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ABSTRACT

High-resolution underwater digital elevation models (DEMs) are important for water and soil conservation,
hydrological analysis, and river channel dredging. In this work, the underwater topography of the Panjing River
in Shanghai, China, was measured by an unmanned surface vessel. Five different interpolation methods were
used to generate the underwater DEM and their precision and applicability for different underwater landforms
were analyzed through cross-validation. The results showed that there was a positive correlation between the
interpolation error and the terrain surface roughness. The five interpolation methods were all appropriate for the
survey area, but their accuracy varied with different surface roughness. Based on the analysis results, an integrated
approach was proposed to automatically select the appropriate interpolation method according to the different
surface roughness in the surveying area. This approach improved the overall interpolation precision. The suggested
technique provides a reference for the selection of interpolation methods for underwater DEM data.
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1 Introduction

A digital elevation model (DEM) is a mathematical representation of the continuously varying
surface elevation within a certain area [1]. It provides fundamental data for use in geographic
information systems (GIS) [2–6]. Transport via inland waterways is an important part of the integrated
transport system in China and it is regarded as a “green” transport mode. An underwater DEM
effectively reflects spatial information on the channel bed, and is one of the significant requirements for
the normal operation of waterways. The information from underwater DEMs is widely used in water
and soil conservation [7], hydrological analysis [8], river dredging [9], and environmental remediation
[10,11]. The traditional method used to generate an underwater DEM is to measure underwater
topographic points with tools, such as sextants, theodolites, and sounding rods. These methods are
highly labor intensive, inefficient, imprecise, and pose a threat to the safety of operators. In recent
years, unmanned surface vessels (USV) have been widely used in underwater topographic surveying
and mapping. These can not only improve the accuracy of survey data, but also achieve a full-coverage
survey of the underwater topography [12,13].
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In practical applications, however, the distribution of USV measurement points is random and
not consistent with the cross-section points of the river channel. Therefore, it is often necessary to use
interpolation methods to estimate the elevation of unknown topographical points to obtain effective
DEM data. Arun [14] used several interpolation methods to generate a DEM of the MANIT campus
and surrounding areas of Bhopal in India and found that, in most contexts, kriging performed better
than other contemporary methods. Nistora et al. [15] compared inverse distance weighted (IDW)
and ordinary kriging (OK) to predict the groundwater table distribution; they found the results were
quite similar. Observational data for the lower Danube was obtained by Diaconua et al. [16] to
determine the best GIS interpolation method, and the result showed that both IDW and simple kriging
provided satisfactory results. It can be concluded that in different measuring fields, the accuracy of
the interpolation method has a strong correlation with the topographic features [17]. There is a need,
therefore, to investigate the best interpolation methods for accurate and comprehensive underwater
DEM information obtained by a USV.

This work used five different interpolation methods to generate an underwater DEM of the
Panjing River in Shanghai, China, based on the channel topography measured by a USV. The
characteristics of these interpolation methods were assessed and their interpolation precision in
different terrains was analyzed using cross-validation. Based on the analysis results, an integrated
interpolation approach was proposed for the generation of an underwater DEM in complex terrain
with different surface roughness.

2 Interpolation Methods

Interpolation methods are widely applied in the construction of three-dimensional complex terrain
[18,19]. In this section, five commonly-used interpolation methods are described.

2.1 Inverse Distance Weighted (IDW)
The IDW is a purely geometric weighted method and its algorithm is relatively simple and easy

to operate. In the IDW method, the elevation value of an interpolated point P(x, y) is calculated by
a linear weighted average. The weight λi is determined according to the distance between a measured
point and an interpolated point di, which can be calculated through the spatial coordinates (x, y, z)
of those points. Therefore, the closer the measured point is to the interpolated point, the greater the
influence on the elevation value of the interpolated point. The expression of the IDW method is:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P (x, y) =
n∑

i=1

ziλi

λi = d−μ
i

n∑
j=1

d−μ

j

(1)

where n is the number of the number of the adjacent measured points in the interpolation area that are
used to calculate the elevation value of the interpolated point. μ is the power parameter that is usually
set to be between 1 and 3 in the literature [20–22].

