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ABSTRACT

This paper proposes an effective reliability design optimization method for fail-safe topology optimization (FSTO)
considering uncertainty based on the moving morphable bars method to establish the ideal balance between cost
and robustness, reliability and structural safety. To this end, a performance measure approach (PMA)-based double-
loop optimization algorithm is developed to minimize the relative volume percentage while achieving the reliability
criterion. To ensure the compliance value of the worst failure case can better approximate the quantified design
requirement, a p-norm constraint approach with correction parameter is introduced. Finally, the significance of
accounting for uncertainty in the fail-safe design is illustrated by contrasting the findings of the proposed reliability-
based topology optimization (RBTO) method with those of the deterministic design method in three typical
examples. Monte Carlo simulation shows that the relative error of the reliability index of the optimized structure
does not exceed 3%.
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1 Introduction

Topology optimization (TO) can generate innovative designs without any assumptions about
structural connectivity, which makes it a potent and helpful drive for reducing structural weight while
satisfying specific performance requirements. Nowadays, TO has been successfully implemented in
numerous fields and the available reviews on the most recent developments can be found in literature
reviews [1,2] and references therein.

Due to the absence of structural redundancy and disregard for the influence of uncertain
parameters, the resulting resembled statically determinate structures obtained by conventional TO
are susceptible to local stiffness loss. FSTO aims to design structures that can operate in a damaged
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state. Fail-safe structures can overcome the disadvantage that traditional structures are easily affected
by local stiffness loss due to the absence of structural redundancy. Jansen et al. [3] introduced the fail-
safe idea into TO for the first time. They demonstrated the influence of local failure on the typical
design problem of cantilever beam and compliant mechanism, which may lead to the complete loss
of displacement inversion capability of compliant mechanism. Therefore they suggested a streamlined
model of local damage and a robust worst-case approach for designing fail-safe structures, in which
the complex process of damage is approximated by removing material stiffness in fixed square
patches with a prescribed size. In addition, they presented other ways to reduce the computational
time of the proposed approach, such as sequential formulation, perturbation techniques, reanalysis
techniques, and active set strategies. Zhou et al. [4] generalized the work of FSTO to establish a
rigorous mathematical design framework and computationally feasible solution for 3D structures.
Stolpe [5] extended truss TO to accommodate fail-safe requirements, where the damage scenarios
are modelled by removing a set of bars’ material stiffness or by degrading the member regions.
Lüdeker et al. [6] presented a stress-constrained formulation for fail-safe optimization using beam
elements with varying thicknesses, where the damage scenario is modelled by removing one beam
element at a time. Wang et al. [7] incorporated the von Mises stress into FSTO, where damage situations
are simulated by removing the material stiffness of certain patches whose von Mises stress exceeded
the permissible value. Du et al. [8] integrated fail-safe requirements into the field of frequency TO via
the independent continuous mapping (ICM) method, which prevents the fundamental frequency of
optimized fail-safe structures from being vulnerable to local failure. Du et al. [9] presented FSTO model
for minimizing the weight of continuum structures with stress and displacement constraints based on
the ICM method and the dual sequence quadratic programming (DSQP) algorithm. Kranz et al. [10]
developed a volume-restricted stress-based FSTO formulation for minimizing the worst-case von
Mises stress. Peng et al. [11] developed a volume-minimization fail-safe optimization formulation
with displacement restrictions by adopting the reciprocal type variables. To circumvent the finite
element (FE) mesh dependency in existing methods for FSTO, Hederberg et al. [12] employed so-
called moving morphable components (MMCs) [13,14] to simulate damage while using the variable
density method to implement TO. Smith et al. [15] employed a geometry projection method for FSTO,
in which local failure is mimicked by removing each geometric component. Dou et al. [16] presented
some notable findings of extending stress-constrained truss optimization to accommodate fail-safe
requirements through a three-bar example. Then they incorporated two additional failure modes of
thickness degradation and local damage into the FSTO of 2D frame structures subject to stress and
eigenfrequency criteria [17]. As an alternative to defining a damage formulation for boosting the
redundancy and damage tolerance, Wu et al. [18] and Dou [19] integrated fail-safe criterion into TO
by applying local volume constraints.

