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ABSTRACT

In this work, we present a model that uses the fractional order Caputo derivative for the novel Coronavirus disease
2019 (COVID-19) with different hospitalization strategies for severe and mild cases and incorporate an awareness
program. We generalize the SEIR model of the spread of COVID-19 with a private focus on the transmissibility
of people who are aware of the disease and follow preventative health measures and people who are ignorant
of the disease and do not follow preventive health measures. Moreover, individuals with severe, mild symptoms
and asymptomatically infected are also considered. The basic reproduction number (R0) and local stability of
the disease-free equilibrium (DFE) in terms of R0 are investigated. Also, the uniqueness and existence of the
solution are studied. Numerical simulations are performed by using some real values of parameters. Furthermore,
the immunization of a sample of aware susceptible individuals in the proposed model to forecast the effect of the
vaccination is also considered. Also, an investigation of the effect of public awareness on transmission dynamics is
one of our aim in this work. Finally, a prediction about the evolution of COVID-19 in 1000 days is given. For the
qualitative theory of the existence of a solution, we use some tools of nonlinear analysis, including Lipschitz criteria.
Also, for the numerical interpretation, we use the Adams-Moulton-Bashforth procedure. All the numerical results
are presented graphically.
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1 Introduction

COVID-19 is an infectious viral disease brought about by a virus known as severe acute syndrome
Coronavirus [1]. This virus was first reported at the end of 2019 in Wuhan, China. Then, it was
reported in other places in China surprisingly [2]. In three months, the disease was transmitted in many
countries of the world. Therefore, in April 2020, the World Health Organization (WHO) announced
it as an outbreak. Its symptoms involve breathing trouble, exhaustion, fever, dry hack, sleepiness,
conjunctivitis, chest torment, loss of discourse, loose bowels, and painful throat. Furthermore, in
serious cases, pneumonia, multiorgan letdown, intense respiratory pain condition, septic shock,
abnormal heart rhythm, myocarditis, blood clumps, cardiovascular breakdown, encephalitis, stroke,
and Guillain Barré disorder, reciprocal lung entrance have been reported [3,4]. Additionally, a few
patients might experience the ill effects of looseness of the bowels, loss of craving, taste, or smell, with
no indications of breathing problem [5–7].

Investigating infectious diseases through various procedures is an attractive area of research in
recent times. One of the important areas in this regard is devoted to the mathematical modeling of
infectious diseases. Mathematical modeling is a powerful tool to study infectious diseases for analysis
of the dynamic of diseases and backing control systems [8]. Plenty of research work has been published
by researchers. The mentioned work is devoted to investigating disease transmission dynamics and
their control. In the same fashion to understand the dynamics of COVID-19 and the tracking down—
of the reasonable result of the outbreak is helpful for public health initiatives and consciousness
programs, for which significant work has been published, and we refer to a few such as [9–14].

Fractional calculus can more precisely describe natural phenomena as compared to ordinary
calculus, where derivatives and integrations have integer-orders. Numerous scientists have given more
attention to investigating the dynamics of fractional-order models regarding the COVID-19 pandemic
[15–38]. There are many papers showing the effectiveness of fractional calculus (see [39–45]). Further,
the dynamics of a stochastic epidemic model has been studied, for which we refer [46,47] and
mathematical modeling of COVID-19 pandemic using the Caputo-Fabrizio fractional derivative (see
[48]). Also, a model of COVID-19 disease has been investigated under the stochastic concept in [49].

In this research work, an SEIR-type model that concentrates on the transmission dynamics of the
COVID-19 outbreak are considered. Here, with a special spotlight on the transmissibility of people
with mild, severe, and without side effects like the existence of people who tested positive for sharp,
mild, or asymptomatic manifestations, and separating infectious compartment into two fundamental
compartments of hospitalized people with mild symptoms and those in dense care units are involved
in our proposed model.

This work is organized as: Part 2 is devoted to the formulation of the proposed model for COVID-
19. In Parts 3 and 4, we analyze the proposed model with fractional order. Some qualitative analysis,
computation of R0, and local stability for the disease-free equilibrium (DFE) in terms of R0, of the
proposed model are obtained in Part 5. The stability analysis is studied in Part 6. Part 7 is dedicated
to data fit and explanation of our model via numerical simulation and comparison with real data for
Morocco. The conclusion is given in the last section.

