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ABSTRACT

In this work, the exponential approximation is used for the numerical simulation of a nonlinear SITR model
as a system of differential equations that shows the dynamics of the new coronavirus (COVID-19). The SITR
mathematical model is divided into four classes using fractal parameters for COVID-19 dynamics, namely,
susceptible (S), infected (I), treatment (T), and recovered (R). The main idea of the presented method is based on
the matrix representations of the exponential functions and their derivatives using collocation points. To indicate
the usefulness of this method, we employ it in some cases. For error analysis of the method, the residual of the
solutions is reviewed. The reported examples show that the method is reasonably efficient and accurate.
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1 Introduction

The world has recently contracted the dangerous and deadly disease coronavirus 2019
(COVID-19), which is an almost uncontrollable respiratory infection. The new coronavirus was
reported in Wuhan, China in December 2019. The World Health Organization (WHO) announced
the global pandemic of the infection in March 2020. Its disease pattern is called COVID-19 [1]. This
disease that is highly contagious and through droplets can be transmitted from person to person.
Many people are infected with COVID-19 and the number of victims of this virus is increasing every
day. The COVID-19 spread ratio is very problematic and a concern for the whole world. The main
cause of the spread of this virus is the contact of an infected person with healthy people, because
studies have shown that this infection is usually caused by the transmission of blood cells through
coughing or sneezing. These blood cells can stay in the air for a long time and cause infections for
others. However, it is very challenging for scientists to study the preventive measures that can be taken
to control the spread of the virus and to develop a vaccine to fight the virus. How to control the
disease is one of the most important challenges if it is transmitted to animals or birds. Researchers are
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developing a variety of tactics to study the growing behavior of the coronavirus, and are studying ways
to end COVID-19. Much research has been done to determine the conditions under which this deadly
virus can be controlled. Scientists have found that COVID-19 is one of the most important outbreaks
that attacks the respiratory system. One of the main reasons for the prevalence of COVID-19 is due
to the transmission of germs through the respiratory cells in humans, and this virus is considered
as a vector of transmission. The World Health Organization (WHO) has warned that the outbreak
of the coronavirus could spread more rapidly if control measures were not implemented in a timely
manner. WHO has advised people to stay away from infectious people or animals, including fever
or any respiratory problems, and to recommend the use of surgical masks and the continued use of
hand sanitizers in public places to protect oneself from infection. Social distance or less crowded
places can reduce the risk of spreading the corona virus because it is more likely to spread in crowded
places. The use of epidemiological computational simulation models plays a main role in estimating
the transmission parameters and guessing the effective behavior of the infection. These models have
been shown to be useful in depicting the growth rate or rate of decay of viruses over time. And they
are very useful in providing control measures that can be adapted to reduce the spread of the disease.
Many results and applications of COVID-19 simulation models are accepted and published [2–9].
Providing a mathematical model is another matter, while predicting the consequences of the disease
is also very disappointing. One method of analyzing the behavior of diseases is divisional modeling,
which can be used for mathematical models related to affective diseases. An appropriate vaccine must
be discovered to prevent further damage of the virus. Otherwise, the world must be prepared to face
many new challenges such as human casualties, food shortages, poverty, unemployment and so on.

One way to study the effective growth of this deadly outbreak is to use computer simulation block
models. In different researches, different numerical and analytical approaches have been considered to
perform the outputs of SITR models [10–13].

Differential equations have a remarkable role in several scientific and engineering phenomena that
have always been considered at physical and technical applications and they are appeared in various
areas as mathematics, physics and engineering sciences [14–17].

In recent years, Yüzbaşi et al. have applied the collocation method based on exponential
approximation to solve some problems like pantograph equation, the linear neutral delay differential,
Fredholm integro-differential difference equations and so on [18–21].

The aim of the present work is to find a numerical solution for a nonlinear SITR model using
the new dynamic parameters of COVID-19, along with numerical analysis to better understand the
expansion using numerical approaches through exponential basis.

The organization of this article is structured as follows: In Section 2, mathematical modelling
of the SITR system is presented. In Section 3, we express briefly required mathematical elementary
and matrix relations for exponential functions of the method. In Section 4, we present the numerical
implementation of the matrix operation of the method. Section 5 involves the error analysis. For this
purpose, assuming the residual of solution of Eq. (1). Section 6 contains numerical examples, where
approximate solutions corresponding to various N values are obtained using the proposed method.
Numerical experiments are examined to illustrate the efficiency and accuracy of the method, and
results are reported. Finally, the last section consists of a brief conclusion.
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2 Mathematical Modeling

Mathematical modelling of the dynamical system is an interesting field of study that has attracted
most researchers’ attention. Dynamical systems have a wide range of applications, including popula-
tion growth models, biomedical research, biological systems, and engineering.

