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ABSTRACT

The accurate and automatic segmentation of retinal vessels from fundus images is critical for the early diagnosis and
prevention of many eye diseases, such as diabetic retinopathy (DR). Existing retinal vessel segmentation approaches
based on convolutional neural networks (CNNs) have achieved remarkable effectiveness. Here, we extend a retinal
vessel segmentation model with low complexity and high performance based on U-Net, which is one of the most
popular architectures. In view of the excellent work of depth-wise separable convolution, we introduce it to replace
the standard convolutional layer. The complexity of the proposed model is reduced by decreasing the number of
parameters and calculations required for the model. To ensure performance while lowering redundant parameters,
we integrate the pre-trained MobileNet V2 into the encoder. Then, a feature fusion residual module (FFRM) is
designed to facilitate complementary strengths by enhancing the effective fusion between adjacent levels, which
alleviates extraneous clutter introduced by direct fusion. Finally, we provide detailed comparisons between the
proposed SepFE and U-Net in three retinal image mainstream datasets (DRIVE, STARE, and CHASEDB1). The
results show that the number of SepFE parameters is only 3% of U-Net, the Flops are only 8% of U-Net, and better
segmentation performance is obtained. The superiority of SepFE is further demonstrated through comparisons
with other advanced methods.
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1 Introduction

Fundus image contains several blood vessels, which is the only relatively deep microvascular
system that can be directly observed in the human body, and contains a wealth of information
[1]. Many diseases can be detected by examining the retinal vasculature, such as narrowed vessels
or increased vascular tortuosity of the vascular can be observed in patients with hypertension [2].
Accordingly, accurate vessel segmentation can efficiently detect and diagnose early disease, limiting
the progression of the disease in patients. In practice, clinicians must have extensive experience to
ansure correct segmentation results, and there still is risk of subjectivity. Furthermore, there is a heavy
workload in manual retinal vessel segmentation, and the process is laborious and time-consuming [3].
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Many researchers have begun studying automated techniques for accurate retinal vessel segmentation
to assist clinicians with this highly repetitive and subjective work [4,5].

Image segmentation algorithms based on full convolutional neural networks (FCNs) have recently
received extensive research. U-Net is one of the most popular models, and many researchers have
made a lot of attempts and improvements to it. Examples include incorporating residual blocks
into the U-Net algorithm to alleviate gradient explosion [6], using dilated convolutions to expand
the receptive field of the feature map [7,8], and employing attention mechanisms to improve the
localization in region-of-interest (ROI) blood vessels [9,10]. Some cascade and multi-path structures
have been proposed based on U-Net to further improve the performance [11,12]. Multiple network
architectures are used in series or parallel to obtain more comprehensive semantics of target vessels.
Although the U-shaped structures have achieved certain advances in research, these improvements
also introduce a larger number of parameters and require excessive resources during the training and
inference phases. This further limits model deployment on terminal devices, especially those that are
embedded [13]. Secondly, the skip connection in each stage indiscriminately fuses local information.
This introduces significant extraneous clutter [14,15] and makes it difficult to correctly distinguish
between vascular pixels and complex noise. Therefore, it is valuable to construct a model that meets
the required performance target while minimizing the number of parameters.

We propose a lightweight network called SepFE. The model uses depth-wise separable convolution
[16] as the primary building block and achieves a performance comparable to standard convolution
with fewer parameters. It is well known that feature extraction and selection significantly impact the
performance of CNN models [17]. On the ImageNet dataset, it was demonstrated that MobileNet V2
[18] and VGG16 [19] have identical performance, with the number of parameters in MobileNet V2 only
3% of those from VGG16. Furthermore, direct transfer of the pre-trained backbone is regarded as an
efficient method [20]. Based on this, we inject MobileNet V2 directly into the encoder of the model.
This both improves the feature extraction capability and has a lower complexity. Ibtehaz et al. [15] and
Peng et al. [21] strengthened the localization of features by integrating a deeper convolutional block
and a larger convolutional kernel into the long connection module, respectively. Inspired by this, we
propose a feature fusion residual module (FFRM), which employs inverted residual structures to learn
two levels of features and uses the concatenation operation to enhance the complementary advantages.
The main contributions of this paper are summarized as follows:

1) As an extension of U-Net, the proposed SepFE ingeniously introduces depth-wise separable
convolutions to filter features, which decreases the computational complexity by reducing the
number of parameters and calculations.

