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ABSTRACT

With the introduction of various carbon reduction policies around the world, hydrogen energy, as a kind of
clean energy with zero carbon emission, has attracted much attention. The safe and economical transportation of
hydrogen is of great significance to the development of hydrogen energy industries. Utilizing natural gas pipelines
to transport hydrogen is considered to be an efficient and economical way. However, hydrogen has a higher risk of
leakage due to its strong diffusion capacity and lower explosive limit than conventional natural gas. Therefore, it is
of great significance to study the leakage and diffusion law of hydrogen-enriched natural gas (HENG) pipelines for
the safe transportation of hydrogen energy. In this study, the leakage and diffusion characteristics of urban buried
HENG pipelines are investigated numerically, and the dangerous degree of leakage is analyzed based on the time
and area when the gas concentration reaches the lower explosive limit. The influences of hydrogen blending ratio
(HBR), operating pressure, leakage hole size and direction, as well as soil type on the leakage and diffusion law of
HENG are analyzed. Results show that the hydrogen mixing is not the key factor in increasing the degree of risk
after gas leakage for urban buried HENG pipelines. When the HBR is 5%, 10%, 15% and 20%, the corresponding
first dangerous time is 1053, 1041, 1019 and 998 s, respectively. This work is expected to provide a valuable reference
for the safe operation and risk prevention of HENG pipelines in the future.
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1 Introduction

As global warming is becoming serious, many countries have begun to introduce relevant policies
to limit the emission of greenhouse gas. The development of clean energy has become an important
issue facing the world’s energy industry [1,2]. As a kind of clean energy with zero carbon emission,
hydrogen has attracted much attention in recent years [3–5]. However, the transportation of hydrogen
seriously restricts its wide utilization. At present, the main delivery methods of hydrogen include road,
rail, pipelines and ocean transportation in the form of gaseous hydrogen, cryogenic liquid hydrogen,
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and solid or liquid hydrogen carriers [6–11]. Among these methods, pipeline transportation is generally
viewed as an effective way to achieve the large-scale and long-distance delivery of hydrogen. However,
due to the flammable and explosive properties of hydrogen, some safety issues of hydrogen pipeline
transportation must be considered.

There are two common ways for hydrogen delivery through pipelines, one is the pure hydrogen
pipelines, and the other is mixing hydrogen into natural gas pipelines [12,13]. Considering the cost of
the above two methods, the latter one that is blending a certain proportion of hydrogen into natural gas
is a good choice in the transition period of hydrogen energy industry [14]. Transporting the hydrogen-
enriched natural gas (HENG) to downstream users through existing natural gas pipelines can save
the cost of new pipelines and related equipment [15,16]. However, the mixing of hydrogen can affect
the mechanical properties of pipeline steels. For example, the welds can be subjected to hydrogen
degradation and the various pipeline defects can be places of hydrogen accumulation which leads to
hydrogen embrittlement of the pipe wall [17–25]. Compared with natural gas, hydrogen has a wider
explosive limit, larger diffusion coefficient and lower ignition energy, which is more prone to explosion
accidents once leakage occurs. Therefore, attention must be paid to the safe operation of HENG
pipelines.

In recent years, there have been many studies on the risk assessment of oil and gas pipelines [26,27],
among which pipeline leakage is one of the most critical research hotspots. Many scholars have carried
out experimental studies on the leakage and diffusion of natural gas pipelines [28–30], in which the
high-pressure gas cylinders were used to mimic the leakage process of natural gas pipelines and the
sensors were placed in the soil to detect the leakage gas concentration. For example, Hideki et al. [28]
conducted a full-scale experiment on buried natural gas pipeline leakage, it was found the molecular
diffusion caused by the difference of gas density and concentration has a great influence on the gas
leakage and diffusion, and the experimental results were in accord with Darcy’s law and Fick’s law.
Bonnaud et al. [29] experimentally studied the influence of pipeline gas leakage on soil properties, and
the effects of leakage surface, gas pressure, pipeline buried depth and water content on soil migration
and crater formation were analyzed. Yan et al. [30] carried out leakage experiments with a mixture of
2.5% (volume fraction) of methane and 97.5% of air, and installed multiple combustible gas sensors
around the leakage hole to monitor the variation of gas concentration around the soil over time.

