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ABSTRACT

Many kinds of electrical equipment are used in civil and building engineering. The motor is one of the main
power components of this electrical equipment, which can provide stable power output. During the long-term
use of motors, various motor faults may occur, which affects the normal use of electrical equipment and even
causes accidents. It is significant to apply fault diagnosis for the motors at the construction site. Aiming at the
problem that signal data of faulty motor lack diversity, this research designs a multi-layer perceptron Wasserstein
generative adversarial network, which is used to enhance training data through distribution fusion. A discrete
wavelet decomposition algorithm is employed to extract the low-frequency wavelet coefficients from the original
motor current signals. These are used to train the multi-layer perceptron Wasserstein generative adversarial model.
Then, the trained model is applied to generate fake current wavelet coefficients with the fused distribution. A motor
fault classification model consisting of a feature extractor and pattern recognizer is built based on perceptron.
The data augmentation experiment shows that the fake dataset has a larger distribution than the real dataset. The
classification model trained on a real dataset, fake dataset and combined dataset achieves 21.5%, 87.2%, and 90.1%
prediction accuracy on the unseen real data, respectively. The results indicate that the proposed data augmentation
method can effectively generate fake data with the fused distribution. The motor fault classification model trained
on a fake dataset has better generalization performance than that trained on a real dataset.
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1 Introduction

Electrical equipment is widely used in civil and building engineering. The application of large
electrical equipment can greatly improve construction ability and efficiency. The motor is one of
the main power components of this electrical equipment, which can convert electrical energy into
mechanical energy. During the long-term service of electrical equipment, aging, wear, and fatigue
damage of motor parts may cause various motor faults. Motor faults will change the operation state of
equipment and cause adverse effects on normal construction. Therefore, in the service of engineering
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equipment, engineers need to conduct health monitoring and implement maintenance for motors
regularly. It has great significance for ensuring safety and improving the efficiency of construction.

Motor monitoring is to obtain the signal of the running motor, then analyze and extract the signal
characteristics, and finally judge the health status of the motor according to the characteristics. The
traditional methods of motor monitoring are to set thresholds for motor running parameters and then
determine the real motor states according to the relationship of both the parameters and the thresholds
[1]. These methods can detect many kinds of motor faults related to the macroscopic characteristics
of the operating parameters (current value, voltage value, temperature, etc.) [2]. However, multiple
motor faults may exhibit the same macroscopic characteristics, which makes it difficult to determine
the specific fault type. In addition, some motor faults can’t be shown in the macroscopic characteristics
in the early stage of development which leads to the failure of detection.

With the development of information technology, fault diagnosis methods based on detailed
features are more and more popular in motor monitoring [3,4]. By analyzing detailed features and
deep features of motor running signal, these methods can identify small changes in motor states. In
motor condition monitoring, compared with vibration, torque, sound and other signals, the current
signal can be obtained directly from the motor control system, which has the characteristics of easy
acquisition and low acquisition cost [5]. At the same time, the current signal is directly related to
the input and output characteristics of the motor and contains abundant motor state information
[6]. Machine learning technology has been used in motor condition monitoring by many researchers.
Motor fault diagnosis method based on machine learning technology has a strong ability for feature
extraction and data classification. Some researchers use neural networks to extract deep features from
motor signals to achieve motor fault classification [7].

In the fault diagnosis based on neural network, researchers often encounter the situation that the
experiments can only obtain data under a few working conditions because of the expensive cost on
time and economic. At the same time, the data in the actual working environment is usually not easy
to obtain due to environmental constraints. So researchers can only obtain a small amount of valid
data and the feature distribution of samples is relatively narrow, which corresponds to limited working
conditions. Deep learning model based on neural network needs a large amount of data for training
to get the optimal parameters. Thus, this kind of training data is not conducive to the training of
neural network model. Some studies have proposed that data augmentation methods can be used to
generate fake data, which has similar feature distribution compared with the real data. And the fake
data can be used for the training of neural network models. The generative adversarial network was
used to generate realistic one-dimensional raw data [8]. Five data augmentation methods were selected
for training a contrastive representation learning network [9]. In order to increase the number of data
samples, Meng et al. [10] divided a single sample into multiple monomers and then recombined the
monomers. Wang et al. [11] enhanced the resolution of the original sample for data augmentation.