It is observed that the aforementioned research on FSTO is conducted under deterministic
conditions, i.e., deterministic topology optimization (DTO), which means it ignores the effect of
inherent uncertainty factors, such as material parameters, on the design optimization of fail-safe
structures. However, uncertainties of material properties and load are essential and critical features
in FSTO structures, particularly in large structures and lifeline engineering structures. In addition, as
highlighted in [4,6,20,21], fundamental engineering structures have high requirements for robustness,
FSTO reliability, and structural safety. The underlying concepts behind FSTO and reliability-based or
robust TO are very different and should not be confused, even though these approaches may provide
comparable results. In FSTO, the location of failure cases or degradation was known red, and the
corresponding areas were removed entirely. Robust and reliability-based TO are two strategies for
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coping with unknown parameters involved in structural optimization. Robust TO aims to enhance the
capacity of structures to withstand changes in uncertain parameters [22,23]. RBTO entails reliability
analysis and ensures the fulfillment of the design conditions with the intended target reliability level
when some parameters involved in structural responses are of random nature [24,25]. Reliability design
has been extended to many fields of topology optimization, including geometrically nonlinear [26,27],
dynamic [28,29], stress-constrained [30], thermal-mechanical coupling [31], composite structures [32],
etc. The approximate reliability methods based on Taylor series expansion, including the first-and
second-order reliability methods (FORM and SORM), have proved to be accurate methods for
estimating the failure probability in RBTO [33–35]. It seems reasonable to integrate these concepts
to mitigate potential performance degradation during service and provide more robust and reliable
fail-safe designs. Currently, some researchers have made some efforts in this regard. Long et al. [36]
introduced a resilient TO formulation for continuum structures considering both the unpredictability
of the damage site and the uncertainty of loading direction and amplitude. A technique of a robust
TO of fail-safe systems that considers the occurrence and size of failure as sources of uncertainty has
been proposed by Martínez-Frutos et al. [37]. In contrast to using a worst-case approach, Martínez-
Frutos et al. [20] also proposed a risk-averse level-set method for TO of fail-safe structures, in which
the probability of a failure scenario occurring is coupled with the formulation using a probabilistic
framework. Cid et al. [38] introduced a novel probability-damage technique based on available
information regarding the chance associated with individual partial collapses.

It can be seen that most of the existing literature on fail-safe design is conducted based on the
implicit density method and level-set method. The implicit geometric/topological representation is not
compatible with modern computer-aided design (CAD) modelling systems. In this paper, we propose
an explicit reliability-based TO methodology for handling the design problem of fail-safe structures
under uncertainty using explicit moving morphable bars (MMB), aiming to achieve an optimal balance
between cost, robustness, reliability, and structural safety. This explicit method supports explicit
geometric information due to the use of geometric parameters as design variables. With the help
of this geometric information, we can easily reconstruct the optimized structure in a CAD system
and then generate file formats that can be read by CNC (computer numerical control) machining or
additive manufacturing, such as STL files. Another notable benefit of using MMB method is that it
can facilitate the implementation of minimum constraint control and improve the manufacturability of
optimized structures. Besides, using the MMB method to implement topology optimization involves
relatively fewer design variables, which can improve the calculation efficiency of optimization iteration.
The rest of this paper is organized as follows. Section 2 details the deterministic FSTO based on moving
morphable bars. Section 3 formulates RBTO of fail-safe structures considering uncertainty, followed
by the design sensitivity analysis in Section 4. The suggested RBTO method for fail-safe structures is
demonstrated in Section 5 through a series of numerical tests. Section 6 comes to a conclusion.

2 DTO of Fail-Safe Structures Based on Moving Morphable Bars
2.1 Density Distribution in Moving Morphable Bars

As opposed to the traditional pixel or node point-based implicit TO approach, Here we use the
MMB method [39–41] to conduct TO due to its convenience in implementing minimum size control.
The MMB method uses a set of discrete geometric bars as the fundamental building blocks. The
geometrical parameters describing the position and size of these MMBs are taken as the design
variables. As shown in Fig. 1, each discrete bar is determined by 5 parameters: coordinates of the
centers k1, k2 of the two semicircles at the ends of the bar (xk1, yk1) and (xk2, yk2), and the bar thickness
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tk (tk = 2rk; rk is the radius of the semicircular ends). Inspired by the seminal works [42,43], to escape
the hassle of remeshing due to bar movement, these geometric bars are then projected onto a density
field via a differentiable function in Eq. (1). The element density ρe of element e is thus defined as
[39,40]

ρe = 1 −
Nb∏
k=1

1
1 + exp [−β(dek − rk)]

(1)

where Nb is the number of MMBs. β refers to the rate parameter, which determines how close ρe is to
0 or 1. dek is defined as the euclidean distance between the center of the eth element and the kth bar,
given by

dek =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
(xk1 − xe)

2 + (
yk1 − ye

)2
if xe < xk1

||Aek||
lk

if xk1 ≤ xe ≤ xk2√
(xk2 − xe)

2 + (
yk2 − ye

)2
if xe > xk2

(2)
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Figure 1: Geometry of a moving bar

In Eq. (2), lk and Aek are defined as

lk =
√

(xk2 − xk1)
2 + (

yk2 − yk1

)2
(3)

Aek =
[

xk1 − xe yk1 − ye

xk2 − xe yk2 − ye

]
(4)

Note that (x, y) represents local coordinates, where the x-axis is defined as parallel to the axis of
the MMBs. xe and ye denote the center coordinates of the eth element.