With the development of computer technology, many scholars used numerical simulation methods
to investigate the leakage law of buried natural gas pipelines and obtained abundant research results
[31–34]. Compared with experimental study, the numerical simulation possesses the advantages of
safety, high efficiency and flexible variable control, which is easier to analyze the law of gas leakage and
diffusion under different working conditions. For instance, Wang et al. [31] adopted ANSYS Fluent
to simulate the leakage process of buried natural gas pipelines, and analyzed the influence of different
pipeline internal pressures, leakage hole sizes, leakage direction, soil properties and pipelines buried
depth on the leakage characteristics. Results showed that the leakage hole size, leakage direction and
internal pressure are the key factors affecting the leakage and diffusion processes. Amir et al. [32]
established an accurate formula for calculation of leakage flow according to simulation results,
which illustrated that the relationship between gas leakage flow and pipeline pressure, leakage hole
size and the ratio of leakage hole size to pipeline diameter was linear, second-order and fourth-
order, respectively, and the error between mathematical model and simulation results was within 7%.
Javad et al. [33] adopted finite element methods to simulate the leakage process of buried natural gas
pipelines, in which the soil anisotropy was taken into account and the water content of each soil layer
was supposed to be variable. The influence of soil mechanical and hydraulic properties on gas diffusion
was analyzed, and the relationship between leakage flow rate and pipeline pressure and leakage hole
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diameter was derived. Liu et al. [34] established a mathematical model to estimate the leakage rate
of buried natural gas leakage through experiments and CFD simulation. From the above analysis,
it can be seen that scholars have used different numerical methods or established a series of models
to describe and study the leakage process of natural gas, including the detection and positioning of
leakage points [35,36] and the calculation of leakage flow [37,38], etc.

Although there are a lot of studies focusing on the leakage of buried natural gas pipelines,
the research on the leakage of HENG pipelines is still rarely reported in the literature. Compared
with traditional natural gas pipelines, HENG pipelines are more prone to leakage risk due to the
embrittlement effect of hydrogen on pipeline steels. In addition, hydrogen has the characteristics of
low explosive limit, high flame temperature and fast flame propagation speed, so once an explosion
occurs, its destructive power will be far more than that of traditional natural gas. Therefore, it is of great
significance to study the leakage and diffusion of HENG to ensure the safe transportation of hydrogen
energy. In this study, the risk increase caused by the blending of hydrogen was quantitatively analyzed
by using parameters, such as dangerous time and dangerous distance, which makes up the gap in the
safety of hydrogen transportation in pipelines at present. As urban gas pipelines are usually located in
areas with high population density, once the leakage occurs, it will cause more serious consequences.
Thus, in this study, the urban buried HENG pipelines are taken as the research object. Compared with
long-distance pipelines, urban natural gas pipelines are usually characterized by small diameters and
low pressure.

2 Numerical Models
2.1 Physical Model

This study mainly focuses on the common small hole leakage of buried pipelines, in which the
leakage and diffusion processes of HENG in the soil are considered, and the leakage and diffusion of
gas in the air after spilling from the soil are ignored. The reason is that the urban natural gas pipelines
are generally laid under roads. As roads are generally covered with asphalt, the leakage gas is usually
hard to escape from the ground surface in large quantities. Moreover, due to the strong diffusion
effect of hydrogen, the leakage gas generally diffuses into the atmosphere quickly, and it is difficult to
be accumulated in air. Therefore, the diffusion process of HENG in air is not the focus in this work.
As shown in Fig. 1, the leakage area is simplified into a rectangular area of 4 m × 4 m × 2.5 m. The
pipeline is located in the center of the area, the diameter and depth of the pipeline are 100 and 1.5 m,
respectively, and the leakage hole is a circular hole located in the center of the pipeline.

Figure 1: Schematic diagram of the physical model
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2.2 Mathematical Model
The following hypotheses are made to simplify the model and calculation: (1) The leakage gas

mixture is an ideal gas, the heat transfer between gas and soil is ignored and only the mass transfer
is considered; (2) The soil is isotropic and evenly distributed, and the soil structure does not change
during the gas leakage process; (3) The operating pressure of the pipeline is constant during the gas
leakage process; (4) There is no moisture in the soil, and the soil pore is fully filled with air.