2 The Proposed Epidemic Model

Here in this section, the proposed model is formulated. The flowchart of the model is given
in Fig. 1 to understand the evolution of the mentioned disease. Let the total human population
at time ϑ be denoted by N(ϑ). The proposed model divides the human population at time ϑ into
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eleven compartments which are described in Table 1. We generalize the SEIR model of the spread of
COVID-19 with a specific focus on the transmissibility of people who are Individuals who follow
precautionary health measures Sa and Individuals who do not follow precautionary health measures
Su. We separate hospitalized cases into severe Hs and mild cases Hm and incorporate awareness
programs. Moreover, individuals with severe Iss, mild symptoms Ims and asymptomatically infected
Ia are also considered. Furthermore, the immunization of a sample of aware susceptible individuals in
the proposed model to forecast the effect of vaccination V is also considered.

Figure 1: Flowchart of model (1)

Table 1: Compartments symbols and description

Symbol Description

Sa Individuals follow precautionary health measures
Su Individuals do not follow precautionary health measures
E Exposed class
Iss Severe symptoms infectious individuals
Ims Mild severe symptoms infectious individuals
Ia Infectious but asymptomatic individuals
Hm Hospitalized class
Hs Hospitalized individuals with sharp symptoms
Icu Intensive cure unit class
R Recovery with immunity class
D Dead class
θ The rate of conversion from exposed to infectious
β The human-to-human transmission coefficient of each unit
p1 The rate from exposed class to symptomatic infectious includes Iss

p2 The rate of exposed class to infectious class Ims

1 − p1 − p2 Rate of exposed persons to asymptomatic class Ia

h The rate at which a person leaves the class Iss

τ Hospitalization rates from Iss to Hm

ρ Hospitalization rates from Iss to Hs

ηk, k = a, i, Hm, Hs Recovery rates
δi, δHs COVID-19 induced death rates
ψI1 Rate at which Iss to Ims

ϕI1 Rate at which Ims to Iss

(Continued)
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Table 1 (continued)

Symbol Description

ψI2 The rate of hospitalized class from temperate to sharp isolation
ϕI2 The rate of hospitalized class from sharp to temperate isolation
� Requitement rate

Thus, we have

N(ϑ) = Sa(ϑ) + Su(ϑ) + E(ϑ) + Iss(ϑ) + Ims(ϑ) + Ia(ϑ) + Hm(ϑ) + Hs(ϑ) + Icu(ϑ) + R(ϑ) + D(ϑ).

From Fig. 1, we formulate our proposed model as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
a (ϑ) = � − β

Sa(ϑ)

N
(Iss (ϑ) + Ims (ϑ) + Ia (ϑ)) + vSu (ϑ) ,

S′
u (ϑ) = −β

Su(ϑ)

N
(Iss (ϑ) + Ims (ϑ) + Ia (ϑ)) − vSu (ϑ) ,

E′
(ϑ) = β

Sa(ϑ) + Su(ϑ)

N
(Iss (ϑ) + Ims (ϑ) + Ia (ϑ)) − θE (ϑ) ,

I′
ss(ϑ) = θp1E(ϑ) + ϕ1Ims(ϑ) − (ψ1 + h)Iss(ϑ),

I′
ms(ϑ) = θp2E(ϑ) + ψ1Iss(ϑ) − (ηi + ϕ1)Ims(ϑ),

I′
a(ϑ) = θ(1 − p1 − p2)E(ϑ) − ηaIa(ϑ),

H′
m(ϑ) = hτ Iss(ϑ) + ψ2Hs(ϑ) − (ϕ2 + ηHm)Hm(ϑ),

H′
s(ϑ) = hρIss(ϑ) + ϕ2Hm(ϑ) − (ψ2 + ηHs + δHs)Hs(ϑ),

I′
cu(ϑ) = h(1 − τ − ρ)Iss(ϑ) − Icu(ϑ),

R′(ϑ) = ηiIms(ϑ) + ηaIa(ϑ) + ηHsHs(ϑ) + ηHmHm(ϑ) + (1 − δi)Icu(ϑ),
D′

(ϑ) = δHsHs(ϑ) + δiIcu(ϑ),

(1)

with initial conditions as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Sa(0) = Sa,0, Su(0) = Su, 0,
E(0) = E0, Iss(0) = Iss,0,
Ims(0) = Ims,0, Ia(0) = Ia,0,
Hm(0) = Hm,0, Hs(0) = Hs,0,
Icu(0) = Icu,0, D(0) = D0, R(0) = R0.

