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ABSTRACT

The video compression sensing method based on multi hypothesis has attracted extensive attention in the research
of video codec with limited resources. However, the formation of high-quality prediction blocks in the multi
hypothesis prediction stage is a challenging task. To resolve this problem, this paper constructs a novel compressed
sensing-based high-quality adaptive video reconstruction optimization method. It mainly includes the optimization
of prediction blocks (OPBS), the selection of search windows and the use of neighborhood information. Specifically,
the OPBS consists of two parts: the selection of blocks and the optimization of prediction blocks. We combine the
high-quality optimization reconstruction of foreground block with the residual reconstruction of the background
block to improve the overall reconstruction effect of the video sequence. In addition, most of the existing
methods based on predictive residual reconstruction ignore the impact of search windows and reference frames
on performance. Therefore, Block-level search window (BSW) is constructed to cover the position of the optimal
hypothesis block as much as possible. To maximize the availability of reference frames, Nearby reference frame
information (NRFI) is designed to reconstruct the current block. The proposed method effectively suppresses the
influence of the fluctuation of the prediction block on reconstruction and improves the reconstruction performance.
Experimental results show that the proposed compressed sensing-based high-quality adaptive video reconstruction
optimization method significantly improves the reconstruction performance in both objective and supervisor
quality.

KEYWORDS
Compressed sensing; OPBS; block-level search window; nearby reference frame information; evolutionary
algorithm

1 Introduction

The conventional video codecs use compression standards such as H.264/AVC, HEVC, etc. Their
complexity at the encoding end is generally about 5∼10 times higher than at the decoding end.
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However, wireless video terminals such as portable terminals, wireless video detection heads, and
wireless multimedia sensor networks (WMSN) usually encode video in situ. These encoding devices
have minimal processing ability. Thus, an encoding algorithm is required to simplify the encoder and
have good compression efficiency.

Compressed sensing (CS) [1] is a theory of signal processing. And the emergence of the theory
alleviates the huge pressure of signal sampling [2], transmission [3,4], and storage caused by people’s
high demand for information. It points out that for a compressible signal, collecting only a small
number of observations contains enough information to recover the original data. The CS theory can
effectively avoid the huge waste of sampling resources. Simultaneously, it greatly reduces the encoder
complexity and enables low-cost video acquisition [5] and compression [6,7] in resource-constrained
environments. Therefore, CS theory has great application prospects.

At present, the theory has been applied in image transmission [8], image compression [9], fault
diagnosis [10], particularly in video encoding [11,12] and decoding [13]. Because of its “compression-
as-sampling” feature, CS has unparalleled advantages over traditional video signal acquisition,
compression and transmission. Compared to image signals, video signals are essentially a collection
of image signals. Therefore, video frames not only have all the characteristics of image signals, but also
have a spatial correlation between frames. Furthermore, the Internet is changing people’s behavioral
habits. Particularly, online video is taking on an increasingly dominant role in the new era of media.
The user demand for high-definition video image continues to grow. Hence, the improvement of
reconstruction quality is a steady-state topic in the field of video codecs.

The overall procedure of video codecs consists of an encoder and a decoder. The operating
principle of the end-to-end video codec is shown in Fig. 1. First, the video is compressed and encoded
by the content provider and transmitted over the wireless network to the server; Second, encoded video
is stored and transmitted by the server and sent to the users. Finally, the consumer decodes it and then
it is ready to play.

Figure 1: The architecture of end-to-end video codecs

Generally, innovations on the coding side are investigating sampling methods. The research
on how to reduce the amount of data transmitted is the focus of the coding side. However, the
best possible reconstruction quality is a stable topic on the decoding side. Hence, to enhance the
reconstruction performance of video frames, this paper proposes a CS-based high-quality adaptive
video reconstruction (CS-HAVR) optimization method. The following are the contributions of the
paper:

1. A novel single objective OPBS-PSO model is constructed to realize the optimization of predic-
tion blocks. This paper combines the high-quality optimization reconstruction of foreground
block with the multiple hypothesis prediction reconstruction of the background block to
improve the overall reconstruction effect of the video sequence.
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2. To maximize the usability of reference frames, nearby reference frame information is designed
to improve the precision of prediction blocks. Furthermore, block-level search window is
proposed to cover the position of the optimal hypothesis block as much as possible.

3. Extensive experimental results prove that our designed model improves reconstruction perfor-
mance in both objective and subjective quality.