Based on above assumptions, the leakage mathematical model of urban buried HENG pipelines
includes mass conservation equation, momentum conservation equation, species transport equation
and turbulence model.

(1) Mass conservation equation,

φ
∂ρ

∂t
+ ∇ · (ρu) = 0 (1)

where φ is the soil porosity; ρ is the mixed gas density, kg/m3; u is the gas flow velocity, m/s; t is the
time, s.

(2) Momentum conservation equation [39],

φρ
∂ui

∂t
+ ρ

φ2
(ui · ∇) ui = −∇p + μ

φ
∇2ui + φρg + Si (2)

where p is the pressure, Pa; μ is the dynamic viscosity, Pa·s; g is the gravitational acceleration, m/s2; Si

is the source term, which can be expressed by below formula in porous media,

Si = −
(

3∑
j=1

Dijμuj +
3∑

j=1

Cij

1
2
ρ |u| uj

)
(3)

where the first term at the right-hand side of the equation is the viscous loss term, and the second term
denotes the inertia loss term. Dij and Cij are the specified matrices.

For simple and uniform porous media, Eq. (3) can be simplified as,

Si = −
(

1
a
μui + C2

1
2
ρ |u| ui

)
(4)

where 1/a is the viscous resistance coefficient, 1/m2; C2 is the inertial resistance coefficient, 1/m.

To obtain the 1/a and the C2 in Eq. (4), the Ergun equation should be solved simultaneously [40].
Ergun equation is a semi-empirical formula applicable to a wide range of Reynolds number and a
variety of filler, which can be written as,

|�p|
L

= 150μ

D2
p

(1 − φ)
2

φ3
u + 1.75ρ

Dp

(1 − φ)

φ3
u2 (5)

where Dp is the average diameter of porous medium particles, mm; The formulas for calculating the
resistance coefficient and the inertial resistance coefficient are described by,

1
a

= 150
D2

p

(1 − φ)
2

φ3
(6)
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C2 = 3.5
DP

(1 − φ)

φ3
(7)

The leakage and diffusion of HENG is a multi-component fluid flow process, for the mass transfer
process, it can be described by the species transport equation.

(3) Species transport equation,

φ
∂

∂t
(ρc) + ∇ · (ρuc) = ∇ · (ρD∇c) (8)

where c is the mass concentration of gas; D is the diffusion coefficient, m2/s.

The process of gas leakage from the pipeline at a certain pressure can be regarded as a high-speed
jet. Thus, the k-ε model is used to describe the turbulence process in this study.

(4) The k-ε turbulence model,

∂

∂t
(ρk) + ∂

∂xi

(ρkui) = ∂

∂xj

[(
μ + μt

σk

)
∂k
∂xj

]
+ GK + Gb − ρε − YM + Sk (9)

∂

∂t
(ρε) + ∂

∂xi

(ρεui) = ∂

∂xj

[(
μ + μt

σε

)
∂ε

∂xj

]
+ C1ε

ε

k
(GK + C3εGb) − C2ερ

ε2

k
+ Sε (10)

where GK, Gb and YM are turbulence parameters; the constants C1ε = 1.44, C2ε = 1.92, σk = 1.0 and
σε = 1.3.

3 Numerical Methods
3.1 Mesh Generation

In this study, the ICEM 2020R1 is used to discretize the computational domain of the buried
pipeline. The structured grid is adopted in this study, which has better computational efficiency and
grid quality than unstructured grids. In addition, an O-grid mesh is used in the area of leakage hole and
the pipeline cross section to better deal with the irregular geometry [41], and the fine mesh is adopted
at the leakage hole, as shown in Fig. 2.

Figure 2: Schematic diagram of meshing
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3.2 Boundary Conditions and Solution Methods
In ANSYS Fluent software, the setting of boundary conditions is shown in Table 1. At the

initial moment, the soil pore is considered to be fully filled with air, and the initial leakage rate and
concentration of HENG are both set as 0 in soil, and the initial pressure is set as the atmospheric
pressure.