In this approach, for the SITR model is designed for the new COVID-19 dynamics, the population
is allocated to various compartments with particular labels, susceptible (S), infected (I), treatment
(T), and recovered (R). The S is divided into S1(t) and S2(t) subclasses. Subclass S1(t) identifies
people who have not yet developed COVID-19 disease, and subclass S2(t) identifies people who are
not yet infected but have some serious illnesses or older. No proper vaccination for the disease has been
discovered yet, so the entire individuals are at risk of getting contaminated by this infection. That is
why the whole population is often put into the susceptible class. From the susceptible class, the entities
of that class can get infected by making contact with the infectious person and then they can join the
infected class as well as exposed class.

The SITR model of the novel COVID-19 dynamics is given by the following nonlinear 1st order
differential equations and the description of each compartment is given in Table 1.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
1(t) = B − βI(t)S1(t) − δβT(t) − αS1(t), S1(0) = ϕ1,

S′
2(t) = B − βI(t)S2(t) − δβT(t) − αS2(t), S2(0) = ϕ2,

I ′(t) = −μI(t) + βI(t)(S1(t) + S2(t)) − αI(t) + βδT(t) + σ I(t), I(0) = ϕ3,

T ′(t) = μI(t) − ρT(t) − αT(t) + ψT(t) + εT(t), T(0) = ϕ4,

R′(t) = −αR(t) + ρT(t), R(0) = ϕ5.

(1)

Table 1: Definition of the compartments for the dynamics of the SITR model

Compartment Brief definition

S1(t) Non-infected individuals
S2(t) Non-infected older or major diseased individuals
I(t) Infected community rate
R(t) Recovery community rate
T(t) Treatment

Each equation is describing the transmission behavior of individuals in the respective compart-
ments. By this transmission number of individuals can vary in each of the five compartments [22–30].
The description of the transition rates in each cell is given in Table 2. The parameter of interest with
appropriate settings for particular descriptions of the dynamics are provided in Tables 1 and 2.

We try to find the approximate solution of system of differential Eq. (1) with initial conditions as
series of exponential functions. Exponential functions or exponential polynomials are based on the
linearly independent exponential basis set

B = {1, e−t, e−2t, . . .}. (2)

To begin with, we assume that the unique solutions of system (1) can be expressed as a exponential
series of the form
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S1 (t) =
∞∑

n=0

ane−nt, S2 (t) =
∞∑

n=0

bne−nt, I (t) =
∞∑

n=0

cne−nt,

T (t) =
∞∑

n=0

dne−nt, R (t) =
∞∑

n=0

ene−nt, (3)

then by truncation these power series after the (N + 1)st term, their linear combinations defined by
the expansions

S1,N (t) =
N∑

n=0

ane−nt, S2,N (t) =
N∑

n=0

bne−nt, IN (t) =
N∑

n=0

cne−nt,

TN (t) =
N∑

n=0

dne−nt, RN (t) =
N∑

n=0

ene−nt, (4)

which, coefficients an, bn, cn, dn, en are unknown and N is an arbitrary positive integer.

Table 2: Precise interpretation of the parameters for the dynamics of the SITR model

Parameter Interpretation

β Contact rate
B Rate of natural birth
δ Reduce infection from treatment
σ Fever, tiredness and dry cough rate
μ Recovery rate of population
α Death rate
ρ Rate of infection from treatment
ψ Healthy food rate
ε Sleep rate
ϕj Initial conditions

Remark. We solve the system (Sys) in time interval [0, 1] and for larger intervals [0, R], convert it
to interval [0, 1] by using an iterative method. This iterative process is such that to solve the system in
t ∈ [0, R] by initial conditions (IC) at t = 0, we first solve the system in the interval t ∈ [0, 1]. Then we
use the results for t = 1 with a transfer as the initial conditions and solve the system at [1, 2]. And we
continue this iterative procedure until t = R by step size h = 1.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sys(t) = 0, IC(0) = k0,
Sys(t − 1) = 0, IC(1) = k1,
...
Sys(t − (R − 1)) = 0, IC(R − 1) = kR−1.