2.2 Ordinary Kriging (OK)
The principle of the OK method is very similar to that of IDW. It also estimates the elevation of the

interpolated point through the weighted sum of the adjacent measured points in the area. However, in
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contrast to IDW, the spatial variance distribution of the measuring points is considered in the OK
method to obtain the variant function. The variant function should satisfy the principles of both
unbiasedness and the least estimated value. Common variant functions include the Gaussian model,
exponential model, and spherical model [23–26]. After selecting the appropriate variant function, the
elevations of the adjacent measured points are weighted to obtain the elevation of the interpolated
point.

2.3 Radial Basis Function (RBF)
The RBF method is composed of three layers of neurons including the input layer, hidden layer

and output layer. Its structure is shown in Fig. 1. This method ensures that the interpolation surface
passes through all points and keeps the curvature to a minimum [27]. It is a combination of a series
of precise interpolation methods. The input layer and output layer are both linear, and the hidden
layer is a radial basis kernel function. The kernel function is one of the important factors affecting the
interpolation precision. Commonly used functions include Gaussian kernel, polyquadratic surface,
spline surface, and natural cubic spline surface [28–30].

Figure 1: Algorithmic principle of the radial basis function (RBF) method

2.4 Moving Least Squares (MLS)
The MLS method is an interpolation algorithm that uses basis functions and fitting functions to

segmentally fit the unknown surface. It can be expressed as:

P (x, y) =
n∑

i=1

αi (x, y) qi (x, y) (2)

where P(x, y) represents the elevation of the interpolation point, and αi(x, y) is a function related to
the spatial coordinates of the adjacent measured points. qi(x, y) is the basis function of MLS, which
can generally be divided into a linear basis function and nonlinear basis function [31,32]. The basis
function selected in this paper was the cubic spline function.

2.5 Triangulated Irregular Network (TIN)
The TIN method connects a series of discrete elevation points with connected and non-

overlapping triangles, and forms a continuous triangular surface to describe three-dimensional terrain
[33]. It can approximate the real terrain through different levels of resolution while maintaining the
precision of the original data [31]. This means a TIN can provide an accurate representation of the
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original data and can effectively adapt to terrain irregularities because the elevation of each point is
preserved, and the triangle defines a linear plane where new points can be inserted.

3 Accuracy Evaluation Indexes

For the purpose of model fitting, validation, and comparisons, the mean error (ME), root mean
square error (RMSE), and regression coefficient (R2) have been used in a wide variety of disciplines,
such as geosciences [34], atmospheric sciences [35], bio sciences [36]. In this work, these indexes were
selected as indicators to evaluate the interpolation precision. These are expressed as:

ME =

n∑
i=1

(Zi (x, y) − Pi (x, y))

n
, (3)

RMSE =

√√√√√√
n∑

i=1

(Zi (x, y) − Pi (x, y))
2

n
, (4)

R2 = 1 −

n∑
i=1

(Zi (x, y) − Pi (x, y))
2
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(
Zi (x, y) − _

Pi (x, y)
)2

, (5)

where Zi(x, y) represents the predicted elevation value of the interpolated point, Pi(x, y) represents the
measured elevation value, n represents the total number of samples in the inspection sample set, and
P̄i (x, y) represents the average value of the measured elevation of all inspection sample points. The
ME and RSME represent the absolute error between the measured and predicted value. The larger
the ME and RMSE are, the greater the overall sample error. The R2 represents the dispersion degree
of interpolation errors. If the R2 is close to 1, it means the interpolation error is concentrated.