For clarity, in Fig. 2, the figure on the left shows the pattern of “I ♥ U” made up of geometric
bars, and the figure on the right shows the density distributions of “I ♥ U” mapped from Eq. (1) with
β = 8. From Eq. (1) and Fig. 2, we can conclude that the value of ρe is one if the center of the eth
element is within one of MMBs. Otherwise, ρe is zero.
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Figure 2: The pattern of “I ♥ U” made up of geometric bars, and its density distributions

2.2 DTO of Fail-Safe Structures
Here we adopted the simplified local damage model reported in [3] to implement FSTO. An

adequate set of m patch removal scenarios are used to depict local failure. As illustrated in Fig. 3 for
a quadrate failure zone containing a patch of elements P(i) where local failure caused by an accidental
event happens. Then the material interpolation scheme for designing fail-safe structures can be defined
as

E(i)
e = Emin + (

ρ
(i)
e

)p
(E0 − Emin) (5)

where ρ(i)
e is defined as

ρ
(i)
e =

{
ρe if e ∈ N\P(i)

ρmin if e ∈ P(i)
(6)

where E0 represents Young’s modulus of solid material. N denotes the elements index set. p is the
penalization factor, typically chosen p = 3. ρmin is a small term used to prevent the stiffness matrix
from becoming singular.

Figure 3: Removal of a quadrate patch of material

As with the pioneering works integrating local failure into continuum TO [3,4], we use com-
pliance as the performance measure of fail-safe structures involving failure scenarios. However,
unlike performing the volume-constrained compliance minimization in [3,4], we treat the compliance
corresponding to the worst failure case as the design constraint while minimizing the volume fraction
of the structure. This means that we can achieve the purpose of weight reduction while meeting the
quantified design requirements. Consequently, the DTO model for fail-safe structures is formulated
as
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find : z = {
z1, z2, · · · , zNb

}
min : fobj =

(
Ne∑
e=1

ρeVe

)
/V0

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K
(
ρ

(i)
)

U(i) = F

g = max
i=1,··· ,m

(
c(i)

) − climit ≤ 0

zmin ≤ z ≤ zmax

(7)

where z is a set of design variable vectors, where each zk are up of 5 parameters, i.e., zk =
{xk1, yk1, xk2, yk2, rk}. ρe is the element densities defined in Eq. (6). zmin and zmax are the lower and upper
bounds of the geometrical design variables. The volume fraction fobj = (∑Ne

e=1ρeVe

)
/V0 is the objective

function, where Ve and V0 represent the volume of the eth element and design domain. Ne denotes
the total number of elements. F is the global load vector. c(i) = FTU(i), K

(
ρ

(i)
)

are the compliance and
global stiffness matrix related to the (i)-th patch removal scenario. U(i) corresponds to the displacement
vector. climit is the prescribed threshold on the compliance response. U(i) can be obtained by solving the
corresponding discrete equation K

(
ρ

(i)
)

U(i) = F for the (i)th patch removal scenario.

Since the maximum function in the constraint function of Eq. (7) is not differentiable, to make
sure the design variables are updated by using a gradient-based algorithm, the non-differentiable max-
operator max

i=1,··· ,m

(
c(i)

)
is approximated by using a p-norm as

cPN = cmax ·
(

m∑
i=1

(
c(i)

cmax

)q
)1/q

(8)

where cmax = max
(
c(i)

)
. q refers to the rate parameter, which determines how close cPN is to the largest

cmax in all patch removal scenarios, and sets as 10 for all examples in this paper. Theoretically, cPN

tends to approach cmax as the value of the parameter q approaches infinity. It should be noted that the
parameter q should not be too large, a large value of q will lead to the instability of the optimization
program. In this case, there is always a gap between the approximate value cPN and the true maximum
value cmax. In order to ensure the compliance value of the worst failure cases better meets the quantified
design requirements defined by the user, the constraint function of Eq. (7) is replaced by the following
equation:

g = cp · cPN − climit ≤ 0 (9)

where the correction parameter cp of the nth iteration is calculated by

cpn = cmax,n

cPN
n

(10)

where cmax,n represents the compliance value corresponding to the worst failure case in the nth iteration.

3 RBTO of Fail-Safe Structures Considering Uncertainty
3.1 RBTO Model for Fail-Safe Structures Considering Uncertainty

All the related works on the fail-safe design of continua are undertaken under deterministic
settings, disregarding the impact of uncertain factors on optimal design. However, uncertainties in
structural parameters such as material property are inherent and the scatter from their nominal ideal
values is unavoidable in the vast majority of engineering applications. A design derived through a
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deterministic optimization process cannot guarantee the fulfilment of the constraints if some degree
of uncertainty appears later in the problem. Consequently, these uncertainties should be accounted for
during the structural design phase to reduce the risk of performance degradation. For the first time,
we integrate reliability analysis considering uncertainty into FSTO. The RBTO model is formulated
as

find : z = {
z1, z2, · · · , zNb

}
min : fobj =

(
Ne∑
e=1

ρeVe

)
/V0

s.t.