3 Fractional Order Model

In this part, we recall some definitions from fractional calculus which are needed throughout the
paper.

Definition 3.1. [50] The Caputo fractional derivative of f of order μ is described as

f (μ)(ϑ) = 1
�(n − μ)

∫ ϑ

0

f (n)(s)
(ϑ − s)μ−n+1

ds, (2)

where n − 1 < μ ≤ n and �(x) = ∫ ∞
0

e−ϑϑx−1dϑ , which is called the Euler’s Gamma function.
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The fractional integral [51] having of order μ > 0 is defined by

Iμ (f (ϑ)) = 1
�(μ)

∫ ϑ

0

f (s)
(ϑ − s)1−μ

ds,

where ϑ > 0, satisfies:{
(Iμf (ϑ))(μ) = f (ϑ),
Iμ(f (ϑ)(μ)) = f (ϑ) − f (0).

(3)

Now, let us present the fractional order model of the COVID-19 by means of the Caputo derivative
as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(μ)

a (ϑ) = � − β
Sa(ϑ)

N
(Iss (ϑ) + Ims (ϑ) + Ia (ϑ)) + vSu (ϑ) ,

S(μ)

u (ϑ) = −β
Su(ϑ)

N
(Iss (ϑ) + Ims (ϑ) + Ia (ϑ)) − vSu (ϑ) ,

E(μ)
(ϑ) = β

Sa(ϑ) + Su(ϑ)

N
(Iss (ϑ) + Ims (ϑ) + Ia (ϑ)) − θE (ϑ) ,

I(μ)

ss (ϑ) = θp1E(ϑ) + ϕ1Ims(ϑ) − (ψ1 + h)Iss(ϑ),
I(μ)

ms (ϑ) = θp2E(ϑ) + ψ1Iss(ϑ) − (ηi + ϕ1)Ims(ϑ),
I(μ)

a (ϑ) = θ(1 − p1 − p2)E(ϑ) − ηaIa(ϑ),
H(μ)

m (ϑ) = hτ Iss(ϑ) + ψ2Hs(ϑ) − (ϕ2 + ηHm)Hm(ϑ),
H(μ)

s (ϑ) = hρIss(ϑ) + ϕ2Hm(ϑ) − (ψ2 + ηHs + δHs)Hs(ϑ),
I(μ)

cu (ϑ) = h(1 − τ − ρ)Iss(ϑ) − Icu(ϑ),
R(μ)(ϑ) = ηiIms(ϑ) + ηaIa(ϑ) + ηHsHs(ϑ) + ηHmHm(ϑ) + (1 − δi)Icu(ϑ),
D(μ)

(ϑ) = δHsHs(ϑ) + δiIcu(ϑ).

(4)

4 Existence Theory

In this part, we study the existence of a solution for the fractional order model Eq. (4). The
existence theory is an important consequence of applied analysis and has many applications. It
provides us with whether the model we study exists or not and if it exists whether it has a solution or
not. If a problem has a solution, whether it will be unique or multiple. It also helps us in investigating
the qualitative behavior of the solution to the problem.