4 Interpolation and Evaluation Analysis
4.1 Data Collection

Panjing is a natural river located in the north of Shanghai, China (see Fig. 2). It stretches from
Dijing in the south and flows through Luonan, Luodian and other areas. It is an important inland
waterway in Shanghai, with a length of 19.0 km. In this work, an intelligent USV was used to
measure the underwater topography of the Panjing River, as shown in Fig. 3. The size of this USV is
120 mm × 700 mm × 310 mm. The weight is about 26 kg, the maximum loading capacity is 15 kg, and
the maximum cruising speed is 4.5 m/s. The USV was equipped with a dual-frequency GPS (horizontal
accuracy of 10 mm ± 1 ppm, vertical accuracy of 20 mm ± 1 ppm) and a single-beam acoustic depth
sounder (accuracy of 1 cm ± 0.1% × depth). The overall topographic parameters of the survey area
and the topographic distribution of the measuring points are shown in Table 1.
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Figure 2: Location of the Panjing river

(a) USV equipped with GPS, camera
and depth sounder.

(b) USV moving on the Panjing River.

Figure 3: USV used to obtain the underwater elevation of the Panjing river

Table 1: Topographic parameters and the topographic distribution of the measuring points

Elevation
point density
psc/m2

Maximum
elevation/m

Minimum
elevation/m

Average
elevation/m

Median/m Kurtosis/ Skewness/

8.7526 4.013 –5.453 0.894 0.931 2.863 –0.621

4.2 Data Processing
Global Positioning System (GPS) technology has been widely applied in a variety of engineering

fields for positional fixes. However, due to atmospheric interference, satellite ephemeris errors and
clock errors, errors are inevitable in the data collected by the GPS operating in the field. Therefore,



3162 CMES, 2023, vol.136, no.3

the linear correction method proposed by Casaer et al. [37] was introduced in this study to improve
the accuracy of GPS measurements.

To ensure the interpolation precision was comparable, the surveying area was divided into sub-
sections every 50 m along the survey line. In total, 40 sample sections with uniformly distributed
sampling points were selected. In this work, the Create Subsets function in the Geostatistics module
in ArcGIS 10.5 (ESRI, Redlands, CA) was used to automatically extract 85% of the sample points
as the interpolation sample data set, and the other 15% of the sample points as the verification
data set. Cross-validation was used to evaluate the interpolation precision. According to the complex
topographic features of inland river ways [38], surface roughness was selected as an index to describe
the terrain of the sample sections. Surface roughness can reflect the undulation and erosion of terrain
at a macroscopic scale [39–41]. It can be expressed as:

SR = 1

cos
(

S × π

180

) , (6)

where SR represents surface roughness, and S represents the average slope of the terrain in the section.

The five interpolation methods mentioned above were used to predict the underwater elevation
of the test sample points in each sub-section. Then the predicted values were compared with the
measured elevation values, and the three accuracy evaluation indicators were calculated for the
different interpolation methods. The relationship between the interpolation accuracy and the surface
roughness is shown in Fig. 4.

Fig. 4 shows a positive relationship between the interpolation error and the surface roughness of
the river channel for each interpolation method. The results demonstrated that the higher the surface
roughness was, the lower the accuracy of the interpolation model. When the surface roughness was
less than 1.03, the interpolation precision of the different methods was relatively close. The highest
interpolation precision was from IDW, followed by TIN. In this situation, the surface roughness had
little effect on the interpolation accuracy. When the surface roughness was between 1.03 and 1.07,
the difference in the precision between the interpolation methods gradually increased. The advantage
of IDW was not obvious, and the performance of TIN interpolation was relatively stable. As the
roughness increased, the RMSE and ME curves of the MLS method showed jump points; the accuracy
change gradient was large, and the coincidence degree was relatively low. When the surface roughness
was greater than 1.075, the accuracy of all the interpolation methods decreased even further. The
interpolation accuracy was not stable except in the OK method. In some sections, the coincidence
degree of the IDW method dropped below 0.95, which was lower than the confidence interval. In this
interval, the OK method had the highest accuracy, followed by the RBF, while the IDW and TIN were
the least accurate. Based on the above analysis, the optimal interpolation method for the survey area
with different surface roughness is shown in Table 2.



