 0.86, 0.93, 0.97, 0.97 −28.8180
SMA 0.30, 0.30, 0.31, 0.41, 0.51, 0.62, 0.74, 0.79, 0.84, 0.94, 0.90, 0.97 −28.3117
PSO 0.40, 0.30, 0.51, 0.51, 0.52, 0.30, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00 −21.3604
SCA 0.30, 0.37, 0.33, 0.34, 0.36, 0.61, 0.66, 0.70, 0.9, 0.86, 1.00, 0.96 −24.4635
WOA 0.30, 0.30, 0.37, 0.37, 0.46, 0.80, 0.80, 0.88, 1.00, 1.00, 1.00, 1.00 −26.4225
GWO 0.30, 0.30, 0.30, 0.39, 0.51, 0.57, 0.67, 0.73, 0.84, 0.83, 0.94, 0.91 −29.0912

Figure 4: 2D beam patterns for 24-elements LAA

Table 6: Results for 32-elements LAA

Algorithm Optimized excitation amplitudes Maximum SLL

Conv. 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00,
1.00, 1.00, 1.00, 1.00

−13.2360

QEO 0.32, 0.31, 0.30, 0.33, 0.44, 0.45, 0.60, 0.60, 0.70, 0.77, 0.79, 0.90,
0.86, 0.99, 0.90, 0.99

−29.7271

EO 0.30, 0.30, 0.30, 0.30, 0.30, 0.49, 0.46, 0.54, 0.60, 0.62, 0.72, 0.70,
0.77, 0.78, 0.81, 0.80

−27.9896

SMA 0.30, 0.41, 0.39, 0.39, 0.43, 0.52, 0.51, 0.70, 0.80, 0.68, 0.90, 0.83,
0.94, 0.98, 1.00, 1.00

−26.8051

PSO 0.79, 0.85, 0.42, 0.98, 0.58, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00,
1.00, 1.00, 1.00, 1.00

−21.3604

(Continued)
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Table 6 (continued)

Algorithm Optimized excitation amplitudes Maximum SLL

SCA 0.57, 0.64, 0.31, 0.57, 0.64, 0.61, 0.84, 1.00, 0.80, 0.86, 0.88, 1.00,
0.68, 1.00, 1.00, 1.00

−22.6155

WOA 0.30, 0.31, 0.38, 0.48, 0.41, 0.39, 0.43, 0.89, 0.69, 0.72, 0.79, 0.96,
0.89, 0.96, 0.88, 1.00

−25.8265

GWO 0.30, 0.30, 0.30, 0.30, 0.32, 0.43, 0.42, 0.55, 0.58, 0.54, 0.66, 0.74,
0.66, 0.74, 0.77, 0.76

−26.9470

Figure 5: 2D beam patterns for 32-elements LAA

(a) Conv (b) QEO

Figure 6: (Continued)
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(c) EO (d) SMA

(e) PSO (f) SCA

(g) WOA (h) GWO

Figure 6: 3D beam patterns for 16-elements LAA



CMES, 2023, vol.137, no.1 403

Figure 7: 3D beam patterns for 32-elements LAA
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(a) Conv (b) QEO

(c) EO (d) SMA

(e) PSO (f) SCA

(g) WOA (h) GWO

Figure 8: 3D beam patterns for 32-elements LAA
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6.4 Convergence Analysis
In this section, we analyze the convergence curves of different algorithms for LAA optimization of

SLL with the different number of array elements. The convergence curves give a good indication of the
optimization ability of the quantum equilibrium optimizer as well as other methods. The algorithm’s
search ability is related to its exploration ability and exploration ability. A stronger exploration ability
makes the algorithm converge easily and early, while a stronger exploration ability decreases the
convergence speed of the algorithm. As seen in Figs. 9–11, the best convergence curves are obtained
for QEO in all three different systems, and the convergence speed and the accuracy of the search
are the best. Compared with the basic equilibrium optimizer, the quantum coding-based strategy
improves the population diversity avoiding the algorithm from falling into premature convergence
and improves the optimization accuracy of the equilibrium optimizer. The particles in the quantum
equilibrium pool undergo quantum mutation to produce phase angle increments and update the
probability operators through a quantum rotation gate. Based on this method, QEO can effectively
escape from local optima in the late iterative stage and avoid overcrowding of the quantum population.