(5)

After solving these systems, we merge the functions as multivariate function.
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3 Preliminaries and Matrix Relations

In this section, we outline operational matrices of the exponential method we will use in order to
solve system (1).

In the first step, we create the differentiation matrices which are the basic tools of the current
approach. Differentiation matrices make this method more suitable for managing high-order differ-
ential equations. By constructing an operational matrix, it is easy to derive high-order derivatives of
the unknown in terms of values at collocation points.

Firstly, we inscribe the approximated solution uN(t) defined by linear combination (4) of Eq. (1)
in the matrix form as

u(t) = E(t)A, (6)

where

E(t) = [1 e−t e−2t . . . e−Nt],

and

A = [a1 a2 . . . aN]T .

Taking advantage of the linearity of expansion (4), we can compute the derivative of u by
differentiating the basic functions. The derivatives of u are obtained as follows:

u′ (t) =
N∑

n=1

(−nan) e−nt, (7)

and for higher order derivatives of u we present a matrix form. Next, we explain how to create a
differentiation matrix through the method, and we extract and create a matrix D so that the equations
are in the collocation points.

The derivative of the approximate solution can also be expressed as a product of matrices. Namely,
E(t) has a relation with its first derivative E′

(t) that is demonstrated by

E′
(t) = E(t)D,

where the operational (differentiation) matrix D corresponding to above relation is represented

D =

⎡
⎢⎢⎢⎢⎣

0 0 0 · · · 0
0 −1 0 · · · 0
0 0 −2 · · · 0
...

...
...

. . .
...

0 0 0 . . . −N

⎤
⎥⎥⎥⎥⎦

,

and that, after repeating the procedure k

Ek
(t) = E(t)Dk, k = 0, 1, 2, . . . , (8)

holds for any nonnegative integer k, that D0 is the identity matrix which its dimension is: (N + 1) ×
(N + 1).
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Note that

Dk =

⎡
⎢⎢⎢⎢⎣

0 0 0 · · · 0
0 (−1)k 0 · · · 0
0 0 (−2)k · · · 0
...

...
...

. . .
...

0 0 0 . . . (−N)k

⎤
⎥⎥⎥⎥⎦

.

By using of the matrix relations (6) and (8), we can write matrix representation as

u(k)(t) = E(t)DkA, k = 0, 1, . . . , m. (9)

After replacing the collocation points {xi}N
i=0 in (9), we turn into the following system of matrix

equations as

u(k)(ti) = E(ti)D
kA, i = 0, 1, . . . , N,

that, in the matrix form, we have

U(k) = E.Dk.A,

where

E =

⎡
⎢⎢⎣

E(t0)

E(t1)
...
E(tN)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 e−t0 e−2t0 . . . e−Nt0

1 e−t1 e−2t1 . . . e−Nt1

...
...

...
. . .

...
1 e−tN e−2tN . . . e−NtN

⎤
⎥⎥⎦ , U(k) =

⎡
⎢⎢⎣

u(k)(t0)

u(k)(t1)
...
u(k)(tN)

⎤
⎥⎥⎦ .

4 Implementation of Matrix Operation

In this section, we explain how to use the exponential collocation method for problem (1). For
this purpose, we use the following procedure. The basis of this method is based on the calculation of
unknown coefficients using the collocation points.

To acquire an exponential series solution of Eq. (1) under the conditions, the operational matrix
method is applied as follows:

S1,N(t) = E(t)Aa, S2,N(t) = E(t)Ab, IN(t) = E(t)Ac,

TN(t) = E(t)Ad, RN(t) = E(t)Ae, (10)

where

E(t) = [1 e−t e−2t . . . e−Nt],

and

Aa = [a1 a2 · · · aN]T , Ab = [b1 b2 · · · bN]T , Ac = [c1 c2 · · · cN]T ,

Ad = [d1 d2 · · · dN]T , Ae = [e1 e2 · · · eN]T .