In order to solve the above problems and promote the application of machine learning technology
in motor fault diagnosis based on data augmentation and neural network technology, this paper
proposes a motor fault diagnosis method which is suitable for a small dataset and a narrow range
of data characteristics. The method constructs a current data generation model based on an improved
generative adversarial network to generate the fake training data. The discrete wavelet decomposition
algorithm is used to decompose the current data, and the low frequency wavelet coefficients are
selected to construct datasets. A motor fault classification model based on multi-layer perceptron
neural network is designed, which is applied to classify the motor current data and realize the motor
fault diagnosis. The main contributions of this paper are as follows:
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(1) Aiming at the characteristics of limited computing resources in the building engineering site,
an improved generative adversarial network suitable for the small dataset is constructed. The
network can generate fake data with fused distribution under virtual working conditions, which
increases the diversity of the training dataset.

(2) A classification model for motor fault diagnosis is designed for deep feature extraction and
classification. The low frequency coefficients of wavelet decomposition of motor current data
are used as training data. This model can be trained on a personal computer, which is conducive
to the deployment and implementation in various building engineering sites.

(3) This paper presents a motor fault diagnosis method based on motor current data, which
realizes end-to-end fault diagnosis. This method does not need a large number of previous
experimental data. It can obtain a diagnostic model with good generalization performance by
using a small amount of current data under discrete working conditions.

The rest of this paper is organized as follows: Section 2 summarizes the research status of related
technologies and methods. Then the motor fault diagnosis method based on data augmentation
technology and neural network technology is described in Section 3. In Section 4, experiments of
data augmentation and fault classification are carried out, and experimental results are shown and
discussed. Finally, the conclusion is presented in Section 5.

2 Related Work
2.1 Data Augmentation Methods

In computer vision research, many studies use image augmentation methods such as image space
transformation and noise superposition, to generate fake images to support the training of large neural
network models [12]. For time series data, the simplest data augmentation method is window overlap.
But this method does not generate new feature distributions and does not increase the diversity of
data. It only superimposes the data features of several samples [13,14]. The noise superposition is to
add the background noise of working conditions to the original sample, which increases the diversity
of data and improves the generalization performance of the trained model. However, this method does
not enrich the original basic feature information and cannot effectively improve the performance of
the model [15]. Amplitude offset and time warping methods are also widely used in time series data
tasks and have achieved some results, but they are the linear transformations of original data [16].
Yu et al. proposed a data augmentation method which is composed of several data augmentation
strategies. The research results show that the method has achieved good results on small sample
datasets [17].

In recent years, data augmentation technology based on the generative adversarial network
has attracted much attention. This method can learn the feature distribution of real data through
unsupervised training. The trained generator can randomly generate fake data, which is similar with
the original data. The method can generate data with the new feature on the basis of the main
feature distribution of original real data. According to the characteristics of application background,
researchers have designed many types of generative adversarial networks. A deep generative adversarial
network was proposed to address the imbalanced data problem be explicitly creating additional
training data [18]. Cabrera et al. [19] artificially balanced the dataset based on improved generative
models with a dissimilarity-based model selection.
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2.2 Motor Fault Diagnosis Methods Based on Current Signal
2.2.1 Diagnosis Methods Based on Time Domain and Frequency Domain Feature of Current

The stator phase current collected by the current sensor contains rich motor state information
in the time domain. Researchers observe the current signal characteristics in the time domain, and
construct the mapping relationship between signature and motor fault to realize the motor fault
diagnosis.

Yang et al. [20] used the covariance of three-phase current to diagnose and locate transistor open-
circuit faults by analyzing the correlation between them. Naseri et al. [21] employed three Kalman
filters to estimate the three-phase motor currents, and used averaged normalized residual signals as
diagnostic criteria for the detection of open-switch faults. Kou et al. [22] presented an open-circuit fault
diagnosis approach based on Concordia transform and random forests technique. Eldeeb et al. [23]
implemented a mathematical morphological gradient technique in the online diagnosis of stator’s
interturn failure. Salehifar et al. [24] defined the cross-correlation factor as the fault detection index,
which is the similarity between estimated current and real current. The estimated current is formed
by a model-based observation. Yan et al. [25] calculated the fault symptom variables by using average
current Park’s vector method, and then applied fuzzy logic approach to process the faulty symptom
variables.

The method based on time domain analysis can process some simple motor current signals and
obtain signature components. But when the current signal contains a lot of noise, the applicability
of time-domain analysis method is poor. Transforming the current signal from the time domain to
the frequency domain or time-frequency domain can greatly reduce the amount of data, which is
conducive to highlighting the signal’s key frequency information.