2) An FFRM is carefully designed to take full advantage of the complementarity by facilitating
fusion of low-level and high-level features, which allows a more precise target location in
complex backgrounds.

3) We propose a novel encoder-decoder model for retinal vessel segmentation that offers excellent
performance with low complexity. Extensive tests on the DRIVE, STARE, and CHASEDB1
datasets reveal that the proposed model outperforms other methods and serves as a powerful
new approach for computer-aided diagnosis in clinical practices.

2 Related Works

Retinal vessel segmentation methods are generally classified as unsupervised and supervised as
described below.
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2.1 Unsupervised Methods
The unsupervised method does not require manually labeling samples and is roughly divided

into four categories: matched filter-based, blood-vessel tracking, region growing, and mathematical
morphology. Azzopardi et al. [22] proposed a retinal vessel segmentation algorithm based on the
B-COSFIRF filter to select blood vessels and their ends. Zhang et al. [23] obtained vessel textons
by responding to a multi-scale Gabor filter bank and accomplished the classification of vessel pixels
with their help. Li et al. [24] proposed an approach to track blood vessels where candidate pixels are
selected from the semi-ellipse region surrounding the optical disc and serve as a starting point for
the vascular contour. The blood vessels are then traced by applying Bayesian theory to determine the
corresponding vessel edge points. Unlike blood-vessel tracing, Shukla et al. [25] designed a fractional
filter to remove artifacts from the input image. To sensitively detect low-contrast blood vessels, they
also proposed an efficient centerline detection algorithm. Subsequently, they applied a region growing
operation to locate blood vessels. The proposed algorithm is generalizable and can be extended to
palm vein segmentation. To challenge the localization of blood vessels in color fundus imaging and
scanning laser ophthalmoscopy (SLO) conditions, Pachade et al. [26] proposed a new segmentation
framework. First, linear recursive filtering was used to enhance the vascular contrast. Morphological
operations, background estimation and iterative thresholding were then combined to complete the
vessel segmentation. After that, Tian et al. [27] proposed a morphology-based vessel segmentation
method, which was divided into four steps. First, the contrast of the retinal image was amplified by
histogram equalization. A modified Frangi filter was then used to enhance the blood vessels of the
global image. Still, there were complications of weak contrast around the fine vessels. For that, they
proposed again an improved mathematical morphology method to eliminate the interference noise
around the fine vessels. Finally, the Otsu thresholding segmentation method completed the blood
vessel segmentation. In general, unsupervised algorithms are convenient for generalization, but the
performance of vessel segmentation is relatively poor.

2.2 Supervised Methods
Unlike unsupervised methods, supervised methods require manual annotation, are data-driven,

and are superior for retinal vessel segmentation. Supervision methods include traditional machine
learning and deep learning models based on convolutional neural networks (CNNs). In traditional
machine learning, an image feature must be designed in advance to train the classifier for retinal
vessel segmentation. Soares et al. [28] generated feature vectors using the 2D Morlet wavelet trans-
form, which was then used to model and classify retinal blood vessels through Bayesian classifiers.
Orlando et al. [29] employed a fully-connected conditional random field model to perform supervised
learning. Akram et al. [30] enhanced blood vessel contrast through 2D Gabor wavelets and supervised
retinal blood vessel segmentation with a proposed multi-layer threshold technique. Wang et al. [31]
used matched filtering with multiwavelet kernels (MFMK) to enhance blood vessels and local adaptive
threshold processing for segmentation. While these algorithms have produced improved segmentation
results in specific situations, they cannot adapt to complex environments with large data volumes
because the artificially designed underlying features cannot fully express the complex information of
retinal vessels [32].

Researchers have recently introduced CNNs into medical image processing. Compared with
traditional automatic segmentation algorithms, CNNs have advantages in dealing with complex
environments [33]. Tang et al. [9] proposed a novel encoder-decoder architecture. The encoding used
multi-scale channel importance sorting to identify valuable features while suppressing extraction
from invalid features. The decoding introduced a spatial attention mechanism module to collect
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spatial vessel information, which improved the localization of blood vessel locations. Liu et al. [34]
incorporated the concept of feature pyramids into the U-Net structure to obtain multi-scale semantic
representations. To balance the importance of coarse and fine vessels, Yan et al. [35] used both
pixel- and segment-level loss during training. Li et al. [36] designed a U-shaped architecture with
the modulated deformable convolutional (MDC) block as the central element, and dual attention
modules were used to emphasize the features. With developments in retinal vessel segmentation, many
algorithms can encode and decode structures based primarily on cascade and multi-path structures as
the underlying architecture. For example, Wang et al. [37] designed a dual-channel encoder based on
U-Net, which retains a large receptive field and rich spatial information. Yang et al. [11] proposed a U-
Net-based multitask segmentation network. They arranged two decoders to learn thin and thick vessels
separately. Finally, they added a fusion-enhanced network to enhance the fusion between decoders.
While these unsupervised and supervised methods have significant implications for the early detection
of retinal diseases, it is still a challenge to propose a lower complexity and effective model in retinal
vessel segmentation.