The relationship between E(t) and its first derivative can also be written

S′
1,N(t) = E′

(t)Aa, S′
2,N(t) = E′

(t)Ab, I ′
N(t) = E′

(t)Ac,

T ′
N(t) = E′

(t)Ad, R′
N(t) = E′

(t)Ae, (11)
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that by applying operational matrices, we obtain the following matrix forms:

S′
1,N(t) = E(t)DAa, S′

2,N(t) = E(t)DAb, I ′
N(t) = E(t)DAc,

T ′
N(t) = E(t)DAd, R′

N(t) = E(t)DAe. (12)

Now let’s create the U(t) and U′
(t) matrices as follows:

U (t) = E (t) A, and U′
(t) = E (t) D A, (13)

where

U (t) =

⎡
⎢⎢⎢⎢⎣

S1(t)
S2(t)
I(t)
T(t)
R(t)

⎤
⎥⎥⎥⎥⎦

, U′
(t) =

⎡
⎢⎢⎢⎢⎣

S′
1(t)

S′
2(t)

I ′(t)
T ′(t)
R′(t)

⎤
⎥⎥⎥⎥⎦

, E (t) =

⎡
⎢⎢⎢⎢⎣

E(t) 0 0 0 0
0 E(t) 0 0 0
0 0 E(t) 0 0
0 0 0 E(t) 0
0 0 0 0 E(t)

⎤
⎥⎥⎥⎥⎦

,

and

D =

⎡
⎢⎢⎢⎢⎣

D 0 0 0 0
0 D 0 0 0
0 0 D 0 0
0 0 0 D 0
0 0 0 0 D

⎤
⎥⎥⎥⎥⎦

, A =

⎡
⎢⎢⎢⎢⎣

Aa

Ab

Ac

Ad

Ae

⎤
⎥⎥⎥⎥⎦

.

The system (1) can be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
1(t) + αS1(t) + βI(t)S1(t) + δβT(t) = B,

S′
2(t) + αS2(t) + βI(t)S2(t) + δβT(t) = B,

I ′(t) + (μ + α − σ)I(t) − βI(t)(S1(t) + S2(t)) − βδT(t) = 0,

T ′(t) + (ρ + α − ψ − ε)T(t) − μI(t) = 0,

R′(t) + αR(t) − ρT(t) = 0,

(14)

that it can be rewritten as following matrix form:

U′
(t) + PU(t) + MV1(t) + NV2(t) = q, (15)

where

U (t) =

⎡
⎢⎢⎢⎢⎣

S1(t)
S2(t)
I(t)
T(t)
R(t)

⎤
⎥⎥⎥⎥⎦

, U′
(t) =

⎡
⎢⎢⎢⎢⎣

S′
1(t)

S′
2(t)

I ′(t)
T ′(t)
R′(t)

⎤
⎥⎥⎥⎥⎦

, P =

⎡
⎢⎢⎢⎢⎣

α 0 0 δβ 0
0 α 0 δβ 0
0 0 μ + α − σ −βδ 0
0 0 −μ ρ + α − ψ − ε 0
0 0 0 −ρ α

⎤
⎥⎥⎥⎥⎦

,
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and

V1 (t) = [I (t) S1 (t)] , V2 (t) = [I (t) S2 (t)] , M =

⎡
⎢⎢⎢⎢⎣

β

0
−β

0
0

⎤
⎥⎥⎥⎥⎦

, N =

⎡
⎢⎢⎢⎢⎣

0
β

−β

0
0

⎤
⎥⎥⎥⎥⎦

, q =

⎡
⎢⎢⎢⎢⎣

B
B
0
0
0

⎤
⎥⎥⎥⎥⎦

.

To determine the unknown coefficients, we use the collocation points

ti = R
N

i, i = 0, 1, . . . , N. (0 ≤ ti ≤ R) , (16)

and by replacing the collocation points into Eq. (15), we obtain a system of matrix equations as follows:

U′
(ti) + PU(ti) + MV1(ti) + NV2(ti) = q, i = 0, 1, . . . , N, (17)

and this system corresponds to the following matrix form:

U′ + P U + M V1 + N V2 = Q, (18)

where

U′ =

⎡
⎢⎢⎣

U′
(t0)

U′
(t1)

...
U′

(tN)

⎤
⎥⎥⎦ , P =

⎡
⎢⎢⎣

P 0 . . . 0
0 P . . . 0
...

...
. . .

...
0 0 . . . P

⎤
⎥⎥⎦ , U =

⎡
⎢⎢⎣

U(t0)

U(t1)
...
U(tN)

⎤
⎥⎥⎦ ,

and

M =

⎡
⎢⎢⎣

M 0 . . . 0
0 M . . . 0
...

...
. . .

