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ABSTRACT

This paper presents an extended sequential element rejection and admission (SERA) topology optimization method
with a region partitioning strategy. Based on the partitioning of a design domain into solid regions and weak
regions, the proposed optimization method sequentially implements finite element analysis (FEA) in these regions.
After standard FEA in the solid regions, the boundary displacement of the weak regions is constrained using the
numerical solution of the solid regions as Dirichlet boundary conditions. This treatment can alleviate the negative
effect of the material interpolation model of the topology optimization method in the weak regions, such as the
condition number of the structural global stiffness matrix. For optimization, in which the forward problem requires
nonlinear structural analysis, a linear solver can be applied in weak regions to avoid numerical singularities caused
by the over-deformed mesh. To enhance the robustness of the proposed method, the nonmanifold point and island
are identified and handled separately. The performance of the proposed method is verified by three 2D minimum
compliance examples.
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1 Introduction

Topology optimization aims to obtain the optimal material distribution with prescribed con-
straints in a fixed domain. Since the pioneering work of Bendsoe et al. [1], many methods have been
proposed to achieve topology optimization, such as density-based methods [2], boundary evolution-
based methods [3,4], differential equation-driven methods [5–7] and geometric component methods
[8–10]. Density-based methods can be further divided into continuous variable methods [11] and
discrete variable methods [12,13]. We refer the readers to references [14,15] for the fast progress and
successful application of topology optimization.

In an early discrete variable method, the evolutionary structural optimization (ESO) method as
proposed by Xie et al. [12], ineffective or inefficient materials were eliminated directly to achieve
optimization. This method has high computational efficiency but cannot add material. To remedy
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this deficiency, various versions of bidirectional evolutionary structural optimization (BESO) methods
were proposed to allow material removal and addition. The earliest version of BESO [16,17] allowed
new elements to grow around elements with high stresses. Yang et al. [18,19] proposed evaluating
the strain energy of the elements to be added by linear extrapolation of the displacement field.
Huang et al. [20,21] proposed using mesh-independent filters to evaluate the sensitivities of standby
additive elements. In the above methods, all the elements in the holes are directly removed, so these
methods are called hard-kill type methods.

In hard-kill type methods, the ability to change topology is usually related to the material introduc-
tion strategies [22]. As an alternative to this, soft-kill type methods were proposed in which the holes
are mimicked by weak material. In this type of method, the sensitivities of the elements in holes can be
calculated directly without extrapolating from the information of the solid elements. The existing soft-
kill type methods include the sequential element admissions and rejections method (SERA) proposed
by Rozvany et al. [23–25], the penalty-based BESO method proposed by Huang et al. [26] and the
topology optimization method with sequential integer programming proposed by Liang et al. [13,27],
etc. The weak material introduced by soft-kill type methods is similar to the density lower limit of the
SIMP material model. They both retain elements in holes for calculating sensitivities, thus providing
a standard for adding material.

Introducing a weak material has been proven to be very successful in solving static small
deformation problems and has become a standard model in topology optimization. To ensure smooth
access to the optimal solution, the physical property of the weak material must be controlled within a
reasonable range. If the value is too large, the stiffness provided by it cannot be ignored, which may lead
to an overly rigid performance evaluation. If too small, the condition number of the structural stiffness
matrix becomes worse, and large numerical errors may occur in the results. Therefore, the condition
number is usually selected as 10−3. In addition, in some specific optimization problems, a weak material
may cause numerical instability or even incorrect results. For example, when a structure has a large
deformation, excessive mesh deformation may occur in weak regions, which leads to nonconvergence
of the Newton–Raphson iteration [28,29]. In the topology optimization of a buckling structure, pseudo
bucking modes may appear in the weak regions [30], which adversely affects the effectiveness of the
results.

The hard-kill type methods and some other methods that remove the elements in the holes can
avoid the problems caused by weak materials [21,31–33]. However, as mentioned above, these methods
generally decide the introduction of material through the extrapolation of information (displacement,
strain energy or sensitivity, etc.) from solid elements. Eliminating the negative effects caused by weak
material in soft-kill type methods is the focus of this paper.

From the perspective of model consistency, the physical model and finite element (FE) model
are consistent in the hard-kill type methods, but the FE model of the soft-kill type methods is
an approximate model from the physical model. If the inconsistencies between the two models are
eliminated, it is possible to solve the above problems in the framework of soft-kill type methods.