Potamianos et al. [26] used discrete wavelet transform to analyze a monitoring system’s measured
output current waveform. Zaman et al. [27] used Wavelet Packet Decomposition to extract the features
by evaluating energy eigenvalues and feature coefficients at decomposition levels from stator current
signals. Shabbir et al. [28] employed Discrete Fast Fourier Transform to obtain the harmonic spectra
and chose the fundamental and 5th harmonic of stator current as signature frequency components.
Malik et al. [29] extracted the features by empirical mode decomposition, and used Modified-Fuzzy-Q-
learning technique for turbine fault diagnosis. Rabbi et al. [30] performed the multiresolution analysis
of nonstationary current signals to detect and extract the sideband frequency components based on
wavelet packet decomposition.

The frequency domain or time-frequency domain analysis method of current can accurately locate
the signature components corresponding to motor faults, which helps understand the evolution process
of faults.

2.2.2 Diagnosis Methods Based on Machine Learning Technology

The analysis methods of the current signal based on machine learning technology get the optimal
signal feature representation mode through repeated iteration, and then classifies the extracted features
to realize the fault diagnosis. Kou et al. [22] applied Concordia transform to process the fault
samples, and the transformed fault samples were used to train the fault diagnosis classifier based
on random forests. Long et al. [31] employed an attention mechanism and improved the AdaBoost
multi-classification classifier in motor fault diagnosis. In processing complex signals, artificial neural
networks usually have stronger feature extraction ability than ordinary machine learning models. In
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recent years, many researchers have applied the artificial neural network model in motor fault diagnosis
based on motor current.

Skowron et al. [32] proved the possibility of using a convolutional neural network in the real-time
diagnostic system with the high accuracy of incipient stator winding fault detection and classification.
Munikoti et al. [33] used three kinds of statistical machine learning methods to address motor fault
detection and identification and revealed that the convolutional network performs better than support
vector machine and recurrent networks. Masrur et al. [34] developed and trained a structured neural
network system to detect and isolate the most common types of faults. An unsupervised domain-
share convolutional neural network is constructed to extract the domain invariant features for efficient
fault transfer diagnosis of machines from steady speeds to time-varying speeds [35]. Hussain et al. [36]
trained and tested three deep learning models MLP, 1DCNN, and LSTM for the purpose of healthy
and unhealthy conditions of the induction motor.

The diagnosis method based on the machine learning model has obvious advantages in the
representation of complex signal features through appropriate training and testing. In recent years,
researchers have proposed a large number of effective fault diagnosis methods based on big industrial
data and neural networks. These methods play an important role in equipment health monitoring in
the fields of energy, aerospace and so on [37].

3 Proposed Methodology

In the application of motor fault diagnosis based on the neural network model, researchers often
only obtain the current data of the motor under a few working conditions. This kind of data has
centralized characteristics and small distribution range, which makes it difficult to train a neural
network model with good generalization performance. In the actual operating environment of the
motor, the speed, load and ambient temperature change at any time, which will cause the current
signal of the motor to have complex characteristics. If the limited experimental data is used to train
the fault diagnosis model, the model is used to diagnose motors in the actual environment, which must
show very poor performance [38].

This paper proposes a motor fault diagnosis method based on generative adversarial learning
that aims at the above problems. Firstly, the wavelet decomposition algorithm is used to extract the
low-frequency wavelet coefficients of the current data, which forms a real dataset. Then a multi-
layer perceptron Wasserstein generative adversarial network is designed to generate fake data, which
has more complex data characteristics and wider data distribution than real data. The motor fault
classification model consists of an extractor and recognizer to realize the motor fault classification.
The architecture of the proposed method is shown in Fig. 1.