Table 1: Setting of boundary conditions

Boundary Type Parameter setting

Leakage hole Pressure-inlet Gauge pressure, species, velocity, turbulence
Left and right boundaries of soil Pressure-outlet Gauge pressure, species
Interface between soil and ground Pressure-outlet Gauge pressure, species
The pipe wall Wall No slip, wall roughness
Other soil boundaries Pressure-outlet Gauge pressure, species

The finite volume method is used to discretize the governing equations, and the pressure and
velocity coupling is handled with SIMPLE algorithm (Semi-Implicit Method for Pressure-Linked
Equation). The selected models and discrete schemes are shown in Table 2.

Table 2: Model selection and discrete schemes

Item Setting

Turbulence model Standard k-epsilon; full buoyancy effects
Near-wall treatment Standard wall functions
Pressure-velocity coupling SIMPLE
Spatial discretization of gradient Least squares cell based
Spatial discretization of pressure Second order
Spatial discretization of momentum Second order upwind
Spatial discretization of turbulent dissipation rate First order upwind
Spatial discretization of turbulent kinetic energy First order upwind

3.3 Monitoring Points
To quantitatively analyze the concentration variation of leaked HENG around the soil in the

leakage and diffusion processes of pipeline, 10 monitoring points are set around the leakage hole. The
coordinate origin is located in the center of the whole computational domain, and the location and
the distribution of monitoring points (red points) are presented in Table 3 and Fig. 3, respectively.

Table 3: Location of monitoring points

No. Coordinate No. Coordinate

P1 (0, 0, 0) P6 (0, 1, 0)
P2 (0, 0, 0.75) P7 (0, 1.5, 0)

(Continued)



CMES, 2023, vol.136, no.2 1321

Table 3 (continued)

No. Coordinate No. Coordinate

P3 (0, 0, 1) P8 (0.5, 0, 0.75)
P4 (0, 0, 1.25) P9 (1, 0, 0.75)
P5 (0, 0.5, 0) P10 (1.5, 0, 0.75)

Figure 3: Distribution of monitoring points

3.4 Case Parameter Setting
To analyze the effects of influencing factors such as pipeline operating pressure, HBR, soil type,

leakage hole diameter and leakage direction on the leakage and diffusion law of HENG, 13 groups of
numerical cases are designed and presented in Table 4.

Table 4: Parameter setting of 13 numerical cases

No. Gauge pressure HBR Type of soil Diameter of leakage hole Leak direction

Case 1 0.1 MPa 5% Loam 30 mm Top
Case 2 0.1 MPa 10% Loam 30 mm Top
Case 3 0.1 MPa 15% Loam 30 mm Top
Case 4 0.1 MPa 20% Loam 30 mm Top
Case 5 0.2 MPa 10% Loam 30 mm Top
Case 6 0.3 MPa 10% Loam 30 mm Top
Case 7 0.1 MPa 10% Loam 10 mm Top
Case 8 0.1 MPa 10% Loam 20 mm Top
Case 9 0.1 MPa 10% Loam 40 mm Top
Case 10 0.1 MPa 10% Loam 30 mm Side
Case 11 0.1 MPa 10% Loam 30 mm Bottom
Case 12 0.1 MPa 10% Clay 30 mm Top
Case 13 0.1 MPa 10% Sandy 30 mm Top
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4 Model Validation
4.1 Validation of Grid-Independent Solution

The grid number has an important influence on calculation results. Generally sparse meshes
cannot guarantee high numerical accuracy, while too fine meshes can increase the computational
burden. To obtain grid-independent solutions, the leakage gas concentration at P1 point is monitored
in four grid numbers of 132060, 180435, 261030 and 321694, as shown in Fig. 4. It can be seen that with
the increase of grid number, the curves of monitored gas concentration with leakage time are getting
closer with each other. When the grid number of 261030 is used, the calculation result is almost the
same as that of 321694, thus 261030 grids are adopted in this study.
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Figure 4: Validation of grid-independent solution

4.2 Validation of Mathematical Model
Yan et al. [30] conducted a concentration detection experiment of gas leakage from a buried

pipeline in 2015, which was carried out in a 5 m × 5 m × 3 m earthen tank. Gas concentration sensors
were installed in multiple positions inside the earthen tank to detect the concentration of leakage gas.
To validate the mathematical model established in this study, the numerical simulation is conducted to
mimic the experiment. The comparison between experimental data and simulation results under the
same condition is shown in Fig. 5.