In SERA, the concepts of real material and virtual material are introduced to distinguish the
elements (it should be noted that the real material and virtual material here correspond to the solid
and weak material mentioned above. To avoid confusion, only the concepts of solid and weak materials
are retained in the next content. The sensitivities of solid elements and weak material elements (weak
elements) are ranked, and two thresholds are selected to determine the elements to be removed or to
be added. This method indirectly divides the design domain into solid regions and weak regions but
does not further identify them. The design domain is still regarded as a whole for FEA in this method.
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Tong et al. [34] proposed a moving ISO-surface threshold method (MIST), in which the topological
boundaries are determined by a response function threshold based on physical properties, so the
design domain can also be divided into two parts. Wang et al. [35] proposed an energy interpolation
framework to address geometric nonlinear optimization problems. In this framework, the elastic
energy densities of solid regions and weak regions are obtained by interpolating the elastic energy
density of nonlinear theory and linear theory, respectively, thus avoiding the numerical instability of
weak regions under finite deformation. Bruns [36] proposed an algorithm to allow void material to be
replaced by zero density elements. The algorithm can reject weak materials, but the SD/SVD approach
they used is computationally expensive. Nguyen et al. [37] preconditioned the stiffness matrix to avoid
ill-conditioned problems caused by the 0 density lower bound. Li et al. [38] proposed a meshless moving
morphable component (ML-MMC) method, in which the structural analysis was carried out only on
the solid regions, avoiding the intervention of weak materials.

Based on the characteristics of the above methods, a topology optimization method with a region
partitioning strategy is proposed in this paper. The method is implemented based on SERA. The FEA
is carried out regionally. To avoid the influence of weak material on the result of solid regions, FEA
of solid regions is carried out first, where the weak elements are eliminated temporarily in this step.
When the FEA of the solid regions is completed, FEA of the weak regions is performed with the
displacement solution of solid regions as the Dirichlet boundary conditions (Fig. 1). When optimizing
structures under finite deformation, linear theory and nonlinear theory can be applied to the two types
of regions separately to avoid numerical instability.

In the implementation, two special structural features, nonmanifold points and islands, may arise
in solid regions after region segmentation. These two structural features might cause instability in the
numerical solution of the displacement via FEA. We introduce concepts and algorithms in graphics to
recognize and solve them: the nonmanifold points are identified by an undirected graph and treated
by the minimum volume filling (MVF) algorithm and minimum sensitivity filling (MSF) algorithm
[39]; the islands are identified by the fire-burning method (FBM) [40,41] and treated together with
weak regions in the FEA. The solution to the above cases can improve the robustness of the proposed
algorithm.

Figure 1: Schematic diagram of the original SERA model and the proposed model: (a) the original
SERA model: the design domain is solved as a whole; (b) the proposed model: the design domain is
solved for both the solid regions and weak regions simultaneously
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The rest of the paper is arranged as follows: the topology optimization algorithm with a region
partition strategy is detailed in Section 2. In Section 3, the nonmanifold point and island are intro-
duced and solved. In Section 4, several geometric linear and geometric nonlinear numerical examples
are executed to verify the feasibility of the proposed algorithm. Section 5 provides the conclusions.

2 Methodology

In SERA, solid regions and weak regions can be distinguished by densities of elements. To avoid
the negative effects of weak regions on solid regions, the FEAs for the two types of regions are carried
out in sequence. The optimization formula is as follows:

Min
ρe∈{ρmin,1}

c (ρ)

s.t. qs(ρs, us) = 0

qv(ρv, uv) = 0

V(ρ) ≤ V ∗

(1)

where the superscript s represents solid regions and the superscript v represents the weak regions; ρ

is the design variable vector and ρe is its elementwise component; c is the objective function to be
optimized; qs(ρs, us)= 0 is the equilibrium equation of solid regions, where ρs and us are the design
variable vector and state variable vector of solid regions, respectively; qv(ρv, uv)= 0 is the equilibrium
equation of weak regions, where ρv and uv are the design variable vector and state variable vector of
weak regions, respectively; V is the volume of material used and V ∗ is the upper limit of allowable
volume.

The only difference between the Eq. (1) and classic optimization formula is that the former has
two equilibrium equations and must be solved sequentially.

2.1 Finite Element Analysis
In the proposed method, the FEA of solid regions is prioritized. Weak elements are temporarily

removed in this step. When FEA of the solid regions is completed, FEA of the weak regions is
performed with the displacement solution of solid regions as the Dirichlet boundary conditions. The
FEA procedure is shown in Fig. 2.