3 Methods

The framework of retinal vessel segmentation is shown in Fig. 1. The color fundus images are first
pre-processed and patches are extracted, and the extracted patches are then trained with the SepFE
model. Finally, the segmentation effectiveness of the model is tested. When the datasets lack masks,
they need to be set manually using a threshold.

3.1 Pre-Processing and Patch Extraction
3.1.1 Pre-Processing

As color fundus images have significant noise and poor contrast, it is challenging to identify blood
vessels from retinal images. We utilized three pre-processing strategies to better distinguish blood
vessels from the background in fundus images. A comparison of the entire pre-processing method
is illustrated in Fig. 2. The image is first converted from RGB to grayscale (Igray = 0.299R + 0.587G +
0.114B) [38], which preserves some of the R and B channel information while maximizing the use
of the G channel information. The grayscale images are then subject to contrast-limited adaptive
histogram equalization (CLAHE) [39]. As shown in Fig. 2c, the contrast between the blood vessels
and background is enhanced by increasing the difference between the light and dark regions when
compared to subplot (b). Finally, gamma correction is used to correct for the brightness bias.

3.1.2 Patch Extraction

As few retinal images are available, a patch-based learning strategy is used for training and testing,
as shown in Fig. 3. During training, a random extraction strategy [40] is applied to extract patches
of retinal images, which are used to train the model parameters. Each image is divided into 4000
patches with patch sizes of 48 × 48 pixels. The patch size accounts for local feature information in the
surrounding area while reducing the computational complexity. In addition, an overlapping extraction
strategy [40] is used on the retinal images during testing. The extraction window is set to 48 pixels with
a stride of 5 pixels.
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Figure 1: Framework for the retinal vessel segmentation. In the training stage, the pre-processed gray
images are combined with masks to extract the blood vessels’ ROI. Then, a random extraction strategy
is used to obtain training patches for the SepFE model to learn. In the testing stage, the same pre-
processing methods are adopted. The overlapping extraction strategy fetches the test patches required
for the model. After prediction, the results are regrouped to acquire complete segmentation maps
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Figure 2: Comparison of different image enhancement methods. The first row represents the pre-
processed images, the second row represents the corresponding histograms, and the third row rep-
resents the grayscale values of the same regions after pre-processing. The pre-processed images have
increased contrast in the target regions by sacrificing the gray levels

Figure 3: (Continued)
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Figure 3: Patch extraction showing (a) pre-processed image (top) and patches (bottom) along with (b)
ground truth (top) and patches (bottom)

3.2 Proposed Architecture
Fig. 4 depicts the proposed SepFE architecture based on the encoder-decoder. First, retinal

patches of size (H, W) are fed into a depth-wise separable convolutional residual block. The pre-trained
MobileNet V2 [18] structure is directly employed to generate semantically rich multi-scale features
with shapes of (H/2, W/2, 16), (H/4, W/4, 24), (H/8, W/8, 32), and (H/16, W/16, 96). We then use the
FFRM to progressively fuse the obtained multi-scale features with the up-sampled features. Improved
semantic information is obtained by upgrading the effective fusion of the two feature levels. It is noted
that we integrate the depth-wise separable convolution throughout the SepFE structure. Compared
with standard convolution, our approach significantly minimizes the number of calculations and
parameters.