It is worth noting that in this experiment, 2.5% (volume fraction) methane and 97.5% air were
mixed to ensure experimental safety, and only methane concentration was detected. As the volume
fraction of methane is low, the concentration variation can only be observed after a relatively long
experiment time, as shown in Fig. 5 that the methane concentration is only about 0.8% at t = 6000 s.
It is also obvious to see that the predicted methane concentration by the established model in this
study agrees well with the methane concentration measured in Yan’s experiment, indicating that the
established mathematical model is reliable.
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Figure 5: Model validation by experiment

5 Analysis of Leakage and Diffusion Processes
5.1 Leakage and Diffusion Processes

In this part, firstly the case 2 is taken as an example to show the variation of HENG concentration
over time in leakage and diffusion processes through 2D slices, as shown in Fig. 6. The slice is located at
the center of the computational domain and is parallel to the x and y axes, respectively. As can be seen
from Fig. 6, at the beginning of leakage process, the leakage gas diffuses into soil under the influence
of pressure and concentration difference, and the concentration of leakage gas around the leakage
point increases rapidly, and the whole leakage and diffusion area shows a spherical distribution. It
can also be noted that there exists a high concentration area (red area with volume fraction > 0.95)
around the leakage hole. The size of high concentration area increases significantly within t = 40 min
after the leakage occurs, and changes slightly after 40 min. There is also risk in the periphery of the
spill area (the light blue part with volume fraction > 0.05), the leakage gas concentration in this area
is larger than the lower explosive limit (LEL) of pure methane, and thus it is also larger than the LEL
of HENG. The area continues to increase with the leakage time and the dangerous area spreads to the
surface at t = 20 min, and the whole computational domain reaches the dangerous concentration at
t = 80 min.

Fig. 7 demonstrates the streamline of the leakage gas flow at t = 80 min. Due to the isotropy of soil,
the streamline of the leakage gas is uniform and stable, and the leakage gas flows out perpendicular
to the boundary. After the pipeline leakage, the HENG will spread evenly around. At the boundary,
the gas flows freely and the streamlines are almost perpendicular to the soil boundary.
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The volume concentration of HENG

(a) t=5 min

(b) t=10 min

(c) t=20 min

(d) t=40 min

(e) t=80 min

Figure 6: Distribution of leakage gas concentration around soil at different leakage time
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Figure 7: Streamlines distribution of leakage gas on the slices

5.2 Variation of Leakage Gas Concentration at Different Positions
Fig. 8 shows the concentration change of leakage gas measured at 10 monitoring points in case 2

with time. It can be seen that the location closer to the leakage hole has a higher gas concentration, and
the time for the leakage gas concentration to reach equilibrium is much shorter. It takes about 2000 s
for the concentration of leakage gas measured at P1 to reach equilibrium and stabilize at about 98%,
and the other monitoring points will take much longer time to reach an equilibrium state. Because the
diffusion of leakage gas is uniform, the variation trend of leakage gas concentration along x, y, and z
directions is basically the same.
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Figure 8: Variation of leakage gas concentration at monitoring points over time

6 Analysis of Leakage Consequence

To quantitatively describe the degree of risk of flammable gas leakage and diffusion in soil,
Bu et al. [42] defined three parameters: the first dangerous time (FDT), the farthest dangerous range
(FDR) and the ground dangerous range (GDR). Wherein, FDT represents the time required for the
gas concentration at the ground surface directly above the leakage hole to reach the LEL. At this
time, once there is an ignition source at the ground surface, the leakage gas will be ignited and cause
explosion risk. FDR denotes the farthest distance that the gas cloud with a concentration above the
LEL can diffuse along the pipeline. GDR stands for the maximum extent that the gas cloud at the
ground surface can diffuse. It is obvious that both FDR and GDR are time-dependent parameters.

6.1 Analysis of Leakage Consequence under Different HBRs
Hydrogen blending ratio (HBR) has significant impacts on the leakage and diffusion of HENG.

However, the determination of HBR is restricted by many factors and the upper limit of HBR is
different in various countries [43]. In this study, the volume fraction (also mole fraction) of 20% is
taken as the upper limit of HBR. Taking cases 1∼4 as examples, the leakage and diffusion of pipeline
when HBR is 5%, 10%, 15% and 20% is studied, respectively.