The organizational framework for the remaining sections of this paper is set out below. The
research works of relevant scholars are presented in Section 2; Section 3 describes the proposed
CS-HAVR optimization method in detail; Extensive experiments are conducted in Section 4, which
compares the paper’s approach with three methods to prove the validity of the proposed strategy;
Section 5 gives a conclusion.

2 Related Work

The high-quality reconstructed image has been a hot topic in video reconstruction. Hence, a
wide variety of methods are created. It mainly includes the adjustment of the sampling strategy and
the design of the reconstruction method. They all affect the quality and performance of the video
reconstruction.

As a sampling operation in CS, various method is usually designed to decrease the number
of sampling and increase the reconstruction precision. For this reason, Li [14] presented a method
which is block-based, with different measurement matrix and sampling rate for each block. To
further improve reconstruction performance, an improved block-based compression sensing (BCS)
technology was proposed in [15] to perform operations such as rotation and weighting on the
perceptual matrix corresponding to each block. Belyaev et al. [16] conducted the study on block size
and proposed a heuristic approach. It randomly selected block size in each iteration. Similarly for
block size adjustment, Heng et al. [17] used a fuzzy logic system (FLS) to resize each corresponding
block. Xu et al. [18] proposed the idea of combining the adaptive sample rate allocation method
with background subtraction to improve the overall reconstruction of video sequences. The algorithm
has good reconstruction quality and efficiency in the underground coal mine application scenario.
Unde et al. [19] utilized the high redundancy between consecutive video frames to set different
sample rates for different blocks in non-key frames, thereby reducing transmission costs. In addition,
greedy iterative reconstruction methods, such as pre-GOMP [20], which find the optimal match by
iteratively solving the least squares problem. However, the method suffers from iterative, complex,
and more time-consuming drawbacks. Therefore, a non-iterative recovery method was developed
by Poovathy et al. [21] based on splitting, processing and merging techniques, and it reduces the
complexity of the algorithm to a certain extent. Das [22] presented a method which adopted the sparse
Tucker tensor decomposition in the same year. In response to this issue, plenty of scholars have studied
different sampling strategies [23]. Thus, a uniform sampling rate is used for each block in this paper
to reduce complexity on the coding side.

Reconstruction methods [24,25] based on multiple hypothesis prediction [26] have attracted the
attention of scholars. However, how to assign the weights precisely has been a headache for academics.
In response to the problem, a new reconstruction method was presented by Zheng et al. [27] to get a
better prediction block. It mainly consists of two parts: obtaining the hypothesis set and predicting the
weights. However, it is still to be further investigated to optimize the hypothesis set. Video Compression
Sensing (VCS) aims to perceive and recover scene video in a space-time aware manner. To make
better use of temporal and spatial correlations, a hybrid three-dimensional residual block consisting of
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pseudo- and true three-dimensional sub-blocks is proposed by Zhao et al. [28]. Ebrahim et al. [29] used
the redundancy of keyframes and non-keyframes to generate side information in the reconstruction
of non-keyframes and proposed the CS-based Joint Decoding (JD) framework. Similarly, in order
to explore interframe correlation, Shi et al. [30] proposed a multi-level feature compensation method
using convolutional neural networks (CNN). It allows better exploration of intra-frame and inter-
frame correlations. To better use picture information in the spatial-temporal domain, distributed
compressed video sensing (DCVS) was proposed [31]. It divides frames into key frames and non-
key frames, and uses block-based compressed sensing (BCS) to sample each frame. Cloud-based
video image uploads are more common in our daily life. The upload speed is related to the quality
of the communication channel, where the amount of data uploaded can be higher if the quality of
the communication channel is high and lower if not. Zheng et al. [32] developed a terminal-to-cloud
video upload system. They determined the amount of data to be uploaded based on the quality of
the channel. Furthermore, a multi-reference frame strategy is proposed to improve the reconstruction.
Zhao et al. [33] proposed a new algorithm for efficient reconstruction of video from CS measurements
based on the idea of predictive-residual reconstruction. However, it did not consider the effect of the
predicted blocks on the reconstruction. The blocks that are more similar to the current block are simply
treated as hypothetical blocks. Thus, we conducted studies on the optimization of prediction blocks
and designed block-level search window and nearby reference frame information in our paper. The
experimental results demonstrate the influence of the prediction block on the final reconfiguration.
Our previous research has been on hyperspectral image reconstruction methods [34], while video
reconstruction is addressed in this study.