Consider the following subsystem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(μ)

u (ϑ) = −β
Su(ϑ)

N
(Iss (ϑ) + Ims (ϑ) + Ia (ϑ)) − vSu (ϑ) ,

E(μ) (ϑ) = β
Sa(ϑ) + Su(ϑ)

N
(Iss (ϑ) + Ims (ϑ) + Ia (ϑ)) − θE (ϑ) ,

I(μ)

ss (ϑ) = θp1E(ϑ) + ϕ1Ims(ϑ) − (ψ1 + h)Iss(ϑ),
I(μ)

ms (ϑ) = θp2E(ϑ) + ψ1Iss(ϑ) − (ηi + ϕ1)Ims(ϑ),
I(μ)

a (ϑ) = θ(1 − p1 − p2)E(ϑ) − ηaIa(ϑ),
H(μ)

m (ϑ) = hτ Iss(ϑ) + ψ2Hs(ϑ) − (ϕ2 + ηHm)Hm(ϑ),
H(μ)

s (ϑ) = hρIss(ϑ) + ϕ2Hm(ϑ) − (ψ2 + ηHs + δHs)Hs(ϑ),
I(μ)

cu (ϑ) = h(1 − τ − ρ)Iss(ϑ) − Icu(ϑ).

(5)
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Since⎧⎪⎪⎨
⎪⎪⎩

S(μ)

a (ϑ) = � − β
Sa(ϑ)

N
(Iss (ϑ) + Ims (ϑ) + Ia (ϑ)) + vSu (ϑ) ,

R(μ)(ϑ) = ηiIms(ϑ) + ηaIa(ϑ) + ηHsHs(ϑ) + ηHmHm(ϑ) + (1 − δi)Icu(ϑ),
D(μ)

(ϑ) = δHsHs(ϑ) + δiIcu(ϑ).

(6)

Therefore, to study the existence and uniqueness of solutions of the system Eq. (4), we focus to
study Eq. (5).

Assume that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1 (ϑ , Su) = −β
Su

N
(Iss (ϑ) + Ims (ϑ) + Ia (ϑ)) − vSu,

K2 (ϑ , E) = β
Sa(ϑ) + Su(ϑ)

N
(Iss (ϑ) + Ims (ϑ) + Ia (ϑ)) − θE,

K3(ϑ , Iss) = θp1E(ϑ) + ϕ1Ims(ϑ) − (ψ1 + h)Iss,
K4(ϑ , Ims) = θp2E(ϑ) + ψ1Iss(ϑ) − (ηi + ϕ1)Ims,
K5(ϑ , Ia) = θ(1 − p1 − p2)E(ϑ) − ηaIa,
K6(ϑ , Hm) = hτ Iss(ϑ) + ψ2Hs(ϑ) − (ϕ2 + ηHm)Hm,
K7(ϑ , Hs) = hρIss(ϑ) + ϕ2Hm(ϑ) − (ψ2 + ηHs + δHs)Hs

K8(ϑ , Icu) = h(1 − τ − ρ)Iss − Icu.

(7)

Applying the fractional integral to Eq. (5), it follows from initial conditions that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Su (ϑ) = Su,0 + 1
�(μ)

∫ ϑ

0
(ϑ − s)μ−1K1 (s, Su (s)) ds,

E (ϑ) = E0 + 1
�(μ)

∫ ϑ

0
(ϑ − s)μ−1K2 (s, E (s)) ds,

Iss (ϑ) = Iss,0 + 1
�(μ)

∫ ϑ

0
(ϑ − s)μ−1K3 (s, Iss (s)) ds,

Ims (ϑ) = Ims,0 + 1
�(μ)

∫ ϑ

0
(ϑ − s)μ−1K4 (s, Ims (s)) ds,

Ia (ϑ) = Ia,0 + 1
�(μ)

∫ ϑ

0
(ϑ − s)μ−1K5 (s, Ia (s)) ds,

Hm (ϑ) = Hm,0 + 1
�(μ)

∫ ϑ

0
(ϑ − s)μ−1K6 (s, Hm (s)) ds,

Hs (ϑ) = Hs,0 + 1
�(μ

∫ ϑ

0
(ϑ − s)μ−1K7 (s, Hs (s)) ds,

Icu (ϑ) = Icu,0 + 1
�(μ)

∫ ϑ

0
(ϑ − s)μ−1K8 (s, Icu (s)) ds.

(8)

Assume that ‖E(ϑ)‖ ≤ c1, ‖Iss(ϑ‖ ≤ c2, ‖Ims(ϑ)‖ ≤ c3, where ci, i = 1, . . . , 3, are some positive

constants. Denote L1 = β

N
(c1 + c2 + c3) + v, L2 = θ , L3 = ψ1 + h, L4 = ϕ1 + ηi, L5 = ηa, L6 =

ϕ1 + ηHm , L7 = ψ2 + ηHs + δHs .