Figure 4: Architecture of the proposed SepFE. It is based on a U-shaped structure and classified into
three main modules: MobileNet V2 after pre-training, FFRM, and residual block
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3.2.1 Depth-Wise Separable Convolution

Fig. 5 shows the depth-wise separable convolution, whose core principle is to divide the standard
convolution into two parts: depth-wise convolution and point-wise convolution. First, the depth-wise
convolution filters the data from the 2D feature maps on each input channel. The channel is then
adjusted using a 1 × 1 point-wise convolution. In Fig. 5, the size of the input feature map is FW ×
FH × M, the size of the output feature map is FW × FH × M, and the size of the convolution kernel
is Ck × Ck. The R1 is the ratio of the number of parameters Ps of the standard convolution to the
number of parameters Pd of the depth-wise separable convolution. The R2 is the ratio of the number
of calculations Cs of the standard convolution to the number of calculations Cd of the depth-wise
separable convolution. In Eqs. (1) and (2), the number of parameters and calculations for the depth-
wise separable convolution is reduced to 1

N
+ 1

C2
k

of the standard convolution.

Figure 5: Schematic of the standard convolution and depth-wise separable convolution
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Depth-wise separable convolution is employed as the unit of the inverted residual block and
residual block in SepFE due to its low computational cost. The inverted residual block acts as the core
building block in both the MobileNet V2 [18] and FFRM, and its construction is given in Fig. 6a. The
inverted residual blocks are divided into two categories. First is the residual structure with a shortcut
of stride 1, which does not change the resolution of the input feature map. Second is a downsizing
structure with a stride of 2, which halves the resolution of the input feature map. The feature map
is then up-sampled using traditional convolution to acquire additional high-dimensional features
during feature extraction. The depth-wise separable convolution is employed instead of standard
convolutions, which substantially reduces the number of network parameters. A linear activation
layer is then taken at the final step. Fig. 6b displays the residual units that replace the conventional
convolution in the model. A shortcut is created when the dimensions of the input and output feature
maps are the same. This allows training a deeper network while assuring accurate blood vessel
information from the extraction.
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Figure 6: Core building blocks in the SepFE structure with the (a) inverted residual block and (b)
residual block

3.2.2 Feature Fusion Residual Module (FFRM)

The high-level information in the deeper network has rich semantic content, whereas the under-
lying information in the shallow network contains a wealth of spatial content. Low-level features can
advantage from semantic information to abstract the target object globally, while high-level features
can benefit from spatial information to reconstruct details. However, the traditional U-Net and its
variants indiscriminately combine high-level features with lower-level features without taking full
advantage of the complementary properties between them. Therefore, we propose a residual feature
fusion module (FFRM), which relies on a low-complexity inverted residual block to facilitate fusion
between the two feature levels.

This study compares four feature fusion blocks, which are shown in Figs. 7a–7d. Before fusion,
part (a) performs one inverted residual operation on the low- and high-level feature maps, which
represents the FFRM in SepFE. Part (b) depicts the traditional fusion of U-Net, in which the two
feature levels are directly fused. Part (c) shows the concatenation after the inverted residual operation
for the high-level feature map. Part (d) depicts the combination after the inverted residual operation
for the low-level feature map. The ablation experiments show that the SepFE_a model has the best
performance. This indicates that (a) is the globally optimal feature fusion block, which simultaneously
retains more semantic information and recovers more spatial detail.

Figure 7: (Continued)
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Figure 7: Feature fusion modules for the (a) FFRM, (b) standard U-Net concatenation operation,
(c) concatenation operation after the inverted residual for high-level features, and (d) concatenation
operation after the inverted residual for low-level features

3.3 Loss Function
The loss function is used to measure the consistency between the predicted and actual values. A

good loss function may accelerate network training and increase model generalization. In this task,
the dice loss and cross-entropy loss functions are hybridized as the blood vessel pixels in fundus
images account for less than 10% of the image, and the blood vessel and the background are unevenly
distributed. The dice loss function alleviates the problem of data imbalance in binary classification.
Its formula is:

Ldice = 1 − 2|A ∩ B|
|A| + |B| (3)

where A represents the blood vessel area as segmented by the model, B represents the blood vessel
area as manually segmented by an expert, and |A ∩ B| represents their same retinal blood vessel area.
The closer the intersection is to 1, the more accurate the prediction results are. The cross-entropy loss
function is defined as:

Lce = −� [y 1 − y]
[

log(p)

log(1 − p)

]
(4)

where y and p are the ground truth and predicted values with y = 0|1, p ∈ (0, 1), respectively. To
fully exploit the benefits of the two loss functions, the dice loss function and cross-entropy are linearly
combined. The coefficient λ balances the value of the loss function, and the best balance is achieved
when λ is taken as 0.8. The expression is:

Loss = (1 − λ)Ldice + λLce (5)

where λ is the balance coefficient.