⎧⎪⎪⎨
⎪⎪⎩

K
(
ρ

(i), X
)

U(i)
(
ρ

(i), X
) = F (X)

R = Pr (g (z, X) ≤ 0) ≥ � (β t) = Rt

zmin ≤ z ≤ zmax

(11)

The main difference between RBTO of fail-safe structures in Eq. (11) and the classical DTO in
Eq. (7) lies in the introduction of random parameter X (Namely, material parameter E0 in Eq. (5),
or the magnitude or direction of the load) that influence the structural responses. This induces the
emergence of reliability constraint, which states that the probability of meeting the design requirements
must not be less than the probability corresponding to the target reliability. Here the function g is
defined by Eq. (9), whose positive sign indicates violating a given constraint, i.e., when g > 0 indicates
a “fail” design. R is the reliability level, and Rt is the target reliability level defined as the standard
normal distribution �(β t) at the target reliability index β t. All other parameters are identical as these
in Eq. (7).

3.2 PMA-Based Reliability Analysis
Currently, numerous effective numerical reliability methods have been developed to approximate

the reliability involved in reliability constraint, such as sampling-based methods utilizing Monte Carlo
simulation and approximate reliability methods based on Taylor series expansion, etc. The reliability
index approach (RIA) [44] and performance measure approach (PMA) [45,46] are two most commonly
used first-order reliability method. Without loss of generality, here we use PMA to incorporate
probability constraint in reliability analysis due to its stability and efficiency. Therefore, the PMA-
based RBTO formulation is expressed mathematically as follows:

find: z = {
z1, z2, · · · , zNb

}
min : fobj =

(
Ne∑
e=1

ρeVe

)
/V0

s.t.

⎧⎪⎪⎨
⎪⎪⎩

K
(
ρ

(i), X
)

U(i)
(
ρ

(i), X
) = F (X)

gPMA ≤ 0

zmin ≤ z ≤ zmax

(12)

where gPMA denotes the performance measure associated with the target reliability β t, being evaluated
via solving the following optimization problem:

gPMA = arg max
g

{
g (d, Y) | ||X|| = β t

(= �−1
(
Pt

))}
(13)
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where �−1 refers to the inverse cumulative distribution function (CDF) of standard normal
distribution.

In the PMA approach, a point satisfies this metric ||Y|| = β t and makes g the maximum value is
the most probable failure point (MPP) X∗. Then, gPMA is calculated as gPMA = g (d, Y∗) [47]. Among
the several existing methods proposed to search the MPP, we choose to use the advanced mean value
(AMV) method without loss of generality. The AMV formulation for MPP search is stated as [48]

Y(k+1) = β tn(k) = β t
∇Yg

(
Y(k)

)
||∇Yg (Y(k))|| (14)

where n represents the steepest descending direction of the iteration point.

4 Design Sensitivity Analysis
4.1 Sensitivity of Performance Function w.r.t. Random Variables

Firstly, we focus on the sensitivity of the g w.r.t. random material parameter (Young’s modulus
E0). which can be calculated according to Eq. (9)

∂g
∂E0

= cpn · ∂cPN

∂E0

= cpn ·
m∑

i=1

(
∂cPN

∂c(i)

∂c(i)

∂E0

)
(15)

In Eq. (15) the derivative term ∂cPN/∂c(i) can be derived from Eq. (8) as

∂cPN

∂c(i)
=

(
m∑

i=1

(
c(i)

cmax

)q
)1/q−1 (

c(i)

cmax

)q−1

(16)

The adjoint variable method is used to calculate the derivative of the compliance c(i) of i-th patch
removal scenario w.r.t. E0 in Eq. (15). The augmented Lagrangian function constructs as

L(i) = c(i) + λT
(i)

(
F − K(i)U(i)

) = FTU(i) + λT
(i)

(
F − K(i)U(i)

)
(17)

where λ(i) refers to the adjoint vector corresponding to ith patch removal scenario.

Then the ∂L(i)/∂E0 gives as

∂L(i)

∂E0

= −λT
(i)

∂K(i)

∂E0

U(i) + (
F − λT

(i)K
(i)
) ∂U(i)

∂E0

(18)

To eliminate ∂U(i)/∂E0, let the vector λ(i) in Eq. (18) be the solution of equation K(i)λ(i) = F,
bringing about λ(i) = U(i). Therefore, the derivative ∂c(i)/∂E0 in Eq. (15) is explicitly determined as

∂c(i)

∂E0

= ∂L(i)

∂E0

= − (
U(i)

)T ∂K(i)

∂E0

U(i) =
Ne∑
e=1

[
− (1 − Emin)

(
ρ(i)

e

)p (
u(i)

e

)T
k0u(i)

e

]
(19)

The derivative of performance function w.r.t. the random load can be derived similarly, and the
details are omitted here.