Theorem 4.1. The kernels Ki (i = 1, . . . , 8), satisfy the Lipschitz and contractive conditions if

0 ≤ Li < 1 (9)

hold.
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Proof. Let S∗ and S∗∗ be two functions, then

‖K1

(
ϑ , S∗) − K1

(
ϑ , S∗∗) ‖ =

∥∥∥∥
(

− β

N
(Iss (ϑ) + Ims (ϑ) + Ia (ϑ)) − v

)
(S∗∗ − S∗

)

∥∥∥∥
≤

[
β

N
(‖Iss‖ + ‖Ims‖ + ‖Ia‖) + v

]
‖S∗

(ϑ) − S∗∗
(ϑ)‖

≤ L1‖S∗
(ϑ) − S∗∗

(ϑ)‖.

Similarly

‖K2(ϑ , E∗
) − K2(ϑ , E∗∗

)‖ ≤ L2‖E∗
(ϑ) − E∗∗

(ϑ)‖,

‖K3(ϑ , I∗
ss) − K3(ϑ , I∗∗

ss )‖ ≤ L3‖I∗
ss(ϑ) − I∗∗

ss (ϑ)‖,

‖K4(ϑ , I∗
ms) − K4(ϑ , I∗∗

ms)‖ ≤ L4‖I∗
ms(ϑ) − I∗∗

ms(ϑ)‖,

‖K5(ϑ , I∗
a) − K5(ϑ , I∗∗

a )‖ ≤ L5‖I∗
a(ϑ) − I∗∗

a (ϑ)‖,

‖K6(ϑ , H∗
m) − K6(ϑ , H∗∗

m )‖ ≤ L6‖H∗
m(ϑ) − H∗∗

m (ϑ)‖,

‖K7(ϑ , H∗
s ) − K7(ϑ , H∗∗

s )‖ ≤ L7‖H∗
s (ϑ) − H∗∗

s (ϑ)‖,

‖K8(ϑ , I∗
cu) − K8(ϑ , I∗∗

cu)‖ ≤ L8‖I∗
cu(ϑ) − I∗∗

cu(ϑ)‖.

Thus, Ki satisfy Lipschitz condition, for i = 1, . . . ., 8. From Eq. (9), Ki (i = 1, . . . , 8) are
contraction.

Theorem 4.2. The model Eq. (4) has a unique solution provided

1
μ�(μ)

rμLi < 1, for i = 1, 2, . . . , 8,

when r ∈ [0, ϑ ].

Proof. The proof for the above result is the same as the proof of Theorem 1 in [52].

5 Reproductive Number and Stability Analysis
5.1 Reproductive Number

We follow the references [53,54] to calculate R0. In order to calculate R0, we consider the
subsystem Eq. (5).

The DFE point is given by E0 = (N, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). From the system (4), we can write

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

β
Sa + Su

N
(Iss + Ims + Ia)

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and V associated with the net rate outside of the corresponding compartments

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β
Su

N
(Iss + Ims + Ia) − vSu

−θE
θp1E + ϕ1Ims − (ψ1 + h)Iss

θp2E + ψ1Iss − (ηi + ϕ1)Ims

θ(1 − p1 − p2)E − ηaIa

hτ Iss + ψ2Hs − (ϕ2 + ηHm)Hm

hρIss + ϕ2Hm − (ψ2 + ηHs + δHs)Hs

h(1 − τ − ρ)Iss − Icu

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It follows that the Jacobian matrices of F and V at E0 respectively are

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 β β β 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and V =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−v 0 0 0 0 0 0 0
0 −θ 0 0 0 0 0 0
0 θp1 −(h + ψ1) ϕ1 0 0 0 0
0 θp2 ψ1 −(ηi + ϕ1) 0 0 0 0
0 θ(1 − p1 − p2) 0 0 −ηa 0 0 0
0 0 hτ 0 0 −(ϕ2 + ηHm) ψ2 0
0 0 hρ 0 0 ϕ2 −(ψ2 + ηHm + δHs) 0
0 0 h(1 − τ − ρ) 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, the R0 is obtained as the spectral radius of −FV −1 as

R0 = max
λ∈Sp(−F ·V −1)

|λ|

= Sp(−F · V −1)

= β(1 − p1 − p2)

ηa

− β(p2(h + ψ1) + p1ψ1 + p1(ηi + ϕ1) + p2ϕ1)

hηi + hϕ1 + ψ1ηi

.