Figure 2: The FEA in the proposed method: (a) solving the displacement field of solid regions; (b)
solving the displacement field of weak regions; (c) union of the displacement fields of the two types of
regions
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Since the element densities can only be one or ρmin, the elements and corresponding node degrees of
freedom (DOFs) in the solid regions and weak regions can be obtained according to the ordering rules
of DOFs. Then, we can establish FE formulae of solid regions and weak regions. When considering
the static small deformation problem, the FE formula of solid regions is as follows:

Ksus = fs (2)

where Ks is the global stiffness matrix of the solid regions and fs is the load vector of the solid
regions. The boundary conditions between the solid regions and the weak regions are zero Newman
boundaries. Compared with the original FE model, this model removes weak elements.

In regard to the finite deformation problem, the nonlinear FE formula must be considered:

r(us) = ps − fs(us) = 0 (3)

where r is the residual force; ps is the external load vector of the solid regions; and fs is the load vector
of the internal nodes in the solid regions at equilibrium, and its expression is as follows:

fs =
∑

Ms

CT
e fe (4)

where M s is the set of solid elements; Ce is a matrix that transforms the modal force vector of the
element to the globally nodal force vector; and fe is the nodal force vector of the element.

The most frequently applied scheme for solving nonlinear systems is the Newton–Raphson
algorithm. It is based on a Taylor series development of Eq. (3) at a known state us

k:

r(us
k + �uk, λ) = r(us

k, λ) + Dr(us
k, λ)�uk + δ (5)

where the parameter λ denotes the load level for which the solution has to be determined; Dr�uk

characterizes the directional derivative of r at us
k; and the vector δ is the residuum of the Tayler series.

More details about the Newton–Raphson scheme can be found in the literature [42].

After the displacement vector us is obtained by solving Eqs. (2) or (5), we need to solve the
displacement vector uv. To ensure the stability of the analysis, it can be solved simply by the linear
FE formula.

In the FE model of weak regions, Dirichlet boundary conditions are imposed on the interface to
maintain the continuity of the displacement field. The implementation process is as follows: first, the
components of the displacement vector us need to be rearranged. The DOFs of noninterface nodes are
placed in the front as uss, and the DOFs of interface nodes are placed in the back as uc. The rearranged
displacement vector ũs is as follows:

ũs = [uss, uc]T (6)

The global stiffness matrix, displacement vector and load vector of the weak regions are also
divided into two parts according to the noninterface nodes and the interface nodes. The updated FE
formula is:[

Kvv Kvc

Kcv Kcc

] [
uv

uc

]
=

[
fv

fc

]
(7)

where Kvv is the stiffness matrix assembled by DOFs of noninterface nodes in weak regions and Kcc
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is the stiffness matrix assembled by DOFs of interface nodes. Kvc and Kcv are the coupling stiffness
matrices, and they are symmetric.

Since uc has been obtained by Eq. (6), it can be moved to the right, and Eq. (7) can be rearranged:

Kvvuv = fv − Kvcuc (8)

When the load-independent design problem is considered, the weak regions usually have no
external load so that fv is a zero vector. Eq. (8) can be simplified as follows:

Kvvuv = −Kvcuc (9)

The displacement vector uv is obtained by solving Eq. (9).

2.2 Sensitivity Number
In the case of small deformation problems, the sensitivity number αe of an element that determines

the element to be added or removed has been derived by Alonso et al. [43]:

αe = −ue�Keue (10)

where ue is the element displacement vector and �Ke is the variation in the elemental stiffness matrix.
Since the densities of elements can only be one or ρmin, the sensitivity values have the following two
forms:{

αR
i = ui

eK
i
eu

i
e, if the ith element is removed

αA
i = −ui

eK
i
eu

i
e, if the ith element is added

(11)

When addressing small deformation problems, according to Huang et al. [21], the structural
compliance can be replaced by an incremental form. The sensitivity number of the ith element is
defined as{

αR
i = Ei

n, if the ith element is removed
αA

i = −Ei
n, if the ith element is added

(12)

where Ei
n is the strain energy of the ith element in its equilibrium state.

It should be noted that the sensitivity numbers in Eqs. (11) and (12) are both expressed by the
element strain energy (or its negative value). However, this expression has different meanings for linear
and nonlinear structures. For an elastoplastic structure, it denotes the total elastic and plastic strain
energies, while for a linear structure, it is only for the elastic strain energy.