To analyze the influence of HBR on leakage risk, the Le Chatelier law [44,45] expressed by
Eq. (11) is applied to calculate the explosive limit of HENG under different HBRs. The calculation
results are shown in Table 5.

1
LELmix

=
∑ yi

LELi

(11)

where LELmix is the LEL of mixed gas; LELi is the LEL of gas component i; yi is the volume fraction
of gas component i.
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Table 5: Lower explosive limit of HENG at different HBRs

HBR LEL of HENG

0% 5%
5% 4.94%
10% 4.88%
15% 4.82%
20% 4.76%

Since the monitoring point P4 is at the ground surface and directly above the leakage hole of
the pipeline, the leakage time of P4 when the concentration of mixed gas reaches the LEL is FDT.
Fig. 9 shows the concentration variation of methane, hydrogen and mixed gas with time under different
HBRs. It can be seen that when the HBR is 5%, 10%, 15% and 20%, the corresponding FDT is 1053,
1041, 1019 and 998 s, respectively. The reason can be attributed to that the increase of HBR leads to
the decrease of LEL of mixed gas, and the mixed gas concentration at P4 remains unchanged under
the same pipeline pressure, thus the FDT is shortened. Therefore, the increase of HBR will lead to the
increase of explosion risk after leakage diffusion, which is another key factor limiting HBR after the
embrittlement of pipelines and the deterioration of ignition performance of the terminal stove.
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Figure 9: Variation of mixed gas concentration at P4 under different HBRs

Tables 6 and 7 display the FDR and GDR at different HBRs and leakage time. It can be clearly
seen that the FDR and GDR increase with the rise of the HBR and leakage time. There are two
main reasons for this phenomenon. First, the increase of HBR leads to the decrease of LEL, and the
dangerous concentration can be reached at a relatively low concentration of mixed gas. Second, the
diffusion of hydrogen in the soil is stronger, and its diffusion range is larger at the same time. These
two reasons aggravate the development of combustible gas cloud, resulting in the increase of FDR
and GDR.
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Table 6: FDR in the leakage process under different HBRs (unit: m)

HBR 5% 10% 15% 20%

t = 5 min 1.172 1.184 1.202 1.204
t = 10 min 1.648 1.678 1.704 1.708
t = 15 min 1.964 2.004 2.026 2.028
t = 20 min 2.208 2.252 2.264 2.268

Table 7: GDR in the leakage process under different HBRs (unit: m)

HBR 5% 10% 15% 20%

t = 20 min 0.548 0.734 0.784 0.832
t = 30 min 1.512 1.576 1.638 1.684
t = 40 min 2.166 2.224 2.244 2.268
t = 50 min 2.844 3.002 3.018 3.046

6.2 Analysis of Leakage Consequence under Different Operating Pressures
In this part, the consequences of HENG leakage under different pipeline operating pressures are

analyzed by cases 2 (0.1 MPa), 5 (0.2 MPa) and 6 (0.3 MPa). Fig. 10 shows the change of leakage
gas concentration with time under different pipeline operating pressures, and depicts the FDT under
different pressures. As can be seen from Fig. 10, when the operating pressure is 0.1, 0.2 and 0.3 MPa,
the corresponding FDT is 1041, 498 and 361 s, respectively. The increase in pipeline operating pressure
will increase the gas leakage rate, and the gas diffusion rate in the soil will also be faster, so the LEL
is reached in a shorter time. Tables 8 and 9 respectively present the FDR and GDR in the leakage
process under different pipeline operating pressures and leakage time. As the simulated computational
domain is limited, the value larger than 4 m is marked as “> 4 m” in these two tables. It can be observed
that both FDR and GDR increase with the rise of pipeline operating pressure at any time. The main
reason lies in that with the increase of pipeline operating pressure, the gas leakage rate will increase
significantly, resulting in the increase of gas cloud diffusion area at the same time.
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Figure 10: Variation of mixed gas concentration at P4 under different pipeline operating pressures
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Table 8: FDR in the leakage process under different pipeline operating pressures (unit: m)

Pressure (MPa) 0.1 0.2 0.3

t = 5 min 1.172 1.552 1.902
t = 10 min 1.648 2.362 2.948
t = 15 min 1.964 3.146 3.874
t = 20 min 2.208 3.956 >4