3 The Proposed CS-HAVR Method

The proposed method of CS-HAVR is illustrated in Fig. 2. It consists of the encoding process
and the decoding process. First, video sequences are grouped. There are one key frame and seven
non-key frames in each group. Second, a group of pictures enter the coding process. Key frame uses
the BCS method. Similarly, non-key frames also use BCS to complete the encoding process. The
difference is that the sample ratio of key frame is larger compared to the sample ratio of non-key frame.
Particularly, Nearby reference frame information is designed to provide more useful information
during the reconstruction of non-key frames. Third, the encoded image enters the decoder side via the
wireless channel. For key frames, BCS-smoothed projected landweber based on multi-hypothesis (MH-
BCS-SPL) is used to obtain the reconstructed values. In the reconstruction process of non-keyframes,
a two-stage reconstruction strategy is used because of the low sampling rate for non-keyframes.
It is divided into initial reconstruction and secondary reconstruction. For non-key frames, block-
level search window and optimization of prediction blocks are constructed to complete secondary
reconstruction in this paper.

3.1 Encoding Process
During the encoding stage, original frames are divided into several group of pictures (GOPs). In

general, there is a key frame in the GOP, and the others are non-key frames. The structure of the GOP
is shown in Fig. 3.
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Figure 2: The overall framework of the CS-HAVR method
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Figure 3: The structure of the GOP

Fig. 3 indicates that the first frame (orange noted) is key frame, and the second to eighth frames
(blue noted) are non-key frames. Next, all frames are compressed. Key frames and non-key frames
use different compression rates. Generally, the compression rate of key frames is higher due to the
fact that the key frame is used as a reference frame for other frames during the reconstruction. In
addition, the block compression sensing (BCS) is used in encoding stage. The calculation method of
the compression process is shown in Eq. (1).

yh,j = Φth,j (1)

where, Φ ∈ RP×Q(P<<Q) represents the observation matrix, the random Gaussian observation matrix
is applied in this study. P represents the number of sampling values in yh. th represents the h-th frame.
th,j represents the j-th block of the h-th frame. Accordingly, yh,j represents the projection of the j-th block
of the h-th original frame. Through Eq. (1), each frame completes its encoding process.

3.1.1 Nearby Reference Frame Information (NRFI)

The multi-hypothesis prediction phase plays a key role in prediction-residual reconstruction,
which refers to finding the best set of matching blocks in the reference frame. The selection of the
reference frame has a big impact on the reconstruction of the current block, and this study uses the
near-neighbor information so that the current frames all have the opportunity to use the information
of the neighboring frames.

For Non-key frame encoder, NRFI is designed to make full use of near-neighbor frame informa-
tion in our paper. The similarity between neighboring frames is relatively higher due to video sequence
consisting of consecutive frames. It can be expressed in Table 1. The horizontal coordinate represents
the frame number of the reference frame. The vertical coordinate represents the frame number of the
current frame. The bolded font represents the most similar frame to the current frame. For example,
the two frames most similar to the 6th frame are the 5th and 7th frames with SSIM values of 0.68
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and 0.72, respectively. Furthermore, structural similarity (SSIM) is used to calculate the similarity of
two images. It measures image similarity from lightness, contrast and structural aspects respectively.
The higher value of the SSIM index represents the higher similarity of the two images. The calculation
method of SSIM is shown in Eq. (2).

SSIM = l (x, y) c (x, y) s (x, y) (2)

where, l(x, y) denotes the comparison of the lightness of x and y. c(x, y) denotes the comparison of
the contrast between x and y. s(x, y) denotes the comparison of the structures of x and y.

Table 1: The similarity between the frames in a GOP of Foreman datasets

Frame No. 1 2 3 4 5 6 7 8 9

1 1.00 0.63 0.43 0.36 0.33 0.32 0.29 0.26 0.23
2 0.63 1.00 0.65 0.51 0.43 0.37 0.35 0.33 0.28
3 0.43 0.65 1.00 0.67 0.51 0.40 0.39 0.41 0.35
4 0.36 0.51 0.67 1.00 0.66 0.50 0.48 0.52 0.40
5 0.33 0.43 0.51 0.66 1.00 0.68 0.61 0.57 0.35
6 0.32 0.37 0.40 0.50 0.68 1.00 0.72 0.55 0.31
7 0.29 0.35 0.39 0.48 0.61 0.72 1.00 0.64 0.35
8 0.26 0.33 0.41 0.52 0.57 0.55 0.64 1.00 0.55
9 0.23 0.28 0.35 0.40 0.35 0.31 0.35 0.55 1.00

This paper combines combine the key frame and neighbor information to reconstruct the current
block. In order to use as much nearest near-neighbor information as possible, this study first
reconstruct the third and seventh frames using the first and ninth frames. Then reconstruct the fifth
frame with the already reconstructed third and seventh frames. Finally, reconstruct the other frames
in turn as shown in Fig. 4.