Figure 9: Convergence curve for 16-elements LAA

Figure 10: Convergence curve for 24-elements LAA
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Figure 11: Convergence curve for 24-elements LAA

6.5 Stability Test and Statistical Analysis
The intelligent optimization algorithm is stochastic, so that the computational results are different

each time. In this section, we analyze the computational stability and the optimization performance of
the algorithms. In order to observe the fluctuation of the data more intuitively, the optimization results
of different optimization algorithms in three different LAA for thirty times are plotted, as shown in
Figs. 12–14. It can be clearly observed from the figure that the mean value of QEO is the lowest located
at the bottom of the picture, indicating that the proposed method has higher solution accuracy and
robustness in optimizing the maximum SLL reduction problem. In order to quantitatively analyze the
computational stability of the algorithm, the mean and standard deviation of different algorithms
in the three test systems are shown in Table 7, and the method of Friedman’s average ranking is
used for statistical analysis of the experiment result. FAR represents the score of Friedman’s average
ranking, and Rank represents the ranking of statistical analysis of different algorithms. In order to
verify whether the proposed method is significantly different from other optimization methods, the
statistical analysis method of Wilcoxon p-value test is used in this section, and the results show that
QEO significantly outperforms other methods in Table 8. The algorithm significantly outperforms the
EO, SMA, PSO, SCA, WOA, and GWO algorithms in solving the linear antenna array optimization
problem, which proves that the proposed quantum equilibrium optimizer has strong optimization
capability.
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Figure 12: 30 results distribution on 16-elements LAA

Figure 13: 30 results distribution on 24-elements LAA

Figure 14: 30 results distribution on 32-elements LAA
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Table 7: Results for quantitatively analysis

Algorithms Index 16-elements 24-elements 32-elements FAR Rank

QEO Mean −29.4863 −29.7962 −29.2743 1.00 1
Std. 0.2492 0.6772 0.5003 1.00 1

EO Mean −26.0256 −26.9840 −24.8483 3.00 2
Std. 1.3126 1.5334 1.5487 5.33 5.5

SMA Mean −27.1961 −25.4564 −24.2834 3.33 3.5
Std. 0.7845 1.0943 1.4322 3.67 3.5

PSO Mean −20.4143 −19.1096 −21.8345 6.33 6.5
Std. 2.0443 1.0043 0.7277 3.67 3.5

SCA Mean −23.0150 −21.4458 −21.0334 6.33 6.5
Std. 1.1186 1.0753 0.6797 2.67 2

WOA Mean −26.2834 −23.4221 −21.8164 4.67 5
Std. 1.5054 1.8337 1.5756 6.33 7

GWO Mean −25.3963 −27.3325 −24.6279 3.33 3.5
Std. 2.1302 1.4883 1.1262 5.33 5.5

Table 8: Results for Wilcoxon p-value test

Algorithms 16-elements Sign 24-elements Sign 32-elements Sign

QEO vs. EO 3.02E−11 (+) 1.21E−10 (+) 3.02E−11 (+)
QEO vs. SMA 3.02E−11 (+) 3.02E−11 (+) 3.02E−11 (+)
QEO vs. PSO 3.02E−11 (+) 3.02E−11 (+) 3.02E−11 (+)
QEO vs. SCA 3.02E−11 (+) 3.02E−11 (+) 3.02E−11 (+)
QEO vs. WOA 3.34E−11 (+) 3.02E−11 (+) 3.02E−11 (+)
QEO vs. GWO 3.02E−11 (+) 8.10E−10 (+) 3.02E−11 (+)
Note: “+’’ indicates that there is a significant difference.

7 Conclusions and Future Works

In this paper, a quantum-inspired equilibrium optimizer algorithm is proposed to introduce the
idea of quantum computing combined with the equilibrium optimizer to solve the optimization
problem of linear antenna arrays. For the defects of premature convergence and easily fall into the
local optimum of the basic equilibrium optimizer, a quantum equilibrium pool strategy inspired by
quantum computing is proposed and a quantum rotation gate strategy is introduced to improve the
EO. On the other hand, the effectiveness and robustness of the proposed algorithm in this problem
are verified by testing the solving maximum SLL capability in an antenna array with three different
numbers of array elements. The quantum equilibrium optimizer is compared with the classical PSO,
EO, SMA, WOA, GWO, and SCA, using the array element excitation as the design variable and the
reduction of the maximum SLL of the antenna array as the objective. The experimental results showed
that QEO has higher convergence speed and better search accuracy than other compared algorithms
and is very competitive in this problem. And it is significantly better than the basic equilibrium
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optimizer, which verifies the effectiveness of the improvement. In future works, we will try to use
the quantum equilibrium optimizer in other antenna array optimization problems. For example, for
circular antenna array optimization, the algorithm is discredited to solve the sparse antenna array
optimization problem, and multiple objectives are considered to be optimized simultaneously.
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