Table 9: GDR in the leakage process under different pipeline operating pressures (unit: m)

Pressure (MPa) 0.1 0.2 0.3

t = 10 min 0 1.044 3.006
t = 15 min 0 2.284 >4
t = 20 min 0.734 3.246 >4
t = 25 min 1.244 >4 >4

6.3 Analysis of Leakage Consequence under Different Leakage Hole Diameters
Taking cases 2, 7, 8 and 9 as examples, the leakage consequences of HENG with leakage hole

diameters of 10, 20, 30 and 40 mm respectively are analyzed and discussed in this part. Fig. 11 shows
the change of mixed gas concentration with time under different diameters of leakage hole. It can
be seen that when the diameter of leakage hole is 10, 20, 30 and 40 mm, the corresponding FDT is
4981, 1876, 1041 and 618 s, respectively. Under the same pipeline pressure, the increase of leakage hole
size will increase the leakage flow rate, which leads to the decrease of FDT at P4. Tables 10 and 11
respectively present the FDR and GDR values in the leakage process. It is found that both the FDR
and GDR increase with the rise of the leakage hole diameter and leakage time. This is because that the
increase of the leakage hole diameter can lead to the increase of the leakage flow, thus the gas cloud
of the leakage gas increases at the same time, and both FDR and GDR increase.
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Figure 11: Variation of mixed gas concentration at P4 under different leakage hole diameters
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Table 10: FDR in the leakage process under different leakage hole diameters (unit: m)

Diameter (mm) 10 20 30 40

t = 5 min 0.642 0.998 1.184 1.416
t = 10 min 0.902 1.398 1.678 2.008
t = 15 min 1.042 1.632 2.004 2.472
t = 20 min 1.194 1.828 2.252 2.836

Table 11: GDR in the leakage process under different leakage hole diameters (unit: m)

Diameter (mm) 10 20 30 40

t = 20 min 0 0 0.734 2.002
t = 30 min 0 0 1.576 2.504
t = 40 min 0 0.978 2.224 3.446
t = 50 min 0 1.546 3.002 >4

6.4 Analysis of Leakage Consequence under Different Leakage Directions
In this part, the influence of leakage direction on the leakage consequence of HENG is analyzed

by cases 2, 10 and 11, where the leakage hole is located directly above, on the horizontal side and
directly below the pipeline, respectively. Fig. 12 shows the distribution of mixed gas concentration in
x-z plane of the three cases at the leakage time 30 min.

(a) top (b) side (c) bottom

Figure 12: Distribution of mixed gas concentration under different leakage directions

Fig. 13 demonstrates the change of leakage gas concentration detected at monitoring point P4 in
cases 2, 10 and 11 with time. It is found that when the leakage hole is located directly above, horizontally
and directly below the pipeline, the corresponding FDT is 1041, 1442 and 1558 s, respectively. Tables 12
and 13 present the FDR and GDR values under different leakage directions. It indicates that the FDR
value is the largest when the leakage hole is located on the horizontal side of pipeline. Because when
the leakage hole is located on the horizontal side, the diffusion of leakage gas along the pipeline will
be intensified. For GDR, the value is the largest when the leakage hole is vertically upward, this is
because the leakage gas can diffuse quickly to the ground surface to form gas clouds.
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Figure 13: Variation of mixed gas concentration at P4 under different leakage directions

Table 12: FDR in the leakage process under different leakage directions (unit: m)

Leakage directions Top Side Bottom

t = 5 min 1.184 1.279 1.224
t = 10 min 1.678 1.886 1.772
t = 15 min 2.004 2.326 2.144
t = 20 min 2.252 2.667 2.368

Table 13: GDR in the leakage process under different leakage directions (unit: m)

Leakage directions Top Side Bottom

t = 20 min 0.734 0 0
t = 30 min 1.576 1.227 0.776
t = 40 min 2.224 1.952 1.446
t = 50 min 3.002 2.511 2.016

6.5 Analysis of Leakage Consequence under Different Soil Types
Taking cases 2, 12 and 13 as examples, the influence of soil type on the consequences of HENG

leakage is analyzed. First, according to the particle diameter and porosity of soil, the viscous resistance
coefficient and inertial resistance coefficient are calculated by using Eqs. (6) and (7), as shown in
Table 14.