4 Experimental Setup
4.1 Dataset

Three retinal image datasets (DRIVE [41], STARE [42], and CHASEDB1 [43]) are used in the
experiments. DRIVE consists of 40 images with resolutions of 565×584 pixels. In the official division,
the training and test sets each contain 20 images. STARE consists of 20 images with resolutions
of 700 × 605 pixels, while CHASEDB1 is composed of 28 images with resolutions of 999 × 960
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pixels. STARE and CHASEDB1 do not explicitly divide the training and test sets, so the k-fold cross-
validation is used for training [44]. STARE uses 5-fold cross-validation to ensure that half of the four
images in each fold are lesion images. The CHASEDB1 dataset uses 4-fold cross-validation, where
each fold assures that there are left and right eyes in a ratio of 3:4 or 4:3.

4.2 Implementation Details
The experiments are performed on a Windows 10 operating system with hardware consisting of an

i7-8700 CPU, an NVIDIA GeForce GTX 1080 GPU, 8 GB of video memory, and 32 GB of memory.
The programming language is Python 3.8, and the deep learning framework is PyTorch. The initial
learning rate is set to 0.0002, the batch size is set to 24, and Adam is used as the model optimizer
during training. Our model is validated to achieve the desired segmentation results after less than 40
epochs.

4.3 Evaluation Metrics
Retinal vessel segmentation is a binary classification problem that identifies whether each pixel

in a fundus image is a blood vessel. We set the probability threshold to 0.5 during the experiments.
The true positive (TP) represents blood vessel pixels in the fundus image that are judged as a blood
vessel. Blood vessel pixels judged as non-vascular are a false negative (FN). The true negative (TN)
represents non-vascular pixels in the fundus image that are determined as non-vascular. If these pixels
are determined to be a blood vessel, it is a false positive (FP). Table 1 shows five evaluation metrics:
area under the ROC curve (AUC_ROC), accuracy (ACC), sensitivity (SE), specificity (SP), and F1-
score (F1). An AUC_ROC and F1-score of 1 suggest that it is a perfect classifier.

Table 1: Experimental evaluation metrics

Metric Description

AUC_ROC Area under the ROC Curve
ACC (accuracy) ACC = (TP + TN)/(TP + TN + FP + FN)

SE (sensitivity) SE = TP/(TP + FN)

SP (specificity) SP = TN/(TN + FP)

F1 (F1-score) F1 = (2 × TP)/(2 × TP + FP + FN)

5 Result and Analysis

We evaluate the effectiveness of the proposed FFRM and hybrid loss function on the DRIVE
dataset. The SepFE model is then systematically compared to U-Net and ResUnet [45] on the DRIVE,
STARE, and CHASEDB1 datasets. The proposed SepFE is compared to other existing algorithms for
retinal vessel segmentation to demonstrate its competitiveness. For better comparisons, we report the
p-value for each set of comparison experiments using the t-test (α = 0.05). From the p-values shown
in Tables 2–4, it is clear that our method exhibits a significant improvement in terms of indicators like
AUC_ROC at the 5% level (almost all p-values are less than 0.05).
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Table 2: Results of different feature fusion modules on the DRIVE dataset. We conducted the t-test
(α = 0.05) for each configuration. The first row represents the mean, the second row represents the
standard deviation, and the third row represents the p-value

Methods AUC_ROC F1-score ACC SE SP

SepFE_a
mean 0.9815 0.8271 0.9572 0.8110 0.9825
std (0.0001) (0.0010) (0.0001) (0.0044) (0.0006)

SepFE_b
mean 0.9806 0.8267 0.9567 0.8112 0.9779
std (<0.0001) (0.0001) (0.0001) (0.0006) (0.0002)
p-value (<0.01) (0.04) (<0.01) (0.01) (<0.01)

SepFE_c
mean 0.9811 0.8253 0.9569 0.8103 0.9783
std (0.0001) (0.0006) (0.0001) (0.0040) (0.0006)
p-value (0.08) (0.03) (<0.01) (<0.01) (<0.01)

SepFE_d
mean 0.9808 0.8207 0.9567 0.7792 0.9809
std (<0.0001) (0.0001) (0.0002) (0.0004) (<0.0001)
p-value (<0.01) (<0.01) (<0.01) (<0.01) (0.01)