Two sensitivity thresholds αR
th and αV

th are chosen to determine material variation: solid elements
with sensitivities less than αV

th are converted to weak elements; weak elements with sensitivities greater
than αV

th are converted to solid elements (Fig. 3). Assuming that the volume to be removed is �V R and
the volume to be added is �V A, the amount of material changed in an iteration is

�V = �V A − �V R (13)

�V can be limited to a definite value by adjusting the two thresholds. One can refer to reference
[43] for more details about material iteration.
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Figure 3: Material variation determined by two sensitivity thresholds

The above strategies can effectively avoid the adverse effects caused by weak elements and
maintain the integrity of sensitivities. However, in the execution process, structural instability may
occur due to some special structural features. To ensure the robustness of the algorithm, these
structural features must be solved.

3 Nonmanifold Points and Islands

After regional partitioning, there are two structural features that may cause numerical instability:
nonmanifold points and islands. They must be addressed to prevent system ill conditioning. In this
section, we introduce some strategies to identify and address them.

3.1 Nonmanifold Points
Hinged elements often appear in solid regions when material is almost removed (Fig. 4). These

structures are usually unstable. In computational geometry, such one-point connected structures
belong to nonmanifold structures, and the point is named the nonmanifold point. A more common
form of nonmanifold point in topology optimization is the checkerboard pattern. The checkerboard
pattern is not expected due to its overestimated stiffness and difficulty in manufacturing [44]. Poulsen
[45] proposed a simple and implicit scheme based on a structural grid to prevent checkerboard patterns
and one-node hinges. However, we need direct control to ensure that these situations are avoided in
each iteration.

Figure 4: The structural features consisting of nonmanifold points: 1 is the checkerboard pattern; 2 is
a hinged rod; 3 is a hinged element

3.1.1 Definition of Nonmanifold Point

It is necessary to introduce the concept of a 2D manifold to describe nonmanifold points. A surface
is a 2D manifold if it has the following characteristics: (1) Every point on the surface of an object has
a sufficiently small neighborhood isomorphic to the disk on the plane; (2) If the surface is unclosed
(it has boundaries), every point on the boundaries must have a sufficiently small neighborhood
isomorphic to the half disk in the plane. Since it is impossible to describe each point on a surface
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by computer, the conditions identifying that a surface is a 2D manifold are represented by vertices,
edges and faces of the discrete grid: (1) each edge can only be shared by two faces; (2) the edges and
faces adjacent to each vertex can form one ring around it. For example, there are three points in Fig. 5.
The set Svi (i = 1, 2, 3) contains all edges and faces adjacent to vertex vi. If Svi can form more than two
rings topologically isomorphic to a disk, vertex vi is a nonmanifold point. According to this, v1 and
v2 are manifold points; v3 is a nonmanifold point.

Figure 5: Manifold point and nonmanifold point: (a–b) the points v1 and v2 are manifold points; (c)
the point v3 is a nonmanifold point

3.1.2 Identification of Nonmanifold Point

As the design domain is discretized by a structured rectangular mesh, the nonmanifold point is
presented in only one form: adjacent elements of the vertex contain two diagonally distributed solid
elements and two diagonally distributed weak elements. The procedure of identifying nonmanifold
points is as follows and the flow chart is as shown in Fig. 6.

(1) Create the vertex set � = {
Ns

1, Ns
2, . . . , Ns

NS

}
, where Ns

i is the vertex set of the solid element i
and NS is the number of solid elements.

(2) Calculate the vertex set A = {x |x appears twice in �}.
(3) Create the edge set � = {

Ts
1, Ts

2, . . . , Ts
NS

}
, where Ts

i is the directed edge set of the solid element
i (each directed edge consists of a starting vertex and an ending vertex).

(4) Calculate the vertex set B = {x |x appears four times in � }.
(5) Calculate the nonmanifold point set � = A ∩ B.

The strategy to accommodate nonmanifold point is converting the weak elements adjacent to the
nonmanifold point into solid elements, as shown in Fig. 7. In theory, the problem can be solved by
addressing each nonmanifold point in turn, but when the nonmanifold points appear continuously
in the horizontal or vertical direction (checkboard pattern), many nonessential solid elements may
be introduced that severely affect the volume and the objective. To minimize this adverse effect, two
algorithms are introduced to determine how to introduce solid elements.
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Figure 6: Flow chart of nonmanifold point identification

3.1.3 Two Algorithms to Accommodate Nonmanifold Points

Structures consisting of nonmanifold points can be divided into two categories: hinged structures
and checkerboard patterns. Since the adjacent weak elements have no intersection in hinged structures,
converting any of the surrounding weak elements can address the problem (Fig. 7a). For the checker-
board pattern, one of the most common methods is using filtering techniques on element densities or
sensitivities. Poulsen [45] proposed a framework with implicit constraints to reject nonmanifold points.
Han et al. [40] suppressed the checkerboard pattern by identifying and filling a single weak element.