3.1 Preprocessing of Current Signal Based on Wavelet Decomposition
The main components of motor stator current are low frequency signals. When a motor fault

occurs, the overall low-frequency characteristics of the current signal will change. And the fault
characteristic frequency is near the power frequency [39]. Therefore, the fault types of the motor can
be judged by analyzing the frequency characteristics of the low-frequency component in the current
signal [40].
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Figure 1: Architecture of the proposed motor fault diagnosis method

The discrete wavelet decomposition algorithm can transform time domain data to frequency
domain data. The frequency domain data decomposed by the algorithm has a dynamic resolution,
which meets the requirement of signal decomposition [41]. The discrete wavelet decomposition
algorithm can be expressed as Eq. (1), where x(n) represents time-domain discrete signal and ϕj,k(n)

represents dyadic wavelet.
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In this paper, the Mallet algorithm is used to realize discrete wavelet decomposition of motor
current signal, which is suitable for analyzing motor current data [42]. It is assumed that the number
of data points of the discrete current signal is N, and the highest frequency of the signal is Fs.
The method comprises the following steps: firstly, perform wavelet decomposition on the first level:
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The characteristics of motor faults mainly distribute in the low-frequency wavelet coefficients
of the current signal. Therefore, the high frequency coefficients will be discarded, and the multiple
layers of low frequency wavelet coefficients are spliced into one-dimensional data for motor fault
classification.

3.2 Data Augmentation Method of Current Signal
3.2.1 Multilayer Perceptron Wasserstein Generative Adversarial Network

A generative adversarial network was proposed in recent years. By using adversarial learning
between the generator and the discriminator, the generator can learn the data distribution of the
training dataset. In this paper, a multi-layer perceptron Wasserstein generative adversarial network
is proposed, which can be expressed as Eq. (2) [43], where G is the discriminator model for judging the
type of sample, and D is the generator model for generating fake data, and z is the seed noise, x ∈ R

n

are real samples, x̃ ∈ R
n are generated samples, y ∈ R

2 are the decision values of the discriminator, θ
G

and θ
D are the generator and discriminator model parameters, respectively.⎧⎪⎪⎪⎨
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G: x̃ = G

(
z, θG

)
D: y =

⎡
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)

D
(̃
x, θD

)
⎤
⎦ (2)

The structure of the network is shown in Fig. 1, in which the discriminator is composed of multi-
layer perceptron neural networks, and the activation functions of the former four layers are ReLu,
and the last layer does not use the activation function. The generator is also composed of multi-layer
perceptron neural networks, in which the activation functions of the former four layers are ReLu, and
the last layer does not have an activation function, and a discarded layer is added after the third layer
to prevent the model from overfitting. The discriminator and generator have the same framework of
neural networks. Suppose there are m neurons in the layer l − 1 and n neurons in the layer l of the
networks. The weight coefficients matrix W l and the bias matrix bl of the layer l are expressed as
Eq. (3).
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The output vector of the layer l − 1, linear output vector of the layer l, and output vector of the
layer l are expressed as Eq. (4).

Then the output of the layer l can be expressed in matrix as Eq. (5), where σ is the activation
function.

From this, the forward propagation algorithm of multi-layer perceptron can be obtained:

Step 1: initialize al = x0, l = 1;

Step 2: let l = l + 1, and calculate al;
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Step 3: repeat Step 2, until l = L, and output aL, where L is the number of layers of multi-layer
perceptron.
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al = σ(zl) = σ(W lal−1 + b) (5)

3.2.2 Loss Function

Traditional generative adversarial learning uses Kullback-Leibler Divergence to measure the
distribution distance between generated data and real data. Many studies have found that Kullback-
Leibler Divergence leads to some problems, such as gradient disappearance, training gradient instabil-
ity and pattern collapse in the training process [44], which makes the training of generative adversarial
model very difficult.

Wasserstein distance is used in the loss function of the generative adversarial model, which is
often used to measure the distance of two distributions. The loss function of the discriminator can be
presented as Eq. (6) [45], where E is the expectation function, Pr is the distribution of real data, Pg is
the distribution of fake data.

V(G, D) = maxD∈1−Lipschitz{Ex−Pr [D(x)] − Ex−Pg [D(x)]} (6)

The 1-Lipschitz constraint condition in Eq. (6) is equivalent to that the gradient of the discrim-
inator is less than 1 everywhere, which can be expressed as Eq. (7). Then, the loss function can be
expressed as Eq. (8). The λ

∫
x

max(0, ||∇xD(x)|| − 1)dx in the equation is regard as a regular term.
When the gradient of the discriminator is greater than 1, λ

∫
x

max(0, ||∇xD(x)||−1)dx will be deducted
from maxD{Ex−Pdata

[D(x)] − Ex−PG
[D(x)]} to ensure that the gradient is less than 1.