Table 3: Comparison experiment of various λ values, which shows the weight proportion of the cross-
entropy loss function (Lce) to the hybrid loss (Loss). When λ is 0.8, Ldice and Lce achieve the best balance

λ AUC_ROC F1-score ACC SE SP

0
mean 0.9660 0.8273 0.9564 0.8207 0.9762
std (0.0010) (0.0007) (0.0001) (0.0051) (0.0008)
p-value (<0.01) (0.09) (<0.01) (<0.01) (<0.01)

0.3
mean 0.9803 0.8282 0.9567 0.8211 0.9764
std (<0.0001) (0.0002) (0.0001) (0.0018) (0.0004)
p-value (<0.01) (0.01) (<0.01) (<0.01) (<0.01)

0.5
mean 0.9807 0.8284 0.9569 0.8164 0.9775
std (<0.0001) (<0.0001) (<0.0001) (0.0001) (<0.0001)
p-value (<0.01) (<0.01) (0.01) (0.02) (<0.01)

0.7
mean 0.9809 0.8267 0.9571 0.8049 0.9792
std (0.0001) (0.0006) (0.0001) (0.0044) (0.0007)
p-value (0.02) (0.06) (0.02) (<0.01) (<0.01)

0.8
mean 0.9815 0.8271 0.9572 0.8110 0.9825
std (0.0001) (0.0010) (0.0001) (0.0044) (0.0006)

0.9
mean 0.9811 0.8246 0.9571 0.7931 0.9810
std (0.0001) (0.0010) (0.0001) (0.0029) (0.0003)
p-value (0.04) (<0.01) (0.02) (<0.01) (0.04)

(Continued)
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Table 3 (continued)

λ AUC_ROC F1-score ACC SE SP

1.0
mean 0.9813 0.8182 0.9568 0.7839 0.9820
std (<0.0001) (<0.0001) (0.0001) (0.0004) (0.0002)
p-value (0.05) (<0.01) (<0.01) (<0.01) (0.29)

Table 4: Comparison of the results from SepFE with other methods on the DRIVE, STARE, and
CHASEDB1 datasets

DRIVE
Methods AUC_ROC F1-score Acc SE SP

U-Net [46]
mean 0.9792 0.8215 0.9554 0.8068 0.9770
std (0.0002) (0.0007) (0.0002) (0.0023) (0.0002)
p-value (<0.01) (0.01) (<0.01) (<0.01) (<0.01)

ResUnet [45]
mean 0.9798 0.8247 0.9563 0.8082 0.9779
std (0.0002) (0.0009) (0.0001) (0.0031) (0.0003)
p-value (<0.01) (0.04) (<0.01) (0.03) (<0.01)

SepFE
mean 0.9815 0.8271 0.9572 0.8110 0.9825
std (0.0001) (0.0010) (0.0001) (0.0044) (0.0006)

STARE
Methods AUC_ROC F1-score Acc SE SP

U-Net [46]
mean 0.9863 0.8305 0.9664 0.7973 0.9859
std (0.0034) (0.0256) (0.0036) (0.0644) (0.0049)
p-value (<0.01) (0.01) (<0.01) (<0.01) (0.11)

ResUnet [45]
mean 0.9870 0.8376 0.9674 0.8141 0.9851
std (0.0044) (0.0232) (0.0037) (0.0580) (0.0034)
p-value (<0.01) (0.20) (0.02) (<0.01) (0.04)

SepFE
mean 0.9882 0.8387 0.9680 0.8037 0.9870
std (0.0026) (0.0217) (0.0035) (0.0455) (0.0033)

CHASEDB1
Methods AUC_ROC F1-score Acc SE SP

U-Net [46]
mean 0.9857 0.8201 0.9653 0.8020 0.9828
std (0.0021) (0.0221) (0.0019) (0.0395) (0.0070)
p-value (0.02) (0.21) (0.06) (0.04) (<0.01)

ResUnet [45]
mean 0.9858 0.8201 0.9650 0.8070 0.9831
std (0.0017) (0.0209) (0.0017) (0.0414) (0.0084)
p-value (0.04) (0.11) (0.03) (<0.01) (0.02)

(Continued)
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Table 4 (continued)

CHASEDB1
Methods AUC_ROC F1-score Acc SE SP

SepFE
mean 0.9860 0.8202 0.9652 0.8024 0.9838
std (0.0015) (0.0177) (0.0012) (0.0408) (0.0078)