Key frame

1 3 7 5 2 4 6 8 9

Reference 
Frame: 1,9 1,9 1,9,3,7 1,9,3 1,9,3,5 1,9,5,7 1,9,7

Non-Key frames

Figure 4: An example of NRFI in the GOP

As shown in Fig. 4, this study sets the GOP size to 8. It consists of frames one to eight. In addition,
the first frame and the ninth frame are keyframes in the two GOPs, respectively. Meanwhile, the arrows
between the video frames indicate the reconstruction order, and the corresponding reference frame
number is below the video frames. Moreover, the maximum number of reference frames is 4. Taking a
frame as an example, the reference frame of the fourth frame consists the third and fifth frames already
reconstructed near-neighbor frame plus two key frames.
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3.2 Decoding Process
The encoded block comes to the decoder via the wireless channel. At the decoding end, BCS-SPL

based on multi-hypothesis is used for initial reconstruction. For key frames, there is no more secondary
reconstruction. For non-key frames, block-level search window and optimization of prediction blocks
are constructed to complete secondary reconstruction in this paper.

3.2.1 Block-Level Search Window (BSW)

The search window finds a hypothetical block set similar to the current block. Fig. 5 shows a
search process where the blue represents a subblock of the current non-key frames, orange represents
the hypothetical block set of the current block, and the search process is carried out in key frames. The
common search window is the same size whether high or low motion video sequences. For low motion
video sequences, it is relatively good to use a small size of the search window. The distance between the
optimal hypothetical block and the current block is small in the low motion frames. For high motion
video sequences, it is better to use a larger search window. Otherwise, the search window cannot cover
the position of the optimal hypothesis block. Therefore, block-level search window is designed in this
study to automatically adjust the search window for each block.

... ...

t1 t2 tm tn tn+1

Current blockPrediction block

Figure 5: An illustration of the search process

The pixel difference between the current block and the corresponding block in the reference frame
is analyzed in this paper. Fig. 6 shows partial block difference between the current frame and the
reference frame. The horizontal coordinate represents the range where the difference lies. Vertical
coordinate represents the number of blocks within a certain difference range. It can be seen from
Fig. 6 that the difference in pixel values between the current frame and the corresponding block in
the reference frame is very different. It ranges from 1 to 100 and beyond. For example, there are
twenty-three blocks with a difference less than or equal to 7. However, there are thirty-two blocks
with a difference greater than or equal to 65. The pixel difference between the current block and the
corresponding block in the reference frame is not fixed. The difference is either too small, almost
close to 1, or too large, even exceeding 100. A large search window wastes resources and a small
search window is not conducive to finding the best hypothesis blocks. Hence, it is necessary to design
a relatively good search window for each block.

First, it calculates the difference between the pixel value of the current block and the corresponding
block in the reference frame. The difference can be expressed as shown in Eqs. (3) and (4).

v1 = (||Φth,i − Φt1,i||1

)
/M (3)

v2 = (||Φth,i − Φt2,i||1

)
/M (4)
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where, th,i represents the i-th image block in the current h-th frame th. The corresponding i-th block in
the first reference frame is denoted by t1,i. t2,i denotes the i-th block in the second reference frame.
Φth,i represents the measurements of the current block th,i. Φt1,i denotes the observations of the
corresponding block i in t1. The measured value of the corresponding block i in t2 is represented by
Φt2,i. M represents the number of samples. v1 and v2 both denote the difference.

Figure 6: Partial block difference between the current frame and the reference frame

Second, v1 and v2 are used to classify blocks into different levels of search windows (L1, L2, . . . ,
L7) based on the difference. The higher the level means the larger the difference. The value of the
search window is determined by the difference between blocks. Specifically, when the level of the search
window is lower, the search window will be smaller. For example, the search window at the L6 level
is larger than the search window at the L5 level. Each block has a different pixel difference from the
corresponding block. It is necessary to set a better search window for each block to find the optimal
hypothetical block. Therefore, this paper proposed BSW method to automatically adjust the search
window for each block.

3.2.2 Optimization of Prediction Blocks

The relationship between the prediction block and the current block is shown in Fig. 5. The current
block is marked with a blue square. It represents a block of the non-key frame. Orange squares are the
hypothesis blocks. It consists of the blocks that are most similar to the current block th,j. The prediction
block is obtained by assigning different weights to the set of hypothesis blocks. The calculation method
of the prediction block is shown in Eq. (5).

t̃h,j =
m∑

i=1

αithyp
i (5)

where, t̃h,j represents the prediction block. thyp
i represents the hypothesis block. αi represents the corre-

sponding weight of the hypothesis block. The reconstruction methods based on multiple hypothesis
prediction does not take into account the effect of the prediction block on the reconstruction. Thus,
OPBS is designed in our paper.