...
0 0 . . . M

⎤
⎥⎥⎦ , N =

⎡
⎢⎢⎣

N 0 . . . 0
0 N . . . 0
...

...
. . .

...
0 0 . . . N

⎤
⎥⎥⎦ , V1 =

⎡
⎢⎢⎣

V1(t0)

V1(t1)
...
V1(tN)

⎤
⎥⎥⎦ = I S1,

and

V2 =

⎡
⎢⎢⎣

V2(t0)

V2(t1)
...
V2(tN)

⎤
⎥⎥⎦ = I S2, Q =

⎡
⎢⎢⎣

q
q
...
q

⎤
⎥⎥⎦ .

Now, let us find the relations between the matrix A and other matrices in system (18) as follows:

U = E A, U′ = E D A, V1 = EAc EAa, V2 = EAc EAb. (19)

After the substitution of the above relations, we obtain to the following matrix equation:

E D A + P E A + M EAc EAa + N EAc EAb = Q,

by previous definition A = [Aa Ab Ac Ad Ae]
T we obtain to(

E D + P E + M EAc E + N EAc E
)

A = Q. (20)

Briefly, (20) can also be presented as follows:

WA = Q,
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where

W = E D + P E + M EAc E + N EAc E. (21)

Here, (20) conforms to a nonlinear system of the (N + 1) × (N + 1) algebraic equations with the
unknown coefficients A.

By placing the colocation points at the algebraic equations and considering initial conditions, the
system be solved and the coefficients be determined.

5 Error Analysis

Since most systems do not have exact solutions and most similar programs usually do not have
the ability to generate numerical solutions, we must verify the accuracy of the numerical results using
a method. We can confirm the accuracy and effectiveness of the numerical results by considering the
residual error functions. The residual method is a general class of methods developed to obtain the
approximate solution of differential equations. In the residual method, an approximate solution based
on the overall behavior of the dependent variable is considered. The assumed solution is often chosen
to satisfy the boundary conditions. This assumed solution is then replaced by the differential equation.
Since the assumed solution is only approximate, it generally does not satisfy the differential equation
and therefore leads to an error or what we call the residual. The residual then disappears in the mean
sense throughout the solution domain to produce a system of algebraic equations.

If S1,N(t), S2,N(t), IN(t), TN(t) and RN(t) be numerical solutions of unknown functions, the residual
error functions are defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Res1(t) = |S′
1,N(t) + αS1,N(t) + βIN(t)S1,N(t) + δβTN(t) − B|,

Res2(t) = |S′
2,N(t) + αS2,N(t) + βIN(t)S2,N(t) + δβTN(t) − B|,

Res3(t) = |I ′
N(t) + (μ + α − σ)IN(t) − βIN(t)(S1,N(t) + S2,N(t)) − βδTN(t)|,

Res4(t) = |T ′
N(t) + (ρ + α − ψ − ε)TN(t) − μIN(t)|,

Res5(t) = |R′
N(t) + αRN(t) − ρTN(t)|.

(22)

6 Numerical Applications

The rate of increase in the number of infections depends on the product of the number of infected
and susceptible persons. The system (1) explains the dramatic increase in infection rates worldwide.
The travel of infected individuals around the world has led to an increase in the number of infected
people, which in turn has led to a further increase in the susceptible individuals. This creates a positive
feedback loop that leads to a rapid increase in the number of actively infected persons. Therefore,
during the period of increase, the number of susceptible people increases and consequently the number
of infected people also increases.

In this section, we present some applications of the method that are presented in different values
for the parameters β, μ and α as Contact Rate, Recovery Rate and Death Rate, respectively.

Case (I): β = 0.25, μ = 0.08, α = 0.20.

Case (II): β = 0.30, μ = 0.10, α = 0.25.
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These results show the effectiveness of the present method in achieving good accuracy with
fewer collocation points and less computational time. All the calculations have been performed using
MAPLE. By applying the suggested method for N = 4, 6 in 0 ≤ t ≤ 1, we obtain the approximate
solutions of S1(t), S2(t), I(t), T(t) and R(t). Different appropriate values of epidemic parameters are
given in Table 3.

Table 3: The values of variables for two cases of the SITR model

Parameter Case (I) Case (II)

β 0.25 0.30
B 0.30 0.30
δ 0.30 0.30
σ 0.005 0.005
μ 0.08 0.10
α 0.20 0.25
ρ 0.30 0.30
ψ 0.20 0.20
ε 0.10 0.10

The residual of solutions has been used to show that this method is efficient and reasonably
accurate.