4.2 Sensitivity of Performance Function w.r.t. Design Variables
Now, we focus on the sensitivity of g w.r.t. design variables. Assuming ψk represents one of the

geometric design variables zk = {xk1, yk1, xk2, yk2, rk} for the kth moving bar, the design sensitivities
∂g/∂ψk can be calculated as
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∂g
∂ψk

= cpn · ∂cPN

∂ψk

= cpn ·
∑m

i=1

(
∂cPN

∂c(i)

∂c(i)

∂ψk

)
(20)

where the derivative term ∂cPN/∂c(i) is determined by Eq. (16). The derivative term ∂c(i)/∂ψk can be
determined by the chain rule as

∂c(i)

∂ψk

=
Ne∑
e=1

(
∂c(i)

∂ρ
(i)
e

∂ρ
(i)
e

∂dek

∂dek

∂ψk

+ ∂c(i)

∂ρ
(i)
e

∂ρ
(i)
e

∂rk

∂rk

∂ψk

)
(21)

Similar to the calculation process of ∂c(i)/∂E0, we can also use the adjoint variable method to derive
the derivative term ∂c(i)/∂ρ(i)

e in Eq. (21)

∂c(i)

∂ρ
(i)
e

= − ∂Ee

∂ρ(i)
e

(
u(i)

e

)T
k0u(i)

e = −p (E0 − Emin)
(
ρ(i)

e

)p−1 (
u(i)

e

)T
k0u(i)

e (22)

In Eq. (21), ∂ρ(i)
e /∂dek and ∂ρ(i)

e /∂rk can be determined according to Eq. (1), gives

∂ρ(i)
e

∂dek

= − (
1 − ρ(i)

e

) β · exp [−β(dek − rk)]
1 + exp [−β(dek − rk)]

,
∂ρ(i)

e

∂rk

= −∂ρ(i)
e

∂dek

(23)

In Eq. (21), ∂dek/∂ψk and ∂rk/∂ψk can be determined from Eqs. (1)–(4). For more details see [39].
The sensitivity information of the objective function can also be obtained similarly and ignored here.
Once the sensitivity information is obtained, the well-known method of moving asymptotes (MMA)
developed by Svanberg [49] can be used to update design variables. The iterative process terminates
when a given maximum number of iterations is achieved.

5 Numerical Examples

The proposed method for RBTO of fail-safe design under uncertainty is demonstrated in three
numerical examples in this section. Unless otherwise stated, E0 is regarded as a probabilistic random
variable with normal distribution, and its mean and coefficient of variation (COV) are assumed to be
2 × 105 and 0.1. Poisson’s ratio is fixed at 0.3.

5.1 Clamped Beam
First, a design problem of clamped beam is tested. Fig. 4a depicts the design domain with

dimensions of 200×100 and boundary conditions. Three quarters of the left and right sides of clamped
beam are completely constrained and the center of the upper edge is subjected to a concentrated
force of 1000. A damage population consisting of 8 square damage areas with a side length of 50
is considered and shown in Fig. 4a, where labels (1–8) are marked for the damage zones. 200 × 100
plane stress elements of side-length 1 are used to discretize the design domain. The initial layout of
208 MMBs with thickness t0 = 2r0 = 4.5 is shown in Fig. 4b. The compliance limit value climit is set to
be 130.

This problem is first designed for standard deterministic design without considering local damage,
marked as Case 1. The final topology aims at minimizing the structure’s volume fraction with
compliance constraint, as shown in Fig. 5a, where Young’s modulus is set as 2 × 105 for DTO design.
Second, this problem is also designed for deterministic fail-safe design based on the optimization
model defined in Eq. (11), marked as Case 2. The final topology of DTO design considering local
damage is shown in Fig. 5b. To investigate the influences of uncertainty material parameter (Young’s
modulus E0) on optimization results of fail-safe structures, we revisit the clamped beam problem for
reliability design based on the RBTO method described in Section 3, marked as Case 3. For RBTO
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design, the target reliability index in Eq. (11) is set as 1 in this example. The final topology of RBTO
design considering local damage is shown in Fig. 5c. To have a more direct observation of how the
structure maintains some degree of integrity under each independent failure mode, the final results of
DTO and RBTO design considering local damage are depicted in Figs. 6 and 7, respectively.

Figure 4: Clamped beam problem: (a) design domain and boundary condition, (b) initial layout of 208
bars with thickness of t0 = 4.5

Figure 5: Final topology results of clamped beam: (a) DTO design without considering local damage,
(b) DTO design considering local damage, (c) RBTO design considering local damage

Figure 6: Damaged models with final fail-safe topology for DTO design

When comparing Fig. 5a with Figs. 5b and 5c, a significant topological difference can be observed
between the standard design (Fig. 5a) and fail-safe designs (Figs. 5b and 5c). Compared with standard
design, more load path redundancy occurs in fail-safe designs. Similarly, more redundancy joints
and smaller features can be observed in RBTO design considering local damage compared to DTO
design considering local damage. The topological differences between these three cases emphasize
the necessity and importance of integrating fail-safe concept and reliability analysis under material
uncertainty into TO.
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Figure 7: Damaged models with final fail-safe topology for RBTO design

In Table 1 the volume fractions of the DTO designs and RBTO design for clamped beam are listed,
as well as the compliances for all eight damage instances. The values of compliance in three different
cases are calculated based on the final topology shown in Fig. 5. For example, the eight compliance
values of Case 1 are for the DTO design (in Fig. 5a) under eight damage states. The difference between
Case 3a and Case 3b is that the compliance values for Case 3a are calculated based on the most
probable failure point of the random variable (namely, the value of Young’s modulus included in the
calculation in this case is 1.8×105), while the compliance values for Case 3b are calculated based on the
mean value of the random variable (namely, Young’s modulus included in the calculation is 2 × 105).