1© Preliminary preparation for OPBS

The two questions of what blocks are worth optimizing and how to select them are prerequisites
for OPBS. Zheng et al. [32] used residual value between current block and reference block to judgement
the type of block. However, the method increased complexity on the encoding side. In addition, due
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to the sampling rate is different of key frames and non-key frames, it is not appropriate to use the
residuals between them. The difference between the current block and block of near-neighbor frame is
more suitable because of the same compression rate in this paper, and the difference can be expressed
in Eq. (6).

v = ∥∥th,j − tadj,j

∥∥
2

(6)

where, tadj,j represents the corresponding block of the current block th,j in the adjacent frame. v
represents the residual between them. In addition, The larger the value of the residual, the more
variation in the blocks. The next thing we need to do is to find the block with the larger residual
value. The classification of blocks is shown in Eq. (7).

th,j =
{

1 v > Tv

0, else (7)

where, ‘1’ represents prospect block. ‘0’ represents background block. Tv represents the threshold of
residual v. When v > Tv, the current block is selected as a prospect block. Otherwise, th,j is chosen
as a background block. In addition, the prospect block will perform the optimization operations of
the prediction block. The background block will not perform the operation due to its relatively small
variation. The distribution of v values is shown in Fig. 7.
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Figure 7: The distribution of v values

There are 6177 subblocks in each block. It is not advisable to optimize all blocks due to its high
time complexity. Hence, this paper only optimizes some of the blocks. As can be seen from Fig. 7, when
v >= 50, there are 2106 subblocks. It accounts for about three quarters of th. Thus, Tv is set to 50.

2© The core components of OPBS

I. Single objective OPBS-PSO model realizes optimization of prediction blocks

To enhance the reconstruction performance, the single-objective OPBS model based on PSO is
proposed. The distance between the predicted block and the current block is designed as objective
function in this paper. The calculation method of objective function is shown in Eq. (8).

fitness = min
∥∥th,j − t̃h,j

∥∥
2

(8)

where, fitness represents finding the minimum distance between the prediction block t̃h,j and current
block th,j. Generally, the smaller the distance between the predicted block and the current block, the
greater their similarity. In addition, we also use the peak signal-to-noise ratio (PSNR) to measure the
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reconstruction performance between the original frame and the final reconstruction frame as shown
in Eq. (9).

PSNR = 10 × log10

(
(2n − 1)

2

MSE

)
(9)

where, n represents the number of bits per sampled value. MSE represents mean squared deviation.

II. OPBS-PSO evolutionary algorithm

The objective of OPBS is to enhance the reconstruction performance. Moreover, the prediction
block consists of multiple hypothesis blocks. However, the number of hypothesis blocks is fixed in
the most paper. For example, the number of hypothetical blocks set by Zhao et al. [33] is five. They
ignore the effect of the number of hypothetical blocks on the final reconstruction. The blocks that are
more similar to the current block are simply treated as hypothetical blocks. Therefore, the number of
hypothetical blocks is used as a decision variable for the OPBS-PSO evolutionary algorithm in our
paper. The algorithm flow of OPBS-PSO is shown in Table 2.

Table 2: The pseudocode of OPBS-PSO algorithm

Algorithm 1: OPBS-PSO pseudocode

Input: Video sequence dataset Th, Search window S, Sparsity D, The block size Pb, Number of
hypothetical blocks P = (P1, P2, P3, P4), Number of hypothetical blocks in the reference
frame N = (N1, N2, N3, N4), Number of iterations Gmax

Output: Reconstructed video image Tf

1 The video image Th is chunked to obtain th,j

2 Find the comparison block tadj,j of the current block th,j and calculate v = ∥∥th,j − tadj,j

∥∥
2

3 If v > Tv

4 Initializing the population P
5 While number of iterations < Gmax

6 Calculate fitness value F = [ fitness ]
7 Updating personal best values and global best values.
8 End
9 N1 = P1; N2 = P2; N3 = P3; N4 = P4;
10 Else
11 N1 = 5; N2 = 5; N3 = 5; N4 = 5;
12 End
13 Reconstruct the prediction block t̃h,j to get the final video frame Tf .