5.1 Effectiveness of the FFRM
The following four structural variants are considered based on the different feature fusion modules

shown in Figs. 7a–7d, which are labeled SepFE_a, SepFE_b, SepFE_c, and SepFE_d. In this study,
AUC_ROC and the other indicators are evaluated for these four architectures using the DRIVE
dataset, as shown in Table 2. The SepFE_a outperforms the other three structures in terms of the
overall segmentation performance. As for SepFE_c and SepFE_d, their feature fusion modules only
enhance one of the two levels of features before performing the fusion operation. This makes the
captured topology not complete enough or the extracted target semantics relatively lacking, and
the complementary nature of the shallow and deep features is not maximized. Thus, poor practical
segmentation performance is achieved. The FFRM structure in SepFE_a uses inverted residual
operations for both feature levels, which achieves more accurate localization and reconstruction of the
semantic details. The comparison experiments in Table 2 show that the proposed FFRM is effective
for vessel segmentation tasks.

5.2 Effectiveness of the Hybrid Loss Function
This section analyzes the usefulness of the hybrid loss function and the value of the balance

coefficient λ on the DRIVE dataset, where λ represents the weighted proportion of the cross-entropy
loss function. When λ is 0 or 1, the loss function is either the dice loss function or the cross-entropy
loss function, both of which demonstrate deficiencies. The results of the comparison experiments are
shown in Table 3. The AUC_ROC, ACC, and SP metrics evaluate the best performance when λ is set
to 0.8, while the F1-score and SE metrics are also close to optimal. At this point, the dice loss function
((Ldice)) and cross-entropy loss function (Lce) reach their optimal balance. Furthermore, the hybrid loss
function proves to be better suited for unbalanced tasks.

5.3 Comparison with U-Net and ResUnet
Table 4 compares the performance of the proposed model with two segmentation algorithms: U-

Net and ResUnet [45]. The SepFE is optimal in most indicators. The AUC_ROC metrics for the U-Net,
ResUnet, and SepFE are 0.9792, 0.9798, and 0.9815 on the DRIVE dataset; 0.9863, 0.9870, and 0.9882
on the STARE dataset; and 0.9857, 0.9858, and 0.9860 on the CHASEDB1 dataset. We also plot the
ROC curve in Fig. 8. The closer the ROC curve is to the upper left corner, the better the proposed
SepFE classifies blood vessel pixels. When comparing Figs. 8a–8c, our SepFE classifies blood vessel
pixels more precisely than the other two models. In particular, the improved blood vessel segmentation
is evidenced by the segmentation results of the three models in Fig. 9.
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Figure 8: ROC curves of the different models on the (a) DRIVE, (b) STARE, and (c) CHASEDB1
datasets. The SepFE has the largest ROC curve areas with AUC_ROCs closest to 1

Figure 9: (Continued)
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Figure 9: Segmentation results and their local enlargement areas using the different models on the
DRIVE (left two columns), STARE (middle two columns), and CHASEDB1 (right two columns)
datasets. The final outputs of the SepFE are closer to the ground truth than the other selected
approaches

We analyze and compare the complexity of the three models, where the network inputs are (1, 48,
48). According to Fig. 10, the SepFE architecture has 0.74 M parameters, which is approximately 97%
and 94% less than the 31.04 M and 13.04 M of the U-Net and ResUnet architectures, respectively.
The SepFE architecture has 0.17 G Flops (floating-point operations per second), which is roughly
91% and 90% less than the 1.92 and 1.84 G of U-Net and ResUnet. The model size trained by the
SepFE architecture is 15.3 M, which is nearly 89% and 95% less than the 355 M and 149 M of U-Net
ResUnet. This means that the proposed architecture has fewer parameters and calculations, requires
minimal memory resources, and is valuable in embedded devices.

Figure 10: Comparison of the parameters, Flops, and model size for the three considered models

When the performance and complexity of the three models are compared, the proposed SepFE
model has the best performance and lowest complexity. Therefore, this study achieves its goal of
designing a neural network with adequate performance with as few parameters as possible.