Figure 7: Nonmanifold points are rejected by converting weak elements to solid elements: (a) rejection
of a single nonmanifold point; (b) rejection of multiple adjacent nonmanifold points
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To reduce the disturbance to the volume and the objective, we introduced two algorithms
to address nonmanifold points: the minimum volume filling algorithm (MVF) and the minimum
sensitivity filling algorithm (MSF). The MVF requires filling a minimum number of solid elements
to reject all nonmanifold points, and the MSF requires that the elements that are filled have the least
impact on the objective.

The concept of an undirected graph is introduced to implement the above two algorithms. The
graph G = G (V , E) can represent a topology consisting of solid elements in which V is the vertex set
of G and E is the edge set of G. If the vertices x, y ∈ V are adjacent vertices, x → y ∈ E is a directed
edge of G in which x is the starting vertex and y is the ending vertex. Since the direction of the edge
is not of concern to us, x → y and y → x can be regarded as equivalent, and such graphs are called
undirected graphs (also called symmetric graphs).

The undirected graph G (V , E) of the checkerboard pattern in Fig. 8a can be constructed as an
example: since it is known that a nonmanifold point has two adjacent weak elements, these two
elements can be regarded as the vertices of the graph G. The nonmanifold point is their edge. The
checkerboard pattern can be converted to the undirected graph G. The gray dots belong to the vertex
set V , and the dotted lines belong to the edge set E, as shown in Fig. 8b.

Figure 8: The process of addressing checkerboard patterns based on the MVF: (a) a checkerboard
pattern; (b) the undirected graph G; (c) minimum covered vertex set; (d) the result after filling elements

(1) Minimum Volume Filling (MVF)

The MVF can be transformed into minimum point set coverage, which means that each edge in the
undirected graph must be associated with at least one of its vertices. In graph theory, the minimum
point set covering is equal to the maximum matching so that the Hungarian algorithm [39] can be
used to solve the problem. The gray dots in Fig. 8c are the minimum covering point set obtained by
the algorithm. The result of the MVF is shown in Fig. 8d by covering the weak elements corresponding
to the gray dots into solid elements.

(2) Minimum Sensitivity Filling (MSF)

The MSF can be transformed into minimum point set coverage with weight in the undirected
graph. In the algorithm, the sensitivity values of the weak elements adjacent to each nonmanifold
point are added to the vertices of the undirected graph as weights. The minimum point set coverage
with weight requires that every edge in the weighted undirected graph is associated with at least one
vertex and the sum of the weights of these vertices is minimum.
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As shown in Fig. 9, the two algorithms are verified by two structures. The structure in Fig. 9a
has only one hinge, and the structure in Fig. 9d has a checkerboard pattern. Figs. 9b and 9e show the
results of the MVF. Figs. 9c and 9f show the results of the MSF.

Figure 9: The two structures removing nonmanifold points by the MVF and MSF: (a) and (d) are two
structures containing nonmanifold points; (b) and (e) are the results obtained by the MVF; (c) and (f)
are the results obtained by the MSF

In Fig. 9a, there is only one nonmanifold point, so introducing a weak element can solve it. In this
case, the MVF randomly selects a weak element to fill, but the MSF selects the element with the lowest
sensitivity value. In Fig. 9d, many solid elements need to be introduced to solve the checkerboard
pattern so that the material and objective function values will be significantly increased. The result
shows that the MVF strategy requires less material, and the MSF strategy leads to less disturbance
of the objective value. In summary, the MVF strategy is more suitable for handling checkerboard
patterns, and the MSF strategy is more suitable for discontinued hinged structures. It should be noted
that if the number of filling elements is too large in the optimization iteration, the convergence may be
adversely affected. Therefore, filtering technology is still used in the following examples to suppress
the checkerboard pattern.