The main steps of OPBS-PSO model are as follows:

Step 1: Calculate the difference between the current block and the adjacent block. Then determine
the type of blocks based on the difference.

Step 2: Perform the following loop when the block is prospect block.

Step 3: Initialize the population. The initialization is carried out according to the decision range
of the number of hypothetical blocks in the reference frame, and the number of hypothesis blocks is
formed for each individual.
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Step 4: Perform velocity and position update operations to produce offspring.

Step 5: Solve the objective value according to the designed objective function and the prediction
block is obtained.

Step 6: Updating personal best values and global best values.

Step 7: Determine whether the maximum number of iterations is satisfied. If so, terminate the
operation. Otherwise, return to the Step 4 and continue iterating until the termination condition is met.

Step 8: When the optimization is completed, a relatively better prediction block is obtained.

4 Simulation Experiment and Analysis
4.1 Experimental Data

This paper adopts six video sequences to conduct extensive experiments. It includes Foreman,
Paris, Carphone, Coastguard, News and Highway. These sequences are available for download at
https://media.xiph.org/video/derf/. Seventeen frames of each video sequence are used for the experi-
ments. Common intermediate format (CIF) is used to conduct the experiments. That is, the resolution
of the image is 352 by 288 pixels. Furthermore, the paper is block-based, and all experiments are done
with MATLAB R2018b in Windows 10 environment.

4.2 Parameter Settings
There are many parameters in the experiment. It includes the parameters related to the encoding

process, decoding process and OPBS-PSO optimization algorithm. The experimental settings of
encoding stage and decoding stage are shown in Table 3. Furthermore, the parameter settings of OPBS-
PSO are shown in Table 4.

Table 3: Parameters setting of encoding and decoding stage

Parameter Meaning Value

Sb Size of block 32
Φ Measurement matrix Gaussian Random
Krate Sampling rate of key frame 0.7
Nk

rate Sampling rate of non-key frame 0.05, 0.1, 0.2, 0.3, 0.4

Table 4: Parameters setting of OPBS-PSO optimization algorithm

Parameter Meaning Value

Pop Population 50
D Decision variables 4
I Iterations 30
F Objective function 1
Vmin Lower bound of decision variables 1
Vmax Upper bound of decision variables 11

https://media.xiph.org/video/derf/
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In this experiment, each frame is divided into blocks with 32 by 32 pixel. Gaussian Random is
used as measurement matrix. In addition, the sampling rate of key frame is 0.7 and the sampling rate
of non-key frame is 0.05, 0.1, 0.2, 0.3 and 0.4. In the parameters setting of OPBS-PSO, the population
is set to 50, D represents the dimensions of decision variables, I represents the number of iterations, F
represents the number of objectives. Moreover, the value range of each decision variable is set as [1,11].

4.3 Experimental Analysis
To verify the validity of the presented method, this paper conducts experiments on six datasets,

and evaluates the performance with three methods. It includes MC/ME [35], VCSNet [30], and RRS
[33]. The comparative results are shown in the figures below.

4.3.1 The Performance of NRFI

As can be seen from Fig. 8, NRFI improves significantly over all three other methods. For
Foreman sequences, NRFI improves by an average of 5.07 dB over MC/ME and increases of 4.56
and 0.51 dB over VCSNet and RRS, respectively. Furthermore, it can be seen from Fig. 8 that NRFI
is superior to other algorithms on Paris, Carphone and Coastguard datasets.

Figure 8: The comparison of the reconstruction performance of NRFI (marked in red) with the three
methods
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4.3.2 The Performance of BSW

To verify the effectiveness of BSW, we compared BSW with three other methods on five video
sequences. The best reconstruction performance is marked in bold. As can be seen from Table 5, BSW
demonstrates excellent reconstruction performance on the majority of frames.

Table 5: The comparison of the reconstruction performance of BSW with the three methods on non-
key frames

Sequence Method 2 3 4 5 6 7 8 10 11 12 13 14 15 16
Foreman BSW 39.26 38.81 38.32 38.11 38.46 38.53 38.46 37.75 37.67 36.70 36.81 37.38 37.66 37.21

RRS 39.18 38.79 38.23 38.03 38.43 38.48 38.35 37.65 37.33 36.47 36.59 37.26 37.58 37.10
VCSNet 35.67 34.53 34.31 34.09 34.13 33.79 35.08 35.17 33.55 33.35 33.46 33.72 33.66 34.92
MCME 34.89 34.74 34.03 33.92 33.16 33.42 33.87 33.95 33.36 32.80 32.70 32.18 32.78 33.28