CMES, 2023, vol.136, no.3 3163

Figure 4: Comparison of accuracy indicators of the interpolation methods in relation to surface
roughness

Table 2: Optimal interpolation method for the survey area with different surface roughness (SR)

SR <1.03 1.03–1.07 >1.07

Interpolation model IDW TIN OK

4.3 Model Comparison
To further analyze the characteristics of each interpolation method for the underwater DEM, three

typical survey areas with a surface roughness of 1.011, 1.048, and 1.083 were selected to compare the
DEM interpolation results, as shown in Figs. 5–7.
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Figure 5: Underwater DEM interpolation results in survey area No. 1 (surface roughness = 1.011)
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Figure 6: Underwater DEM interpolation results in survey area No. 2 (surface roughness = 1.048)

Figure 7: (Continued)
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Figure 7: Underwater DEM interpolation results in survey area No. 3 (surface roughness = 1.083)

It can be seen from Figs. 3–5 that an increase in terrain surface roughness led to a corresponding
reduction in the interpolation precision of each method. In the survey area No. 1 (SR = 1.011), the
surface roughness was low and the topography was flat. The five interpolation methods had very
close interpolation precision for the underwater DEM in this situation. With an increase in the
surface roughness (SR = 1.048), the underwater DEM obtained by the five methods had significant
differences, especially in the deeper channel area, but the generated river channel contour was still
relatively similar. With a further increase in the surface roughness (SR = 1.083), the interpolation effect
of each method was significantly affected by the terrain undulations, and there were sharp differences
in the prediction of the channel topography. The contour distributions obtained by OK and MLS were
relatively regular, but the topographic contours obtained by IDW, RBF, and TIN showed a crescent-
shaped curve.

To investigate the characteristics of the different interpolation methods, the results were analyzed
based on the interpolation principles of each method. The IDW method needed to ensure the
uniformity of the sample point distribution during interpolation. However, it was difficult for the USV
to maintain a constant speed during the survey. This may have caused insufficient sample points in one
survey area, and excessive points in another area. This led to spherical protrusions (circled in Figs. 4
and 5), which are often called “bull’s eyes” in the literature. In addition, IDW only used the distance
between the measured point and the estimated point as the weight indicator. Data smoothing was
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necessary during the weighting process, which may have resulted in lost detail. The disadvantages of
TIN were similar with those of IDW. Because TIN used flat triangles to replace local topography in any
terrain environment, the elevations of some points were smoothed in local hollows or silt deposition
areas, which resulted in larger errors. Therefore, the interpolation accuracy of these two methods was
higher in gentle areas, and lower in areas with complex terrain. In comparison, OK had stronger spatial
adaptability than other interpolation methods because it could fully consider the spatial correlation
of the overall topography of the survey area when selecting the variant function for interpolation.
Moreover, its interpolation results were an optimal unbiased estimator, so that it could reduce the
interpolation error caused by terrain variations and maintain strong interpolation robustness.

The MLS and RBF methods had no obvious advantages over the other methods. As a neural
network algorithm, RBF had high interpolation precision and fast calculation speed, but it also had
a strong dependence on the density of the sample points. However, the density of the measured points
obtained by a USV may be relatively sparse, so there is little ability for training to allow the radial
basis function to take maximum advantage of the interpolation algorithm. The MLS method first
fitted a smooth surface and then interpolated the topographic points in the survey area. The selection
of the fitting surface was controlled by a weight function, so that the shape of the surface could not
be adaptively changed when the terrain varied. Therefore, the interpolation precision was significantly
affected by terrain factors.

5 Integrated Interpolation Approach

Based on the above analysis, it was concluded that the different interpolation methods each had
their own advantages and disadvantages, and their sensitivity to the variation in terrain was quite
different. No single interpolation method was suitable for generating an underwater DEM in all
terrain types. At present, the research on interpolation methods is mature and the theory is sound.
It is probably not feasible to improve the algorithm structure of the traditional interpolation methods
to control the errors in underwater DEMs. Therefore, this work proposed an integrated interpolation
approach based on the interpolation characteristics of each method, which could automatically select
the appropriate methods according to the different topographic surface roughness in the survey area
and optimize the interpolation process. The integrated interpolation approach was divided into the
following steps:

1) The surveying area was divided into several sub-sections with similar areas and evenly
distributed elevation points from the original survey line of the USV;

2) Based on the topographic characteristics of the original survey points, the terrain surface
roughness of each subsection was calculated, and used as an initial prediction of the underwater
terrain pattern;

3) The subsection in which the interpolation point was located was determined, and the appro-
priate interpolation method was selected according to the local surface roughness (Table 2) to
obtain the underwater DEM.