D ∈ 1 − Lipschitz ⇔ ||∇xD(x)|| ≤ 1 for all x (7)

V(G, D) ≈ maxD{Ex−Pdata
[D(x)] − Ex−PG

[D(x)] − λ

∫
x

max(0, ||∇xD(x)|| − 1)dx} (8)

This requires that the gradient corresponding to all inputs of discriminator D should be less than
1. In order to approximately satisfy the condition, it is necessary to define a penalty sample space,
which is smaller than the whole data space. The distribution of the data from the defined space is
Ppenalty. So the problem is transformed into that the gradients ∇xD(x) corresponding to x in Ppenalty are
all less than 1. Further, the cost function of the discriminator can be modified as Eq. (9) [46], where λ

is the gradient penalty coefficient.

V(G, D) ≈ maxD{Ex−Pr [D(x)] − Ex−Pg [D(x)] − λEx−Ppenalty
[(||∇xD(x)|| − 1)2]} (9)

Some research has found that it is better to set the Ppenalty to the space between the spatial
distribution of generated data and the spatial distribution of real data [47]. In this paper, the gradient
descent method is used to solve the maximum of the loss function of the discriminator. Therefore, the
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loss function can be finally expressed as shown in Eq. (10).

LD = Ex∼Pg [D(x)] − Ex∼Pr [D(x)] + λEx∼Ppenalty
[(||∇xD(x)||2 − 1)2] (10)

The loss function of the generator can be expressed as Eq. (11).

LG = Ex∼Pg [D(x)] (11)

3.2.3 Training Method

In this research, the generator and the discriminator have trained alternately. In every cycle, the
discriminator is trained for k steps first, and then the generator is trained for only one step. The purpose
of the training of the generator is to enable the generator to generate fake data similar to real data. At
this time, the discriminator is used to identify the authenticity of the generated data. The purpose of the
training of discriminator is to enable the discriminator to measure the similarity between the real data
and fake data more accurately. At this time, the generator is used to generate fake data. So the model
parameters will be updated circularly until the two models converge to the predetermined target based
on the training method. It is found that using the gradient descent algorithm based on momentum will
make the loss of the discriminator jitter significantly, and using the RMSProp algorithm will not cause
this problem [48]. So the generative adversarial model is trained based on the RMSProp optimizer.

3.3 Motor Fault Classification Method
One-dimensional wavelet coefficients of the motor current signal obtained by wavelet decomposi-

tion contain abundant motor operating information. In this paper, the motor fault classification model
is a multi-layer perception neural network as shown in Fig. 1. The layers before the last layer of the
network are used as a feature extractor to extract deep features. The last layer of the network is used
as a pattern recognizer to classify the features into different faults. ReLu activation function is used
for every layer of the feature extractor. And Softmax activation function is used for pattern recognizer
to output the probability of various fault types. Cross-entropy loss function is used as the model loss
function, and Adam optimizer is used as the learning rate optimizer.

4 Experiment
4.1 Dataset

The motor stator current dataset used in this paper contains 11 kinds of motor faults, which is
simulated by artificially manufactured motor components defects. The experiment is carried out in
laboratory environment under 8 kinds of simulated working condition. The data duration of each
working condition is 10 s. The electric current’s signals are measured with a current probe and an
oscilloscope on two phases denoted ϕl, with l = 1, 2. The range of measurement is 5 A with an accuracy
of 1% at a sampling frequency of 100 kHz [49]. The fundamental frequency of the motor current is
28 Hz. The maker of the open dataset only discloses the current data of the motor, but does not give the
specific fault type and working condition description. This research focuses on the augmentation and
classification of motor current data without prior knowledge, which makes the method have better
applicability. In other words, the study realizes the classification of various current data by directly
analyzing the statistical characteristics of data.

Fig. 2 shows the motor current wave and its single-side amplitude spectrum. On the whole, the
time-domain waveform of the current signal is a regular sinusoidal curve, and does not have obvious
fault characteristics. From the local view, irregular curves and a variety of structural features can be
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observed from the time-domain waveform. It can be found that although there are differences in
motor current signal waveforms of different faults, these differences are relatively small. Therefore,
it is difficult to distinguish the specific motor state directly from the motor current waveform. There
is a prominent peak in the frequency spectrum, and the center frequency of the peak is equal to the
fundamental frequency of the current. This indicates that the signal energy in the current signal is
concentrated around the fundamental frequency. But there are some differences in the shape of this
peak in the current spectrum under various faults, which indicates that the frequency characteristics of
various faults are different. Specifically, these differences are mainly reflected in the side frequencies
near the main frequency. Some studies have pointed out the specific relationship between the side
frequency of the motor current signal and motor fault, and motor fault can be judged according to
the position and amplitude of side frequency [50,51]. The amplitude of the high frequency component
in the spectrogram is very small.