The coefficients of the approximate numerical outcomes of the method for N = 4 of Case (I) and
Case (II) are given in Tables 4 and 6, respectively. The residual errors for Case (I) and Case (II) are
reported in Tables 5 and 7, respectively. Fig. 1 shows the graph of residual error functions for Case (I).

Table 4: Coefficients of the functions of SITR model for Case (I) and N = 4

Function Coefficients

a0 = 0.48127
a1 = 0.31505

S1,4 (t) = ∑4

n=0 ane−nx a2 = −0.27733
a3 = 0.18117
a4 = −0.05016
b0 = 0.37155
b1 = −0.41393

S2,4 (t) = ∑4

n=0 bne−nx b2 = 0.36155
b3 = −0.23328
b4 = −0.06410
c0 = 0.79573
c1 = −0.12408

I4 (t) = ∑4

n=0 cne−nx c2 = 0.15959
c3 = −0.11414
c4 = 0.03289

(Continued)
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Table 4 (continued)

Function Coefficients

d0 = 0.32852
d1 = 0.04062

T4 (t) = ∑4

n=0 dne−nx d2 = −0.03522
d3 = 0.02200
d4 = −0.00591
e0 = 0.25687
e1 = −0.33956

R4 (t) = ∑4

n=0 ene−nx e2 = 0.35665
e3 = −0.24209
e4 = 0.06813

Table 5: Residual of present method for Case (I)

N t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9

Res1(t) N = 4 5.353 × 10−4 7.569 × 10−5 1.360 × 10−4 3.385 × 10−5 1.070 × 10−4

N = 6 6.583 × 10−5 1.166 × 10−5 4.519 × 10−6 3.501 × 10−6 5.926 × 10−6

Res2(t) N = 4 1.246 × 10−3 1.759 × 10−4 3.156 × 10−4 7.841 × 10−5 2.476 × 10−4

N = 6 1.210 × 10−4 2.141 × 10−5 8.279 × 10−6 6.391 × 10−6 1.081 × 10−5

Res3(t) N = 4 1.615 × 10−3 2.295 × 10−4 4.146 × 10−4 1.036 × 10−4 3.292 × 10−4

N = 6 2.012 × 10−4 3.571 × 10−5 1.391 × 10−5 1.081 × 10−5 1.838 × 10−5

Res4(t) N = 4 4.323 × 10−5 6.128 × 10−6 1.104 × 10−5 2.753 × 10−6 8.729 × 10−6

N = 6 1.023 × 10−5 1.817 × 10−6 7.052 × 10−7 5.473 × 10−7 9.283 × 10−7

Res5(t) N = 4 1.251 × 10−3 1.775 × 10−4 3.196 × 10−4 7.972 × 10−5 2.527 × 10−4

N = 6 1.414 × 10−4 2.512 × 10−5 9.751 × 10−6 7.567 × 10−6 1.283 × 10−5

Table 6: Coefficients of the functions of SITR model for Case (II) and N = 4

Function Coefficients

a0 = 0.23423
a1 = 0.75213

S1,4 (t) = ∑4

n=0 ane−nx a2 = −0.11786
a3 = 0.21346
a4 = −0.10234

(Continued)
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Table 6 (continued)

Function Coefficients

b0 = 0.23145
b1 = −0.32458

S2,4 (t) = ∑4

n=0 bne−nx b2 = 0.67432
b3 = −0.12987
b4 = −0.10123
c0 = 0.45632
c1 = −0.11245

I4 (t) = ∑4

n=0 cne−nx c2 = 0.19760
c3 = −0.21376
c4 = 0.02349
d0 = 0.12675
d1 = 0.09843

T4 (t) = ∑4

n=0 dne−nx d2 = −0.11278
d3 = 0.03212
d4 = −0.00432
e0 = 0.19843
e1 = −0.23678

R4 (t) = ∑4

n=0 ene−nx e2 = 0.28973
e3 = −0.32489
e4 = 0.01287

Table 7: Residual of present method for Case (II)