Fig. 14 shows the change of leakage gas concentration monitored at P4 point in cases 12 and 13
with time. The analysis shows the corresponding FDT of sand, loam and clay is 157, 1041 and 69062 s,
respectively. The soil type has great influences on gas leakage and diffusion processes. There exists
remarkable difference in FDT between different soil types, for instance, the difference between the
FDT of sand and clay is up to two orders of magnitude.
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Table 14: Calculation results of soil resistances

Soil type Particle
diameterDP (mm)

Porosity
φ (mm)

Viscous resistance
1/α (1/m2)

Inertial resistance
C2 (1/m)

Sandy 0.5 0.25 2.16 × 1010 3.36 × 105

Loam 0.05 0.43 2.45 × 1011 5.02 × 105

Clay 0.01 0.3 2.72 × 1013 9.07 × 106
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Figure 14: Variation of mixed gas concentration at P4 under different soil types

Table 15 presents FDR values in the leakage process under different soil types. It can be observed
that FDR value meets the relationship of sand > loam > clay at different times. At t = 5 min the FDR
of sand is larger than the size of computational domain. Table 16 shows GDR values in the leakage
process under different soil types. It can be found that the HENG concentration at the ground
surface of clay still fails to reach the LEL at t = 50 min. For sand, the GDR value exceeds the size
of computational domain at t = 20 min.

Table 15: FDR in the leakage process under different soil types (unit: m)

Soil type Sandy Loam Clay

t = 5 min >4 1.184 0.168
t = 10 min >4 1.678 0.172
t = 15 min >4 2.004 0.256
t = 20 min >4 2.252 0.322
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Table 16: GDR in the leakage process under different soil types (unit: m)

Soil type Sandy Loam Clay

t = 20 min >4 0.734 0
t = 30 min >4 1.576 0
t = 40 min >4 2.224 0
t = 50 min >4 3.002 0

6.6 Comparison of Different Influencing Factors
Fig. 15 displays the comparison of FDT, FDR and GDR in the leakage process under different

cases, in which the presented FDR and GDR values correspond to the values measured at t = 20 min.
It is clearly seen among the influencing factors discussed in this study, the soil type has the greatest
influence on the leakage and diffusion processes for urban buried HENG pipeline. The FDT value of
clay is about 440 times larger than that of sand. In addition, the leakage hole diameter and pipeline
operating pressure also have great influence on leakage and diffusion processes of urban buried HENG
pipeline. The influence of leakage direction and HBR are relatively small. Especially the HBR has the
weakest influence, and the differences of FDT, FDR and GDR at different HBRs are subtle.

In summary, hydrogen has a wider explosive limit and is easier to diffuse than natural gas,
which requires additional safety measures, including leakage monitoring equipment and upgraded
ventilation systems to prevent explosions which may occur after gas leakage.
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Figure 15: Analysis of leakage consequences under different calculation conditions

7 Conclusions

In this study, the leakage of urban buried HENG pipelines is investigated numerically, and the
influences of HBR, pipeline operating pressure, the diameter of leakage hole, leakage direction and
soil type on the leakage consequences are analyzed and discussed in detail. The concluding remarks
of this work can be summarized as follows:

(1) The HENG presents a spherical diffusion process when it leaks from urban buried pipelines.
The gas concentration field around the leakage hole changes rapidly at the initial stage of the
leakage, and then gradually becomes stable. The whole leakage area basically conforms to the
fact that the closer to the leakage hole, the higher the leakage gas concentration is and the more
stable it tends to be. Because of the strong diffusion effect of hydrogen, the increase of HBR
will enlarge the whole gas cloud.

(2) The severity of the leakage consequences for urban buried HENG pipeline is affected by
multiple influencing factors, among which the soil type is the most critical factor. For clay and
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sand, the FDT difference is up to two orders of magnitude. The pipeline operating pressure and
leakage hole diameter also influence leakage consequences obviously, but the leakage direction
and HBR exert slight effects on the leakage and diffusion of urban buried HENG pipeline.

(3) For natural gas pipelines, if the influence of hydrogen on pipeline mechanical properties is not
considered, the analysis of FDT, FDR and GDR show the hydrogen blending is not the key
factor in increasing the risk after urban buried pipeline leakage.
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