Table 1: Optimization results of volume fractions and compliances for clamped beam

Cases Volume
fraction

Failure zones

1 2 3 4 5 6 7 8

Case 1 0.091 415.24 1.047 × 105 1.0512 × 105 417.51 1.0468 × 105 130 130 1.0511 × 105

Case 2 0.362 89.77 129.89 130.00 89.576 101.10 105.31 104.90 100.96
Case 3a 0.424 89.652 129.94 130.00 89.61 100.07 102.96 102.81 100.22
Case 3b / 80.687 116.95 117.00 80.649 90.06 92.664 92.531 90.199

Table 1 shows that the relative volume fractions are 0.091 for Case 1, 0.362 for Case 2, and 0.424
for Case 3, respectively. The final compliance values (or compliance of the worst failure cases) satisfy
the constraint threshold of 130 well for three different cases. For DTO design without considering
fail-safe requirement in Case 1 (Fig. 5a), once the materials in failure zones of the final design are
removed, the corresponding compliance values far exceed the constraint threshold of 130, except for
the 6th and 7th failure zones. There is no doubt that this DTO design will be extremely sensitive to
local failure of material in the 1st–5th and 8th failure zones due to its lack of redundancy. At this point,
the structure may fail when the material in these zones is removed resulting from a partial collapse.
For fail-safe designs in Case 2 (Fig. 5b) and Case 3a (Fig. 5c), the compliances for all eight failure
modes are all less than or equal to the constraint threshold of 130. This can be easily understood as
we constrain the compliance value of the worst failure cases. From another point of view, it is proved
that increasing structure redundancy is conducive to improving the resistance of the structure to local
failure. Fail-safe designs can maintain certain service performance even if the local material is removed
or the local stiffness is lost, which can be clearly seen from Figs. 6 and 7. Besides, we can find that the
2nd and 3rd failure zones are the core areas of fail-safe designs in Figs. 5b and 5c, which can be seen
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as the worst failure cases in this example. Because the compliance values (the numbers in bold type in
Table 1) corresponding to the 2nd and 3rd patch removal scenarios directly approximate the constraint
threshold of 130. In Case 3b the compliance values for RBTO design considering local damage are
less than that of DTO design for all eight failure modes. We can conclude that integrating reliability
criterion into fail-safe design further increases the robustness of the designs towards local failure.

To show the influence of different shapes and arrangements of failure regions on the optimization
results, we solve the above clamped beam example with 16 damage areas. The final topologies of RBTO
designs considering local damage are depicted in Table 2. Significant topological differences can be
observed for optimized structures with shapes and arrangements of failure regions, compared to the
final topology in Fig. 5c. Therefore, we need to establish a relatively appropriate failure block model
according to the possible failure area for practical problems.

Table 2: Optimization results for different shape and arrangement of failure region

Cases Design domain with 16 damage areas Final topology

Case 4

Case 5

To show the superiority and computational effectiveness of the proposed method, we revisit the
above clamped beam example considering β t = 1 using the well-known SIMP method [50]. The design
domain is discretized with 200×100 elements, which means that there will be 200×100 density design
variables in the SIMP method. However, the present method has only 208 × 5 = 1040 geometric
design variables. Fig. 8 shows the topology optimization results of the clamped beam based on the
simp method. Table 3 lists the average computation time (in seconds) of the SIMP and MMB methods,
where the computation times are calculated as the average of the entire optimization process (250
iterative steps). The average time of finite element analysis of two methods is about the same since the
same number of finite elements is used for the structural analysis. However, the average computation
times of using MMA algorithm to update design variables and one optimization step in the MMB
method are smaller than the corresponding times in the SIMP method. Moreover, the Monte Carlo
simulation (MCS) with 10000 sample points is performed, and the reliability index results of MCS are
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listed in Table 3. It is seen that the final structure can meet the requirements of target reliability β t = 1
well, which means that the proposed method is effective.

Figure 8: RBTO design considering local damage using the SIMP method

Table 3: A comparison of computation time for clamped beam

Method Volume fractions Reliability index of MCS CPU time (s)

FEA MMA One optimization step

SIMP 0.405 1.0102 1.715 1.088 8.101
MBB 0.424 1.0165 1.740 0.037 7.732

5.2 Cantilever Beam
Second, the classical design problem of cantilever beam subjected to the bending force used in [3,4]

is considered. Fig. 9 shows the design domain with dimensions of 180×60, as well as the initial layout
of 208 MMBs of thickness t0 = 4.5 was used for designing the topology of the load transfer path. The
left side of the cantilever beam is completely fixed and the center point of the right side is subjected to
a vertical concentrated force of 1000. A damage population consisting of 12 square damage areas with
a side length of 30 is considered and shown in Fig. 9a, where labels (1–12) are marked for the damage
zones. 180 × 60 plane stress elements of side-length 1 are used to discretize the design domain. The
compliance limit value climit is set as 5000.