In the traditional interpolation process, a single interpolation method is used for the DEM
interpolation across an entire region. In the integrated approach proposed here, different interpolation
methods are matched automatically to different terrain surface roughness in the interpolation process.
Therefore, the respective advantages of different interpolation methods are optimized.

To verify the interpolation precision of the integrated approach, 15% of the measured elevation
points were randomly selected from the samples as the testing sample set. Based on the analysis results
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in Table 2, the optimal interpolation method was automatically used to evaluate the elevation of those
testing sample points. The three accuracy evaluation indexes (ME, RMSE, and R2) were calculated by
comparing the interpolation result with the measured results using the Eqs. (3) to (5). The interpolation
precision of the integrated approach was compared with the other five interpolation methods, and the
results are shown in Fig. 8.

ME RMSE

Figure 8: Comparison of the accuracy indicators of different interpolation methods

From the comparison in Fig. 6, it can be seen that when using one single interpolation method to
estimate the overall testing sample points, the OK method was slightly better, followed by TIN. The
overall sample error of IDW and RBF was larger, and the prediction coincidence of MLS was the
lowest (0.9789).

From the perspective of the interpolation characteristics of the five methods, when using one single
method to estimate the elevation of the sample points the interpolation precision largely depends on
the variation of local terrain. Therefore, the applicability of different interpolation methods varies in
different underwater terrain environments. The different sensitivities of the interpolation methods to
the terrain variation weaken the natural attributes of the sample points if using a single method and are
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not be able to better represent the spatial distribution of nonlinear feature data. For example, when the
IDW method performs elevation interpolation, it ensures that the estimated value of the interpolation
point does not exceed the elevation range of the sample points and the generated DEM is smooth, but
it causes some locally rugged terrain to be excessively smoothed, and the overall interpolation precision
is reduced. In comparison, the presented integrated method can take full advantage of the different
interpolation methods, reduce the overall interpolation error, and effectively restore the underwater
terrain information. Fig. 6 shows that relative to a single method, the integrated method reduced the
ME value by about 15% and the RMSE value by about 10% and increased the R2 value by about 0.005.
Therefore, the integrated method has wider applicability.

6 Conclusions

On the basis of underwater terrain data of the Panjing River measured by a USV, this work
introduced five different interpolation methods to generate an underwater DEM and analyzed the
respective interpolation precision and interpolation effects under different spatial distributions. We
found the following. 1) There was a positive spatial correlation between the interpolation errors and
the terrain surface roughness. The interpolation precision decreased with the increase of the surface
roughness. 2) The IDW method had a relatively high interpolation precision in flat areas (SR < 1.03).
When the SR value ranged between 1.03 and 1.07, the TIN method had a better interpolation effect.
The OK method maintained a higher interpolation precision when the terrain of the surveying area
was complex, with a surface roughness value larger than 1.07.

On the basis of the analysis of the characteristics of the five interpolation methods, an inte-
grated interpolation method was proposed to improve the interpolation precision. According to
the topographic information reflected by the measured points in the survey area, the integrated
approach automatically selected appropriate methods to predict the elevation of the interpolated
points in the survey area according to different surface roughness. This approach is adaptive and
can comprehensively use the advantages of the different interpolation methods and avoid the loss
of information that can occur when describing the local terrain feature using a single interpolation
method. Comparative analysis showed that the integrated approach improved the interpolation
precision.

The presented results are limited to the Panjing River in Shanghai. The general applicability and
reliability need to be further verified. In the next step, USV surveys will be carried out in different
water systems to explore the specific scope of the application of the proposed integrated interpolation
approach.
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