3.2 Islands
In SERA, the initial structure is usually made entirely of solid elements. In the early optimization

process, solid elements are gradually transformed into weak elements. This may lead to a situation
in which some solid elements are completely separated from the main structure, forming an island
(Fig. 10). In the original SERA method, an island is surrounded by weak elements that have low
stiffness to support it so that the island can be constrained to a certain extent and the condition number
is not too large to affect the stability of the numerical calculation. However, in the proposed method,
the solid regions are analyzed without weak materials. The island is free of any constraints, which
adversely affects the numerical stability.
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Figure 10: A structure with two islands

To accommodate islands, we need to identify them first. The recognition of the nonmanifold point
mentioned above is the recognition of elements, while an island is a region composed of an uncertain
number of elements. Although the domain is divided in SERA, the numbers of solid regions and weak
regions are still unknown. We introduce the fire-burning method [40] to group solid material by regions,
and then the boundary conditions are used to identify whether a certain solid region is an island. Since
an island has no effect on the structure stiffness, we group it into weak regions for FEA.

3.2.1 Adjacent Matrix

To realize the fire-burning method, the adjacent relation of the elements must be calculated first.
The concept of a graph is still used to explain here. For the graph G = G (V , E) composed of solid
elements, an adjacent matrix is used to describe the adjacency relationship of elements.

The graph G is made up of solid elements, which are numbered as 1, 2, . . . , |V |. The adjacency
matrix A of graph G is a |V |-dimensional square matrix, and aij is the component of matrix A:

aij =
{

1, if (i, j) ∈ E
0, others

(14)

where E is the set of all undirected edges.

Fig. 11 shows the process of obtaining the adjacency matrix from a structure. The structure in
Fig. 11a consists of six solid elements. Fig. 11b is converted to an undirected graph G, where each
element represents a vertex of G. If two elements are adjacent, they are connected by a black line. It
should be noted that the elements may be connected by a single node or an edge, both of which indicate
that the elements are adjacent. Fig. 11c shows the adjacency matrix A of G.

For a structured grid, the coding rules of elements and their nodes are generally fixed and regular.
For example, the simplest coding method is to encode from top to bottom and from left to right. We can
evaluate whether the two elements are adjacent by evaluating whether there is a common node between
the two elements, and the adjacency matrix of the elements can be established by this information.
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Figure 11: Schematic diagram of adjacency matrix calculation: (a) A structure consisting of six
elements. (b) Graph G with 6 vertices and 9 edges. (c) The adjacency matrix of G

3.2.2 Fire-Burning Method

The process of the fire-burning method is as follows:

(1) Determine an element as the initial burning point;

(2) Search the adjacent untraversed elements with the same density as the current burning points;
these elements are regarded as the new burning points.

(3) Iterate Step 2 until there are no more qualified elements around the current burning points. All
the elements in the current region can be found by the iteration. Fig. 12 graphically depicts the
process of Step 2 and Step 3.

(4) Determine an untraversed element as a new burning point, and repeat Steps 2 and 3.

(5) Once there are no untraversed elements in the design domain, the process ends, and all the
regions have been found.

Figure 12: The process of the fire-burning method for finding a region

3.2.3 Identification and Processing of Island

Since all the regions have been found, we can determine whether a region is an island by evaluating
whether there are constrained points or load points in the region. Considering little contribution to the
objective function and adverse effects on the numerical stability, we group islands into weak regions
for FEA.

4 Numerical Examples and Discussion

In this section, the concept of a conditional number is introduced to measure the ill conditioning
of a system, and three examples are performed to verify the effectiveness of the proposed method. The
first one is the short beam example; the second one is the C-shape plate example [46]; the third one is
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the cantilever beam. All the materials in the examples are isotropic, and the material constants used
are elastic modulus E = 1.0 and Poisson’s ratio ν = 0.3.

4.1 Condition Number
The condition number of a matrix is a well-known measure of ill conditioning. For an n×n matrix

K, its condition number is:

κ (K) = ∣∣∣∣K−1
∣∣∣∣ ||K|| (15)

where ||·|| is any matrix norm. If the matrix K is singular, we usually regard the condition number as
infinite [47].

When considering the static small deformation problem, the design domain is discretized by the
FE mesh, and the governing equation can be expressed by a linear equation:

Ku = f (16)

where u and f are the displacement vector and the load vector, respectively, and K is the global stiffness
matrix that is assembled by element stiffness matrices.