28 Hz

(a)

(b)

Figure 2: Motor current signal (a) and its single-side amplitude spectrum (b)

4.2 Experiments Setup
4.2.1 Setup of Data Augmentation

The effective signal components in the current signal are mainly distributed around the funda-
mental frequency of the current. In order to reduce the amount of sample data, the current signal is
filtered first. The filtering method based on the Fourier transform is used in this study. First, Fourier
transform is applied to the original signal to obtain the signal spectrum. Then, set the signal frequency
band to be filtered to zero on the spectrum. Finally, the inverse Fourier transform is performed on the
spectrum to obtain the filtered signal. The effective frequency of the signal is reduced from 50,000 to
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5000 Hz. In the experiment, the current data is truncated with 0.25 s, and then the truncated data is
decomposed using a discrete wavelet decomposition algorithm. The coefficients of the motor current
signal are shown in Fig. 3.

Figure 3: Discrete wavelet decomposition coefficients of current signal

It can be seen that the amplitudes of the former five layers of detail wavelet coefficients are all less
than 0.05. And no obvious signal characteristic components can be observed in them, which indicates
that these signal components are noise. The wavelet coefficients of the last three layers have large
amplitudes, and significant signal components can be observed from them (shown in the wireframe).
The signal frequency ranges corresponding to the detail coefficients of level 6–8 are 78–156, 39∼78,
19.5∼39, respectively. The frequency range of the approximation coefficients is 0∼19.5. This research
focuses on the analysis of the current signal components, which is in the range of five times the
fundamental frequency of the current. The last 3 layers of detail coefficients and the approximation
coefficients are extracted to form the training data.

In this paper, a corresponding generative adversarial model is established for each kind of motor
fault, which is trained using the training dataset of this motor fault. The training algorithm of the
proposed model is shown in Table 1. Python and PyTorch machine learning architecture are used
to build the model. This research chooses the number of neurons of the neural network based on the
principle of minimizing the model training time. Therefore, on the basis of ensuring the performance of
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the model, the perceptron network is constructed with as few neurons as possible to reduce the amount
of computation. The number of neurons in the first layer of the network is first determined based on
the complexity of training data, and the number of neurons in the following layers is calculated layer
by layer with a magnification of 0.5. The generator model consists of three layers of perceptron neural
networks, and the number of neurons in each layer is 120, 240, and 480, respectively. The discriminator
model consists of four layers of perceptron neural networks, and the number of neurons in each layer
is 120, 60, 30 and 1, respectively. The number of training rounds for the model was set to 12,000, and
the learning rate was set to 1 e–4. In each round, the discriminator parameters are updated 5 times
and the generator parameters are updated 1 time.

Table 1: Algorithm of the proposed data augmentation model

Algorithm: multi-layer perceptron Wasserstein generative adversarial model training algorithm.
All experiments in the paper use the following values ncritic = 5, α = 0.0001, λ = 0.3.

Require: The gradient penalty coefficient λ, the number of critic iterations per generator iteration
ncritic, RMSProp hyper parameters α, the batch size b.
Require: Initial discriminator parameters θD, initial generator parameters θG.
1: while θG has not converged do
2: for i = 1, . . . , ncritic do
3: for j = 1, . . . , m do
4: Sample real data x ∼ Pr, latent variable z ∼ Pl

5: x̃ ← GθG
(z)

6: L(j) ← DθD
(̃x) − DθD

(x) + λ
(∣∣∣∣∇x̃DθD

(̃x)
∣∣∣∣

2
− 1

)2

7: end for

8 : θD ← RMSProp
(

∇θD

1
b

∑b

j=1
L(j), θD, α

)
9: end for
10: Sample a batch of latent variables {z(j)}b

j=1 ∼ Pl(z).