5.2 Stability Analysis
The reported result below is given in Theorem 2 of [54].

Theorem 5.1. The DFE E0 of model Eq. (4), is locally asymptotically stable if R0 < 1 and unstable
if R0 > 1.
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6 Fractional Order Model with Vaccination

In this part, we discuss the fractional order model with vaccination which is overseeing and
controlling contagious diseases by giving security to powerless and susceptible individuals. We suppose
that a specified proportion p of people in the mindful susceptible class are vaccinated. For this
situation, inoculated people are moved to another compartment V(ϑ). Due to the vaccine does not
supply impunity to all vaccine recipients, vaccinated people might become infected yet a lower rate than
unvaccinated. In this situation, let σv ∈ [0, 1] such that (1 − σv) be the vaccine efficacy. The flowchart
of the fractional order model is as given in Fig. 2.

Figure 2: Flowchart of the fractional model (10)

We can interpret this diagram into fractional differential equations as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(μ)
a (ϑ) = � − pSa (ϑ) − β

Sa(ϑ)

N
(Iss (ϑ) + Ims (ϑ) + Ia (ϑ)) + vSu (ϑ) ,

S(μ)
u (ϑ) = −β

Su(ϑ)

N
(Iss (ϑ) + Ims (ϑ) + Ia (ϑ)) − vSu (ϑ) ,

E(μ) (ϑ) = β
Sa(ϑ) + Su(ϑ)

N
(Iss (ϑ) + Ims (ϑ) + Ia (ϑ)) + σVβV(ϑ)

N
(Iss (ϑ) + Ims (ϑ) + Ia (ϑ)) − θE (ϑ) ,

I(μ)
ss (ϑ) = θp1E(ϑ) + ϕ1Ims(ϑ) − (ψ1 + h)Iss(ϑ),

I(μ)
ms (ϑ) = θp2E(ϑ) + ψ1Iss(ϑ) − (ηi + ϕ1)Ims(ϑ),

I(μ)
a (ϑ) = θ(1 − p1 − p2)E(ϑ) − ηaIa(ϑ),

H(μ)
m (ϑ) = hτ Iss(ϑ) + ψ2Hs(ϑ) − (ϕ2 + ηHm)Hm(ϑ),

H(μ)
s (ϑ) = hρIss(ϑ) + ϕ2Hm(ϑ) − (ψ2 + ηHs + δHs)Hs(ϑ),

I(μ)
cu (ϑ) = h(1 − τ − ρ)Iss(ϑ) − Icu(ϑ),

R(μ)(ϑ) = ηiIms(ϑ) + ηaIa(ϑ) + ηHs Hs(ϑ) + ηHm Hm(ϑ) + (1 − δi)Icu(ϑ),

D(μ)(ϑ) = δHs Hs(ϑ) + δiIcu(ϑ),

V(μ) (ϑ) = pSa (ϑ) − σVβV(ϑ)

N
(Iss (ϑ) + Ims (ϑ) + Ia (ϑ)) ,

(10)

with Sa(0) = (1 − p)Sa,0, Su(0) = (1 − p)Su,0, E(0) = E0, Iss(0) = Iss,0, Ims(0) = Ims,0, Ia(0) = Ia,0,
Hm(0) = Hm,0, Hs(0) = Hs,0, Icu(0) = Icu,0, D(0) = D0, R(0) = R0, V(0) = pN. Then, the fractional order
model (10) has one equilibrium point

Ev = ((1 − p)N, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, pN).

The components of infection in this model are, Su, E, Iss, Ims, Ia, Hm, Hs, and Icu.
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Theorem 6.1. The reproduction number Rv for the vaccinated fractional order model (10) is given
by

Rv = (1 − (1 − σv)p)R0.