In SERA, the element stiffness matrix is expressed as follows:

Ke = ρeK0 (17)

where ρe = 1 or ρmin means that the element is a solid element or a weak element and K0 is the stiffness
matrix of the solid element. It is easy to evaluate from Eqs. (15)–(17) that the condition number of
K is related to the ratio of the maximum and minimum elemental density in the design domain. By
convention, the density of the solid element is usually set to one. If the density of the weak element
decreases, the condition number of the corresponding stiffness matrix will increase.

A simple example can illustrate this. Fig. 13 shows an optimal structural topology of the short
beam example. The density of the solid element is one, and the density of the weak element varies
from 10−9 to 10−30. The condition number of the global stiffness matrix changes as Fig. 14 shows.
According to the curve, the logarithm of the weak elemental density is proportional to the logarithm
of the condition number of K.

Since the condition number of the global stiffness matrix is a direct parameter to measure
numerical stability, it can be seen from the above that two cases can lead to ill-conditioned systems:

(1) An extremely small ratio of the minimum and maximum densities.

(2) Local unstable structures.

The method proposed in Section 2 can completely solve the first case. The second case can be
solved by the strategies introduced in Section 3.

Figure 13: A structure consisting of solid materials and weak materials
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Figure 14: The curve of the condition number changing with the density of the weak elements

4.2 Short Beam
The load and support conditions of the short beam example are shown in Fig. 14. The design

domain is discretized by 100 × 50 rectangular elements. The upper limit of the volume fraction is 0.3,
and the filter radius is 0.04.

In SERA, the optimal structure can usually be obtained faster by deleting materials than by
adding materials. Therefore, the initial structures in the subsequent examples are all composed of
solid elements. In the first half of the optimization process, the solid elements are gradually rejected
until the volume constraint is met, and then the same amounts of solid elements and weak elements
are increased or decreased until convergence.

Figure 15: The design domain and boundary conditions for the cantilever beam: (a) The load is applied
to the lower right corner. (b) The load is applied to the midpoint of the right boundary

In this example, four values, 10−9, 10−18, 10−27, and 10−36, are selected as the design values ρmin of the
weak elements, and the original SERA method is also conducted for comparison. The iteration curves
in Figs. 16 and 17 show that the order of the condition numbers almost increases inversely with the
decrease in ρmin, which confirms the conclusion in Section 4.1. The iteration path also changes as ρmin

changes. Occasionally, the condition number or objective function will increase dramatically in a step
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(shown in Figs. 16c, 16d and 17b–17d), which may greatly affect the iterative process and the optimal
topology. Fig. 17 shows the structural topology and displacement field in the abnormal step. There
are nonmanifold points and islands in the position framed by the dotted lines in Figs. 18a and 18c and
abnormally large displacement values in the corresponding positions in Figs. 18b and 18d. According
to Figs. 16e–16h and 17e–17h, after solving the nonmanifold points and islands, the condition number
can be controlled from 104 to 107 by the proposed method and is not affected by ρmin.

Figure 16: (Continued)
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Figure 16: Iteration history of the model in Fig. 15a: (a)–(d) are the iteration histories with the four
densities of weak elements conducted by the original SERA; (e)–(h) are the iteration histories with the
four densities of weak elements conducted by the proposed method

Figs. 19–22 show the optimal topologies and corresponding objective values. In summary, the
optimal results obtained by the original SERA method are affected by ρmin. Once ρmin drops to 10−36, the
optimal topology changes prominently. Figs. 17 and 19 show that the optimal topologies are almost
unchanged as ρmin varies. Theoretically, the proposed method allows ρmin to be arbitrarily decreased
with no effect on the optimization.
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Figure 17: (Continued)
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Figure 17: Iteration history of the design model in Fig. 15b: (a)–(d) are the iteration histories with the
four densities of weak elements obtained by the original SERA; (e)–(h) are the iteration histories with
the four densities of weak elements obtained by the proposed method

Figure 18: Structural topology and displacement field causing abnormal iteration: (a) and (b) corre-
spond to the abnormal iteration step in Figs. 16c and 16d; (c) and (d) correspond to the abnormal
iteration step in Figs. 17b–17d

To verify the computational efficiency of the proposed method, the computational time is counted.
The original SERA consumed 9.8 and 18.4 s for computing the two examples in Fig. 15; the proposed
method consumed 18.0 and 23.2 s for computing the two examples. Therefore, the proposed method
is less efficient than the original SERA. From Fig. 23, the time consumed by the proposed method
in each iteration has a large oscillation, while in the original method, the time consumed in each
iteration is relatively stable. It is well known that the most time-consuming process in optimization
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iteration is FEA. Since the number of elements in the two methods is the same, the time consumed
by FEA is basically fixed. However, there is another time-consuming process in the proposed method:
nonmanifold point processing. Since nonmanifold points do not appear at every step, nonmanifold
point processing is also not performed at every step, which is the reason for the oscillation of the
time-consumption curve.