Figure 9: Cantilever beam problem: (a) design domain and boundary condition, (b) initial layout of
208 bars with thickness of t0 = 4.5

Fig. 10 investigates the effect of reliability indexes on the FSTO by setting (β t = 2, 3, 4). The
DTO model considering the fail-safe requirement in Eq. (11) is also performed for comparison and the
result is shown in Fig. 10d. Observably, the final topologies for RBTO designs and DTO designs differ
significantly, highlighting the significance of integrating material uncertainty into fail-safe designs.
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Besides, the difference between the RBTO designs in Figs. 10a–10c indicates that the reliability indexes
have a greater impact on the topological layout of fail-safe designs.

(a) � t = 2 (b) � t = 3

(c) � t = 4 (d) Deterministic design

Figure 10: Optimization results of cantilever beam without minimum size control: RBTO designs in
(a–c) and DTO design in (d)

In Table 4 the volume fraction and minimum size of the deterministic fail-safe design and
reliability-based fail-safe designs for the cantilever beam are listed, as well as the compliances for
the selected six failure modes. Due to the symmetry of the structure, only the 1th–6th failure modes
are selected here. From Table 4, we can see that the volume fraction is 0.388 for deterministic fail-safe
design in Fig. 10d, and 0.487, 0.554, 0.671 for reliability-based fail-safe designs with β t = 2, 3, 4 in
Figs. 10a–10c, respectively. The minimum size is 0.585 for the DTO design and 0.749, 0.598, 1.017 for
RBTO designs with β t = 2, 3, 4. We can conclude that improving of structural reliability of fail-safe
designs usually requires more material consumption. We can also observe that the compliance values
of the worst failure cases for deterministic and reliability-based fail-safe designs satisfy the constraint
threshold of 5000 wells. For DTO design and RBTO designs with β t = 2 and 3, the 2nd and 8th failure
zones are the core areas of fail-safe designs, which correspond to the worst failure cases in this example.
For RBTO design with β t = 4, the 1st and 7th failure zones correspond to the worst failure cases. The
compliance values corresponding to the 4th–6th patch removal scenarios for RBTO designs are less
than those of the DTO design, which indicates that the reliability-based fail-safe designs are safer than
the deterministic fail-safe design for these patch removal scenarios.

Table 4: Optimization results of cantilever beam without minimum size control

Cases Volume fraction Minimum size min (2rk) Selected failure zones

1 2 3 4 5 6

β t = 2 0.487 0.749 4870.5 5000.0 4530.2 3882.5 3668.5 3390.3
β t = 3 0.554 0.598 4868.1 5000.1 4427.9 3768.2 3628.4 3532.2
β t = 4 0.671 1.017 5000.0 4985.0 4191.6 3696.2 3369.6 3320.3
DTO 0.388 0.585 4878.8 5000.0 4533.5 3942.8 3640.6 3511.3

Next, we revisit the fail-safe design problem of cantilever beam with a minimum length scale to
demonstrate the advantages of using the MMB method for fail-safe designs. It should be stressed that
imposing a minimum size control is easy to achieve by simply assigning a lower bound rmin to the
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design variable rk in the proposed method. This implementation can improve the manufacturability of
optimized structures.

Fig. 11 shows the resulting topologies for deterministic and reliability-based fail-safe designs with
an imposing minimum length scale 2rmin = 2. Apparent differences can be observed for the final
topologies without minimum size control in Figs. 10a–10d and those with minimum size control in
Figs. 11a–11d. The volume fraction and minimum size for DTO and RBTO designs are listed in
Table 5, as well as the compliances for the selected six failure modes. We can see that the minimum sizes
of the final designs and the compliance values of the worst failure cases satisfy the constraint limits
well for different target reliability indexes. Another noteworthy phenomenon is that the compliance
values corresponding to the 4th–6th patch removal scenarios for RBTO designs with minimum size
control are less than those without minimum size control when the same level of reliability is met.
This means that reliability-based fail-safe designs with minimum size control are less sensitive to these
possible failure zones compared to the cases without minimum size control for the cantilever beam.