N t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9

Res1(t) N = 4 6.770 × 10−4 9.577 × 10−5 1.722 × 10−4 4.288 × 10−5 1.357 × 10−4

N = 6 7.025 × 10−5 1.245 × 10−5 4.826 × 10−6 3.740 × 10−6 6.335 × 10−6

Res2(t) N = 4 8.421 × 10−4 1.191 × 10−4 2.142 × 10−4 5.332 × 10−5 1.687 × 10−4

N = 6 8.323 × 10−5 1.475 × 10−5 5.716 × 10−6 4.429 × 10−6 7.501 × 10−6

Res3(t) N = 4 4.906 × 10−4 6.959 × 10−5 1.254 × 10−4 3.131 × 10−5 9.935 × 10−5

N = 6 5.835 × 10−5 1.033 × 10−5 4.026 × 10−6 3.126 × 10−6 5.305 × 10−6

Res4(t) N = 4 7.116 × 10−5 1.008 × 10−5 1.817 × 10−5 4.532 × 10−6 1.436 × 10−5

N = 6 5.851 × 10−6 1.039 × 10−6 4.033 × 10−7 3.129 × 10−7 5.308 × 10−7

Res5(t) N = 4 9.556 × 10−4 1.354 × 10−4 2.440 × 10−4 6.086 × 10−5 1.929 × 10−4

N = 6 1.047 × 10−4 1.860 × 10−5 7.222 × 10−6 5.604 × 10−6 9.506 × 10−6
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Figure 1: Graph of residual errors for Case (I) for N = 4 and N = 6
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In Fig. 2, graph of functions S1,N(t), S2,N(t), IN(t), TN(t) and RN(t) for Case (I) for N = 4 and N = 6
are presented that show the behaviour of main functions in SITR model. Fig. 3 shows the graph of
residual error functions for Case (II). In Fig. 4, graph of functions S1,N(t), S2,N(t), IN(t), TN(t) and RN(t)
for Case (I) for N = 4 and N = 6 are presented that show the behaviour of main functions in SITR
model.

Figure 2: Graph of functions S1,N(t), S2,N(t), IN(t), TN(t) and RN(t) for Case (I) for N = 4 and N = 6
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Figure 3: Graph of residual errors for Case (II) for N = 4 and N = 6
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Figure 4: Graph of functions S1,N(t), S2,N(t), IN(t), TN(t) and RN(t) for Case (II) for N = 4 and N = 6
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These graphs show that contact rates are primarily a source of large increase in the number of
susceptible individuals, but begin to decrease over time. This is because higher contact rates cause
more people to become infected and move to an infected class; therefore, the number of individuals
in the susceptible class decreases. About S2(t), graphs clearly show that the number of people with
the disease increases with increasing contact rate. Decreasing the contact rate leads to a small increase
in the number of infected people, while increasing the contact rate suddenly increases the number of
infected people. About I(t), graphs show the growing behavior of susceptible individuals with higher
recovery rates. And about T(t), they show that as the recovery rate increases, so does the number of
people in the infectious class. It can be noted that when the recovery rate is low, fewer people recover
from the virus due to the death of infected people.

The figures also show that with a high death rate, the number of recovered individuals suddenly
decreases. Because when the death rate is high, so many people in the affected and recovered classes
lose their lives, resulting in a decrease in people in all the classes. Since the death rate is so high, the
infected and recovered people are almost gone.

Figs. 5 and 6 show the graph of residual error functions for Case (I) and Case (II) on interval
t ∈ [0, 10], respectively. For solving the system on [0, 10], we apply iterative process (5). When the
10-day future change of COVID-19 is examined, it is observed from Figs. 2 and 4 that the number of
infected individuals IN(t) from COVID-19 increased by decreasing until the 5th day (up to t = 5) and
then remained constant until the 10th day (t = 10).

Figure 5: Graph of residuals for Case (I), N = 6 and t ∈ [0, 10]
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Figure 6: Graph of residual errors for Case (II) N = 6 and t ∈ [0, 10]

7 Conclusion

In this paper, the exponential approximation is used to solve the numerical investigation of a
nonlinear SITR model that represents the dynamics of the new disease of COVID-19. The method
is based on exponential functions and the collocation method as an operational matrix. As seen,
there is no concern about approximating higher-order derivatives of the unknowns. Also, to show the
accuracy and efficiency of the method, two cases with different values have been examined. Through
the examples provided, we realize that the obtained numerical results have very good residual errors.
Moreover, it is realized that errors decrease when N values increase. As shown in the results obtained
from computations, we conclude that implementation of this method will be very easy with less
computational costs for similar problems. The results indicate the effectiveness of the present method
in achieving good accuracy with fewer collocation points and less computational time.
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