Paris BSW 32.23 31.41 31.44 31.44 31.81 32.25 32.58 32.09 32.09 31.20 31.73 32.09 32.11 34.32
RRS 32.18 31.35 31.38 31.38 31.70 32.16 32.49 32.01 32.01 31.09 31.63 32.05 32.02 33.86
VCSNet 28.64 27.68 27.03 27.50 27.79 27.58 28.69 28.66 27.98 27.13 27.66 28.02 27.86 29.41
MCME 28.66 28.26 27.91 28.14 28.21 28.49 28.82 28.92 28.93 28.44 28.27 28.11 28.66 28.85

Carphone BSW 41.27 42.01 42.26 42.23 42.45 42.46 42.22 42.43 42.66 42.92 42.98 42.55 42.78 43.17
RRS 41.15 41.97 42.24 42.13 42.43 42.44 42.20 42.35 42.64 42.91 42.94 42.53 42.75 43.17
VCSNet 40.64 40.06 40.76 41.01 41.18 40.27 40.87 40.40 41.47 41.37 41.60 40.58 40.97 41.87
MCME 36.78 37.66 37.22 37.55 37.15 37.55 37.38 37.99 38.50 37.77 38.25 37.77 38.44 38.37

Coastguard BSW 33.35 31.73 31.22 31.22 31.36 31.67 33.40 33.51 33.51 31.88 31.34 31.94 33.32 36.04
RRS 33.33 31.46 30.89 30.89 31.04 31.43 33.38 33.49 33.49 31.66 31.01 31.73 33.37 36.02
VCSNet 31.81 31.06 30.99 30.99 31.08 31.08 31.76 31.92 31.58 30.92 30.92 31.02 31.53 34.49
MCME 30.60 29.10 28.58 28.82 28.83 29.33 30.53 31.19 31.26 29.75 29.17 29.51 31.06 32.40

Highway BSW 39.32 38.14 38.30 38.21 38.98 38.02 39.32 38.60 39.09 38.80 38.77 38.79 39.01 39.01
RRS 39.29 37.85 38.16 38.11 38.99 37.76 39.34 38.44 39.02 38.60 38.63 38.67 39.02 39.01
VCSNet 35.00 34.31 34.01 33.17 33.84 34.05 35.94 35.10 34.02 32.86 33.05 33.90 33.52 34.46
MCME 34.73 33.77 33.96 34.28 34.75 34.93 35.00 34.03 34.86 34.18 34.08 33.14 35.16 35.16

4.3.3 The Overall Performance of BSW and NRFI

As can be seen in Fig. 9, the proposed method (red noted) has obvious advantages in enhancing
reconstruction performance in the five video sequences of Foreman, Paris, Carphone, Coastguard and
Highway. Specifically, for Foreman video sequences, the overall improvement of the proposed method
over RRS (blue noted) is 0.3–1.66 dB, with an overall average enhancement of 0.63 dB; For Paris video
sequences, the improvement effect of the presented method is obviously inferior to that of Foreman
video sequences, but it is still an enhancement in a comprehensive view; For Carphone video sequence,
the proposed method achieves an average improvement of 0.49 dB over RRS. The proposed method
improves 0.41 and 0.24 dB on the Coastguard video sequence and Highway video sequence respectively
over RRS.

However, the effect in the News video sequence is poor. After analysis, it may be caused by the
transformation speed of frames in the video sequence. It is not difficult to see from the research of other
scholars [10,35] that the reconstruction method depends on the data set to a certain extent. Aiming at
this reason, hope broad scholars will discuss the problem together with us.
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Figure 9: The reconstruction performance of presented algorithm (red noted) and three comparison
methods for six video datasets

Table 6 shows the comparison of NRFI, BSW and NRFI+BSW at different sampling rates. It can
be seen from Table 6 that NRFI+BSW demonstrates better performance on most datasets.
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Table 6: The comparison of reconstruction performance at different sampling rates

Subrate Sequence NRFI BSW NRFI + BSW

0.05 Foreman 38.12 38.21 38.15
Paris 31.96 31.91 31.94
Carphone 43.92 44.07 43.93
Coastguard 32.73 32.77 32.8
News 34.42 34.45 34.5
Highway 39.61 39.69 39.64

0.1 Foreman 38.21 38.28 38.24
Paris 32.41 32.31 32.5
Carphone 44.03 44.16 44.04
Coastguard 32.81 32.83 32.88
News 34.81 34.73 34.86
Highway 39.7 39.76 39.73

0.2 Foreman 40.57 40.23 40.59
Paris 33.85 33.76 33.79
Carphone 44.96 44.49 44.94
Coastguard 34.26 34.06 34.3
News 35.52 35.34 35.53
Highway 40.21 40.09 40.26