(a) � t = 2 (b) � t = 3

(c) � t = 4 (d) Deterministic design

Figure 11: Optimization results of cantilever beam with minimum size control: RBTO designs in (a–
c) and DTO design in (d)

Table 5: Optimization results of cantilever beam with minimum size control

Cases Volume fraction Minimum size min (2rk) Selected failure zones

1 2 3 4 5 6

β t = 2 0.488 2.00 4881.9 4999.9 4512.7 3824.6 3600.7 3229.9
β t = 3 0.565 2.00 4869.2 4999.2 4407.6 3773.9 3526.1 3241.2
β t = 4 0.672 2.00 5000.0 4990.8 4210.9 3565.9 3389.7 3031.3
DTO 0.399 2.00 4913.2 4999.7 4501.7 3899.1 3923.6 3443.3

5.3 L-Shaped Beam
Finally, an L-shaped beam problem sketched in Fig. 12a is tested. The initial layout of 232 MMBs

of thickness t0 = 2r0 = 5 is shown in Fig. 12b. The top side of the L-shaped beam is completely fixed,
and a concentrated force of F = 1000 is acted on the top right. 25,600 plane stress elements of side-
length 1 are used to discretize the design domain. The compliance limit value climit is set as 6000 in this
example.
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Figure 12: L-shaped beam problem: (a) design domain and boundary condition, (b) initial layout of
232 bars with thickness of t0 = 5

The results of the fail-safe design for RBTO with various reliability indexes and DTO are
compared. A minimum size control is imposed by assigning a lower bound rmin = 1 for RBTO
and DTO designs. The RBTO results for β t = 2, 3, 4 are presented in Fig. 13, as well as the DTO
result obtained based on Eq. (11). The volume fractions of deterministic and reliability-based fail-safe
designs for L-shaped beam are given in Table 6, as well as the compliances for 14 different failure
modes. We can also observe that the compliance values of the worst failure cases for deterministic
and reliability-based fail-safe designs satisfy the constraint threshold of 6000 well. The phenomenon
that the volume fraction increases with increasing reliability requirements indicates more materials are
required to ensure the safety of fail-safe structures.

(a) � t = 2 (b) � t = 3

Figure 13: (Continued)
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(c) � t = 4 (d) Deterministic design

Figure 13: RBTO designs for different target reliability indexes (a–c), and deterministic design (d)

Table 6: Optimization results of volume fractions and compliances for L-shaped beam

Cases Volume fraction Failure zones

1 2 3 4 5 6 7

β t = 2 0.409 4347.6 4970.7 5218.7 5747.3 4987.7 6000.1 3892.6
β t = 3 0.468 4100.1 4934.4 5052.4 5770.0 4921.4 6000.1 3796.6
β t = 4 0.560 3957.5 4914.8 4911.8 5734.3 4623.3 6000.0 3532.2
DTO 0.340 4490.3 4998.5 5280.2 5664.2 5023.9 6000.0 3966.5

8 9 10 11 12 13 14

β t = 2 3570.9 3763.1 4470.8 5138.1 4643.7 4453.6 3900.8
β t = 3 3534.3 3164.1 4267.4 4968.1 4518.6 4201.9 3984.5
β t = 4 3758.3 2709.7 3955.9 4840.2 4423.5 4248.7 3906.9
DTO 3596.9 4008.3 4457.5 5199.0 4677.9 4324.4 4202.0

Fig. 14 shows the iterative histories of volume fractions of the L-shaped beam. As anticipated,
the convergence of volume fraction stability demonstrates the proposed method operated very well in
RBTO of fail-safe structures under material uncertainty.
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Figure 14: Iterative histories of volume fractions of L-shaped beam

The present method can also be extended to solve the optimization problem considering load
uncertainty. We revisit the above L-shaped beam example considering the uncertainty of load magni-
tude, where the load is assumed as a normally distributed random variable with a mean of 1000 and
a standard deviation of 50. The RBTO results for β t = 1, 2, 3 are presented in Fig. 15, as well as the
DTO result obtained based on Eq. (11). Moreover, Monte Carlo simulation (MCS) with 10000 sample
points is also performed to verify the effectiveness of the proposed method. The optimization results
are listed in Table 7. It is seen that the reliability indexes obtained based on the present method are in
good agreement with the Monte Carlo simulation, and the relative error of the reliability index of the
optimized structure does not exceed 3%, which also proves that the present method also performs well
in an optimization problem considering load uncertainty.

(a) � t = 1 (b) � t = 2

Figure 15: (Continued)
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(c) � t = 3 (d) Deterministic design

Figure 15: RBTO designs for different target reliability indexes (a–c), and deterministic design (d)

Table 7: Reliability index of MCS for L-shaped beam

Cases Volume fractions Reliability index of MCS

β t = 1 0.362 1.0135
β t = 2 0.397 1.9972
β t = 3 0.436 2.9678
DTO 0.332 /

6 Conclusions

This paper developed a reliable RBTO methodology for solving the design problem of fail-
safe structures considering uncertainty based on the explicit moving morphable bars method, which
integrates the PMA-based reliability analysis into the free-form design of fail-safe structures. A
differentiable p-norm performance function with a correction parameter is introduced to ensure
the compliance value of the worst failure case accurately meets the design requirement. Numerical
examples emphasize the necessity and significance of incorporating reliability analysis under uncer-
tainty into fail-safe systems and demonstrate that the reliability-based fail-safe designs are safer
than the deterministic fail-safe design, and the incorporation of reliability criteria into the fail-safe
design can further improve the designs’ resistance to local failure. In addition, the notable advantage
of computational efficiency and realizing minimum constraint control using the MMB method to
implement topology optimization is also well-reflected.
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