11 : θG ← RMSProp
(

∇θG

1
b

∑b

j=1
− DθD

(GθG
(z)), θG, α

)

12: end while

Fig. 4 shows the fake wavelet coefficients of fault 11 generated by the generator in different model
training rounds. It can be seen from the figure that as the training round increases, the fake data
gradually shows some data characteristics of the real data. When the round is more than 10,000, the
data tends to be stable. It indicates the model has converged. By observing the training process of
different fault samples, it can be found that the model in this paper can quickly capture the main signal
characteristics of the signal, as shown in the 2000 round signal in Fig. 4. But the detailed features are
difficult to obtain, which needs more than 10,000 training rounds. This shows that the signal details
under multiple working conditions are complex. In order to improve the distribution of fake datasets
and improve the efficiency of model training, this research adjusts the hyper parameters according to
the test results on the validation dataset.
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Figure 4: Fake wavelet decomposition coefficients in different training epoch

After the trained multi-layer perceptron Wasserstein generative adversarial model is obtained, the
generator is used to generate fake wavelet coefficients. For different faults (a, b, c), the real and fake
wavelet coefficients under the same working condition are shown in Fig. 5. It can be seen from the
figure that the wavelet coefficients under different faults have different characteristics. The fake data
and real data under the same fault have similar characteristics. The wavelet coefficients of different
faults have some similar characteristics. These characteristics mainly come from the inherent physical
characteristics of the motor system and environmental noise, such as the current noise of the power
grid and the inherent vibration of the motor. In addition, the wavelet coefficients of the low-frequency
part are taken as the characteristic signal, and the wavelet coefficients of the high-frequency part are
discarded, which leads to fewer characteristic components of the signal.

4.2.2 Setup of Motor Fault Classification

In this paper, Python and PyTorch machine learning architecture are used to build a multi-layer
perceptron neural model for motor fault classification. The model consists of five layers of perceptron
neural networks, and the number of neurons in each layer is 240, 120, 60, 30 and 11, respectively.
The model is trained with the real dataset, fake dataset and combined dataset under 5 kinds of
working conditions, respectively. And then, the models are tested with real data under another 3 kinds
of working conditions. The combined dataset consists of real data and fake data. The composing
proportion of the dataset will affect the performance of the classification model. An experiment about
the relationship between the proportion of fake data in the combined dataset and the performance of
motor fault classification model was carried out to obtain the best proportion.
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Figure 5: Real and fake wavelet decomposition coefficients under different faults (a, b, c)

In order to determine the best number of model training rounds, this manuscript takes the number
as a variable to explore the relationship between the rounds and training loss and test accuracy. In
the experiments, when the number of training rounds reaches about 2500, the training loss and test
accuracy of the model do not change, which indicates that the model has converged to the optimal
state. Therefore, the number of rounds of model training is set to 2500. The experimental loss function
is the cross-entropy loss function, the optimizer is the Adam optimizer, and the learning rate is set to
1 e−4.

To validate the effectiveness of the designed method, comparisons among the proposed method
and other four methods are conducted. The four methods include random vector functional link
network (RVFLN) [52], convolutional neural network-based detector (CNND) [32], dynamic time
warping (DTW) [53], SVM multi-class classification (SVMMCC) [54]. RVFLN uses fast learning
technology to learn faulty knowledge from the historical dataset based on feature extraction and
feature selection. CNND is a convolutional neural network model. DTW is a time domain based
method, which is used to suppress the supply frequency component and highlight the sideband
components based on the introduction of a reference signal. SVMMCC uses one against all strategies
to classify motor faults.

4.3 Results and Discussion
4.3.1 Result

The result of the experiment about composing proportion of the combined dataset is shown in
Fig. 6. The result shows that the classification model has the best performance when the composing
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proportion is set to about 0.5. Based on the optimal proportion, the training loss of the models is
obtained, as shown in Fig. 7. It can be found that the training loss values of the models trained with
the fake dataset and combined dataset are 0.11 and 0.15, respectively, when the number of training
epoch is 100. The model trained with the real dataset has a training loss of 0.08 when the number of
training epoch is 18. The prediction accuracy of the three trained models on unseen real data is shown
in Table 2. The model trained on the combined dataset achieves the best test accuracy of 90.1%.

Figure 6: Prediction accuracy of the proposed classification model trained with combined dataset

Figure 7: Training loss of motor fault classification models

Table 2: Prediction accuracy of the trained motor fault classification models

Training dataset Model1 -fake dataset Model2 -real
dataset

Model3 -combined
dataset

Prediction accuracy 87.2% 21.5% 90.1%
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Further, this study conducted experiments to compare the generalization performance of the four
models described in Section 4.2.2 and the proposed model. The test accuracy of the models is shown
in Table 3. Compared with other methods, the proposed method achieves the highest test accuracy of
89.7%. This shows the generalization performance of the proposed method is better than the other
four methods.