Proof. Let F and V be given by

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

β
Sa + Su

N
(Iss + Ims + Ia) + βσv

V
N

(Iss + Ims + Ia)

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β
Su

N
(Iss + Ims + Ia) − vSu

−θE
θp1E + ϕI1Ims − (ψI1 + h)Iss

θp2E + ψI1Iss − (ηi + ϕI1)Ims

θ(1 − p1 − p2)E − ηaIa

hτ Iss + ψI2Hs − (ϕI2 + ηHm)Hm

hρIss + ϕI2Hm − (ψI2 + ηHs + δHs)Hs

h(1 − τ − ρ)Iss − Icu

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By the differential of F and V with respect to E, Iss, Ims, Ia, Hm, and Icu and evaluating at the Ev,
respectively, we get

F : = JF (Ev)

= (1 − (1 − σv) p)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 β β β 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and V := JV (Ev) =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−v 0 0 0 0 0 0 0
0 −θ 0 0 0 0 0 0
0 θp1 −(h + ψI1) ϕI1 0 0 0 0
0 θp2 ψI1 −(ηi + ϕI1) 0 0 0 0
0 θ(1 − p1 − p2) 0 0 −ηa 0 0 0
0 0 hτ 0 0 −(ϕI2 + ηHm) ψI2 0
0 0 hρ 0 0 ϕI2 −(ψI2 + ηHm + δHs) 0
0 0 h(1 − τ − ρ) 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, the Rv for the vaccinated fractional order model is:

Rv = β (1 − (1 − σv) p)

(
(1 − p1 − p2)

ηa

− (p2(h + ψI1) + p1ψI1 + p1(ηi + ϕI1) + p2ϕI1)

hηi + hϕI1 + ψI1ηi

)

= (1 − (1 − σv)p)R0.

Theorem 6.2. The DFE Ev of model Eq. (10) will be asymptotically stable if Rv < 1, and unstable
if Rv > 1.

Proof. The proof is given in the Theorem 2 of [54].

The critical percentage of the population pc needed to fulfill herd immunity is

pc =
(

1
1 − σv

)(
1 − 1

R0

)
.

pc represents the rate for which R0 under the vaccination Rv is equal to 1.

7 Numerical Simulations

In the numerical analysis of traditional differential equations, various numerical methods have
been established. Among various numerical procedures, Adams’s methods represent one of the most
used and studied classes of implicit (Adams-Moulton) and explicit (Adams-Bashforth) linear multistep
methods. The aforementioned methods have gotten much popularity among researchers due to their
good stability properties, reasonable computational cost, and simplicity of implementation. Therefore,
several authors have extended the aforementioned methods. In particular, the mentioned procedures
have also been extended to deal with fractional order differential equations numerically. A predictor-
corrector algorithm has been extended to fractional differential equations with the corresponding
Adams-Moulton-Bashforth procedure for traditional differential equations. The numerical method
used to solve the model is the predictor-corrector method for fractional differential equations in [55].
Consider, the problem with fractional order{

y(μ)(ϑ) = f (ϑ , y(ϑ)), 0 < μ ≤ 1,
y(ϑ0) = y0,

(11)

where f :[ϑ0, T ] × D → R, D ⊂ R. The proposed scheme for (11) can be written as⎧⎪⎪⎨
⎪⎪⎩

yp
n = y0 + hμ

n−1∑
j=0

�n−j−1fj

yn = y0 + hμκn,0f0 + hμ
n−1∑
j=0

�n−jfj + hμ�0f
(
ϑn, yp

n

)
,

(12)
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where �n = (n + 1)
μ − nμ

�(μ + 1)
, κn,0 = (n − 1)

μ−1 − nμ(n − μ − 1)

�(μ + 2)
and

�n =

⎧⎪⎪⎨
⎪⎪⎩

1
�(μ + 2)

, n = 0,

(n − 1)μ+1 − 2nμ+1 + (n + 1)μ+1

�(μ + 2)
, n = 1, 2, . . .

We extend the afore given scheme in Eq. (12) for our considered model Eq. (4) to simulate the
results. The numerical simulations for fractional dynamic of the considered model Eqs. (4) and (10)
are performed as the case study of Morocco. The parameters values are given in the Table 2 for the
numerical interpretation. Also we compute the value of the reproduction number as R0 = 1.0575 and
Rv = 1.0574.