0.3 Foreman 41.79 41.55 41.8
Paris 35.58 35.44 35.65
Carphone 46.51 45.91 46.49
Coastguard 35.71 35.3 35.77
News 36.59 36.3 36.61
Highway 41.23 41.08 41.27

0.4 Foreman 42.88 42.67 42.88
Paris 37.36 37.13 37.46
Carphone 47.91 47.23 47.88
Coastguard 37.03 36.41 37.06
News 38.14 33.45 38.15
Highway 42.16 42.01 42.18

4.3.4 Proposed OPBS Compared with Other Video Reconstruction Methods

As can be seen from Fig. 10, OPBS (red noted) demonstrates excellent reconstruction performance
by comparison of the first five frames. For Highway sequences, it improves by 3.03–4.88 dB over
MC/ME and increases by 3.88–6.22 dB and 0.00–0.68 dB over VCSNet and RRS, respectively.

To verify the difference between optimized partial blocks and all blocks, experiment is conducted
in this paper. As shown in Fig. 11. The orange dots represent the optimization of all blocks. The blue
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dots represent that only the foreground blocks are optimized. Through the validation on the Forman
dataset, it can be seen that the results of OPBS-All blocks are better. However, only foreground blocks
are selected for optimization of prediction blocks in our paper. Due to the high time complexity of
optimizing all blocks, we choose to optimize only part of the blocks.

Figure 10: The reconstruction performance of OPBS and three comparison methods
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Figure 11: The performance of optimizing all blocks vs. partial blocks on the Foreman dataset

This paper takes out the fifth frame of the Foreman video sequence for visual comparison.
As we all know, MC/ME is a representative method, and the proposed method achieves a 5.35 dB
improvement over MC/ME as illustrated in Fig. 12; VCSNet uses Convolutional Neural Networks
(CNN) for video reconstruction, and this paper’s method enhances 5.19 dB at a sampling rate of 0.2.
In addition, RRS is based on prediction-residual reconstruction, and the presented method improves
1.25 dB over RRS.
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(a) Original image (b)MC/ME(33.92dB)

(c)VCSNet (34.08dB)
(d)RRS(38.02 dB)

(e)Proposed(39.27dB)

Figure 12: Visual contrast of the reconstruction results of the 5th frame with diverse ways

To evaluate the robustness of our algorithm, this paper takes out the third frame of the Paris video
sequence for visual comparison. It can be seen from Fig. 13 that the proposed method achieves a
4.21 dB improvement over MC/ME; This paper’s method enhances 4.69 dB at a sampling rate of 0.2
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over VCSNet. In addition, the presented method improves 1.03 dB over RRS. The experimental results
fully demonstrate that OPBS have strong superiority and robustness in VCS.

(a) Original image  (b)MC/ME(28.26dB) 

(c)VCSNet (27.68dB) (d)RRS(31.34dB) 

(e)Proposed(32.47dB) 

Figure 13: Visual contrast of the reconstruction results of the 3th frame with diverse ways

5 Conclusion and Prospect

This paper proposes a CS-HAVR framework. It consists of two stages: encoding and decoding.
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On the encoding side, NRFI is designed to provide more useful information during the recon-
struction of non-key frames. First, the similarity between frames is analyzed, and the key frame
and near-neighbor information is combined to reconstruct the current block. On the decoding side,
a two-stage reconstruction strategy is used because of the low sampling rate for non-keyframes.
Simultaneously, OPBS-PSO and BSW are constructed to improve the precision of prediction blocks.
In the proposed OPBS-PSO model, this paper combines the high-quality optimization reconstruction
of the foreground block with the background block’s multiple hypothesis prediction reconstructions
to improve the video sequence’s overall reconstruction effect.

In the proposed BSW method, this paper sets a better search window for each block to find the
optimal hypothetical block. Six video sequences are used to conduct extensive experiments with three
other methods in this paper. In addition, the Forman data set is utilized to compare the reconstruction
performance of partial block optimization and total block optimization in the experimental part. The
experimental results show that optimizing all blocks has obvious advantages, but it brings high time
complexity simultaneously.

The improvement of reconstruction quality of multi-hypothesis-based video codecs is influenced
by various factors. If these factors are considered simultaneously, it will greatly improve the quality of
video reconstruction. In the future, we intend to use intelligent optimization algorithms [36–39] with
multiple objectives to jointly optimize the main factors that affect the generation of prediction blocks
to create better video decoders.
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