Table 3: Test accuracy of the five motor fault classification methods

Method RVFLN CNND DTW SVMMCC Proposed method

Prediction accuracy 72.0% 86.7% 73.2% 84.3 89.7%

In order to compare the distribution of fake data and real data, the datasets are input into the
trained fault classification model, respectively. And the output of the feature extractor is taken out,
which is reduced to 11 dimensions by multi-layer neural networks. Then the TSNE algorithm, which
is based on unsupervised learning, is used to reduce the dimension of the output to obtain two-
dimensional data and realize data visualization. The current data in different periods correspond to
different motor rotor phases. After the samples are transformed by the multi-layer neural networks
and the TNSE, the samples will be mapped to certain positions in the two-dimensional space. The
distributions of the two datasets are shown in Figs. 8 and 9, where the data of different motor fault
categories are represented by colors and marker symbols.

Figure 8: Distribution of the real dataset

As shown in Fig. 8, some points’ classification is wrong. For example, the data of fault category
6 is classified as category 4, category 5 and category 1. In addition, it can be seen from the figure that
some data of fault category 2 and fault category 10 are in similar spatial positions, but the data points
do not overlap. This shows that the two kinds of data have similar characteristics.
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Figure 9: Distribution of the fake dataset

4.3.2 Discussion

As shown in Fig. 8, the data points of different fault categories show curve distribution. The points
are highly aggregated and linearly distributed, which indicates that the characteristics of the data lack
diversity. As shown in Fig. 9, the fake data points are clustered into several point clouds. It can be easily
inferred that each cloud corresponds to one type of motor fault. This shows that the deep feature vector
extracted in this paper can be well separable. The data points are highly dispersed and have a large
distribution range, which indicates that the data cover a larger characteristic range. In addition, the
TSNE models of the real and fake datasets are trained separately. Based on different TSNE models, the
visual characteristics of the dataset may be different. In Figs. 8 and 9, there is no clear corresponding
relationship between the positions of specific fault types.

As can be seen from Fig. 7, the classification model trained with a real dataset has a fast
convergence rate, which indicates that the feature diversity of the dataset is poor, and the model can
quickly fit the data features. The model trained with the fake dataset or combined dataset has a slow
convergence rate, which indicates that the characteristics of datasets are more complex and the training
is more difficult.

From the prediction accuracy of the models on the test dataset, it can see that the model trained by
the real dataset has a very low accuracy on unknown working condition data. The model trained by the
fake dataset and combined dataset achieves higher accuracy, which shows that the fake data generated
by the multi-layer perceptron Wasserstein generative adversarial model has a larger distribution range
than the real data. In this research, the combined dataset consists of real data and fake data. The real
data has outstanding fault features. The fake dataset contains more diversity than the real dataset.
But the data augmentation will change data characteristics, which weakens fault feature expression.
Therefore, it can be inferred that the combined dataset has diversity and outstanding fault features at
the same time, which help the classification model achieve better performance.

The data augmentation model and fault classification model proposed in this paper belong to
small neural networks. Both models can be run directly on personal computers. This makes the method
easier to implement in the building engineering environment.
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5 Conclusion and Future Works

In order to solve the problem that the current signal of the motor lack diversity, a current
data augmentation model and a motor fault classification model are proposed in this paper. The
data augmentation model uses the wavelet coefficients of the current signal under discrete working
conditions to generate the fake dataset. The fault classification model trained on the fake dataset and
combined dataset achieves 87.2% and 90.1% prediction accuracy on unseen real data, respectively. The
data augmentation model can effectively improve the diversity of training samples. The motor fault
classification model trained on the combined dataset has better generalization performance.

The effectiveness of regarding generated data as a training dataset has been verified in the
proposed diagnosis framework under a small sample diagnosis scenario of motor fault diagnosis. In the
future, the research works on fake data based diagnosis could be extended to: (1) Based on generative
adversarial learning, establishing effective diagnosis methods under other small sample scenarios, such
as only part of the time or location node data can be obtained, or only part of the attribute data can be
observed. (2) Exploring the method on other equipment, such as gearboxes and bearings. (3) Exploring
the possibility of combining other data generation methods with generative adversarial methods to
propose a new data enhancement method, which has wider application scope and can further improve
the quality of generated data.
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