5.4 Comparison with the Existing Methods
The proposed SepFE model is compared to Orlando et al. [29], Yan et al. [35], MAU-Net [36],

Sathananthavathi et al. [47], and Liu et al. [34], which have been evaluated on the DRIVE, STARE,
and CHASEDB1 datasets. The results are shown in Table 5. The proposed SepFE has the highest
performance in the AUC_ROC, F1-Score, SE, and SP from the three datasets. On the DRIVE
dataset, while the proposed model has a 0.05% lower ACC than Sathananthavathi et al. [47], the SE
and SP improve by 2.42% and 1.21%, respectively. An AUC_ROC of 0.98 or above is obtained in
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automatic segmentation, which is close to the optimal results. On the STARE dataset, the SepFE
is slightly inferior to Liu et al. [34] in the ACC metric but superior in the other metrics, where
the AUC_ROC is 0.83% higher than Yan et al. [35] and 1.86% higher than Liu et al. [34]. Thus,
the model has tremendous learning capability. Furthermore, the high sensitivity of the STARE
dataset, which contains a high number of abnormal noise artifacts such as microaneurysms and
hemorrhages, indicates that the model has an improved ability to distinguish between the foreground
and background. The proposed SepFE performs best overall due to a low number of parameters
(0.74 M) and outstanding performance.

Table 5: Comparison of the results from SepFE with other methods on the DRIVE, STARE, and
CHASEDB1 datasets. The metrics of the proposed SepFE are based on the mean ± standard deviation

DRIVE
Method AUC_ROC F1-score ACC SE SP

Orlando et al. [29] 0.9507 0.7857 0.9454 0.7897 0.9684
Liu et al. [34] 0.9650 0.7949 0.9503 – –
Yan et al. [35] 0.9752 – 0.9542 0.7653 0.9818
Sathananthavathi et al. [47] – – 0.9577 0.7918 0.9708
MAU-Net [36] 0.9774 0.8192 0.9557 0.7890 0.9799

SepFE 0.9815 ±
0.0001

0.8271 ±
0.0010

0.9572 ±
0.0001

0.8110 ±
0.0044

0.9825 ±
0.0006

STARE

Method AUC_ROC F1-score ACC SE SP

Orlando et al. [29] 0.9570 0.7644 0.9519 0.7680 0.9738
Liu et al. [34] 0.9702 0.7817 0.9686 – –
Yan et al. [35] 0.9801 – 0.9612 0.7581 0.9846
Sathananthavathi et al. [47] – – 0.9445 0.8021 0.9561
MAU-Net [36] 0.9721 0.7826 0.9581 0.7536 0.9808

SepFE 0.9882 ±
0.0026

0.8387 ±
0.0217

0.9680 ±
0.0035

0.8037 ±
0.0455

0.9870 ±
0.0033

CHASEDB1

Method AUC_ROC F1-score ACC SE SP

Orlando et al. [29] 0.9524 0.7332 0.9458 0.7277 0.9712
Liu et al. [34] 0.9594 0.6976 0.9585 – –
Yan et al. [35] 0.9781 – 0.9610 0.7633 0.9809
Sathananthavathi et al. [47] – – 0.9340 0.6357 0.9653
MAU-Net [36] 0.9791 0.8037 0.9620 0.7798 0.9822

SepFE 0.9860 ±
0.0015

0.8202 ±
0.0177

0.9652 ±
0.0012

0.8024 ±
0.0408

0.9838 ±
0.0078
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6 Conclusion and Discussion

We propose a lightweight network called SepFE to perform the challenging task of accurately and
efficiently segmenting retinal vessels from fundus images. As an extension of U-Net, we substitute a
portion of the conventional convolutional layers with depth-wise separable convolutions. Meanwhile,
the U-shaped architecture is continued, and a pre-trained MobileNet V2 structure is introduced into
the encoding portion of the model to fully capture contextual information. Then, the FFRMs are
employed to gradually fuse high- and low-level features, which exploits the complementary nature of
the two feature levels for more accurate blood vessel localization. We train the U-Net and SepFE from
scratch to evaluate the proposed model. The proposed SepFE not only has a lower complexity but
also outperforms U-Net in segmentation performance on three publicly-available datasets. We also
demonstrate the leading performance compared to other existing retinal vascular algorithms.

The proposed method has excellent performance of both high performance and low resource
consumption. However, the sensitivity is lower than that of U-Net when inference is performed on
the test images of the DRIVE and STARE datasets. This may be because our method still produces
some false negatives similar to those of other methods for typical regions with a large number of thin
blood vessels. In retinal images, thin vessels contain only a few pixels, and segmenting thin vessels is
much more difficult. Therefore, attaching higher weights to tiny targets is a topic for exploration in
future work.
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