Table 2: Values of the model parameters

Name Value Name Value Name Value Name Value

Sa,0 699205 [56] R0 0 [56] Ia,0 3 [56] Iss,0 100 [56]
Su,0 3000000 [56] D0 0 [56] Ims,0 100 [56] Hs,0 0 (Estimated)
E0 185 [56] Icu,0 37 [56] Hm,0 5 (Estimated) β 0.45 [57]
θ 1/5.1 [6] ηa 0.4 [58] ηi 0.4 [58] τ 0.1259 [59]
ρ 0.13266 [59] δi 0.6 [56] ηHm 0.11624 [59] ηHs 0.155 [59]
δHs 1 − ηHm − ηHs ψI1 0.169055 [59] φI1 0.0341 [59] ψI2 0.169055

(Estimated)
φI2 0.0041

(Estimated)
v 0.0173768 [59] � 0.008 N

(Estimated)
h 0.5 [56]

p1 0.3 [56] p2 0.4 [56] (1 − σv) 0.9 [56] p 4/1000
(Estimated)

In Fig. 3, the confirmed infected and death cases are described daily from July 01, 2020, to January
01, 2021, which is a total of 185 days. We implement numerical simulations to compare the results of
our model with the real data in Fig. 3. The forecasted evolution of the outbreak of COVID-19 without
and with vaccination in Morocco can be seen in Figs. 4 and 5, respectively.

From the analysis of the acquired graphs, we observe that the population of the infected class
decreases significantly by decreasing the fractional order of the derivative and the endemic state of
the disease goes to the disease-free state in all the cases deliberated. Besides, we demonstrate that our
fractional order model well describes the actual data of daily confirmed, recovered, and death cases.
In Fig. 5, we note that the plot is much flatter than that in Fig. 4. As well, the curve for asymptomatic
individuals is almost identical to the x-axis, and this indicates the importance of the vaccination
approach to overcome the pandemic.

In Fig. 6, we give the graphical results of the suggested model (4) to analyze the effect of the
fractional order.

In Fig. 7, we give the graphical results of the suggested vaccination model (10) to analyze the
influence of the fractional order.
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Figure 3: Evolution of COVID-19 in Morocco per day

Figure 4: The evolution of the epidemic predicted by the fractional model (4) with μ = 1

Figure 5: The evolution of the epidemic predicted by the fractional model vaccinated with μ = 1
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Figure 6: The evolution of the epidemic predicted by the model (4)
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Figure 7: Epidemic evolution predicted by the fractional vaccination model (10)

We represent the spread of infection without vaccination in Fig. 8 and with vaccination in Fig. 9,
for a period of 1000 days.
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Figure 8: Epidemic evolution predicted by the fractional model
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Figure 9: Epidemic evolution predicted by the fractional vaccination model

8 Conclusion

In this manuscript, we have given an analysis of the fractional order model of COVID-19, with
theoretical calculations. We have established sufficient conditions for the existence theory using some
tools of nonlinear analysis. The existence theory is an important area of research in recent times.
Also, we have computed the basic reproductive number R0. From the number mentioned above,
we have predicted the proposed model’s stability. Further, we have extended the predictor-corrector
method to numerically interpret the proposed model. We have given several graphical presentations
using the numerical procedure. We have used some real data. It should be kept in mind that the
model under consideration has described the evolution of COVID-19 in Morocco. We have given
a graphical presentation of approximation solutions of various compartments in Figs. 3 and 4) and
a simulation of this model under vaccination in Fig. 5). On another side, we have compared the
numerical simulations with various values of the fractional-order μ. Moreover, our model gives a
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prediction about the evolution of COVID-19 in the next 1000 days. It seems from Figs. 6, and 7 that
we must commit to preventive measures with the necessity of vaccination and adaptation to control
and reduce the infection from further spreading in communities. In the future, the aforementioned
analysis can be established for a more complex dynamical system of COVID-19 and the effect of
vaccination on its reduction in the community. In our future work, we intend to study the model using
the newly generalized partial derivative (see [60]), which overcomes some of the problems associated
with conformational derivatives and some other fractional order derivatives.
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