Figure 19: Optimal results of the design model in Fig. 15a with the four densities of weak elements
obtained by the original SERA

Figure 20: Optimal results of the design model in Fig. 15a with the four densities of weak elements
obtained by the proposed method

Figure 21: Optimal results of the design model in Fig. 15b with the four densities of weak elements
obtained by the original SERA

In this example, we also verify the stability of the proposed method under different mesh densities.
Three mesh densities are considered: 1) coarse, consisting of 100 × 50 rectangular elements; 2) medium,
consisting of 200 × 100 rectangular elements; 3) fine, consisting of 300 × 150 rectangular elements. The
loading position is shown in Fig. 15a. The design value of the weak material is 10−36. The results for
the three cases are shown in Fig. 24.

The optimal structural topologies are almost the same for the three mesh densities. Only the
boundary smoothness and the size of local holes are slightly different. Therefore, the robustness
of the proposed method is not affected by the mesh density. However, there is another factor to
consider as the mesh density increases: in the proposed method, the nonmanifold point processing
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is time-consuming. Once the elements increase, the nonmanifold points may increase, which will
reduce computational efficiency. To adapt to large-scale computation, we consider how to improve
the efficiency of nonmanifold point processing in future work.

Figure 22: Optimal results of the design model in Fig. 15b with the four densities of weak elements
obtained by the proposed method

Figure 23: Time consumption curves of the short beam examples: (a) Fig. 15a. (b) Fig. 15b

Figure 24: Short beam design for different mesh densities: (a) coarse; (b) medium; (c) fine mesh

4.3 C-Shape Plate
To verify the effectiveness of the proposed method for solving excessive mesh deformation under

finite deformation, we considered an example proposed by Yoon et al. [46] shown in Fig. 25. The
design domain is discretized by 60 × 60 rectangular elements, and the concentrated forces f1 = 0.02
and f2 = 0.03 are loaded. The elastic modulus E of solid is one, and Poisson’s ratio ν is 0.3. The design
value of weak material ρmin is 10−9.
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Figure 25: The design domain and boundary conditions for the C-shaped plate

For better comparison, we analyzed the structure for the following three options: (1) geometric
linearity or geometric nonlinearity; (2) inclusion or exclusion of weak regions; and (3) with or without a
region partition strategy. The results are shown in Fig. 26. The corresponding settings and convergence
for Figs. 26a–26e are shown in Table 1.

Figure 26: (Continued)
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Figure 26: The scalar displacement field and deformed mesh of the C-shaped plate

Table 1: Corresponding settings and convergence for all the results in Fig. 26

Fig. 26
Geometric
nonlinearity

Weak regions Region partition Convergence

a × × - √
b √ × - √
c × √ × √
d √ √ × ×
e √ √ √ √

When no weak region is included (Figs. 26a and 26b), convergence can be achieved by a geometric
linear or geometric nonlinear model. However, the maximum deformation of the former is larger than
that of the latter. In addition, the rods on the upper side of the structure in Fig. 26a have become
significantly thicker, which is obviously unreasonable. When considering weak regions, the result of the
solid regions remains the same under the geometric linear model (Fig. 26c). However, in the geometric
nonlinear model, the analysis process does not converge due to excessive mesh deformation (Fig. 26d).
After adopting region recognition, nonlinear theory and linear theory are applied to the solid regions
and weak regions, respectively. As shown in Figs. 26b and 26e, the results are exactly the same in the
solid regions, which illustrates that the proposed method guarantees that excessive mesh deformation
in the weak regions has no influence on nonlinear analysis so that convergence can be achieved.
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Now, we apply the topology optimization method with a region partitioning strategy to this
problem. The design domain and boundary conditions are still consistent with the model in Fig. 25.
The filter radius r = 0.25. The volume fraction constraint is 0.28. Two initial structures (Figs. 27a and
27c) are tested for optimization: in one, the design area is completely covered by solid elements with a
volume fraction of one; the other is the same as the model in Fig. 25, with a volume fraction of 0.28.

Figure 27: The optimal structures of the C-shaped plate obtained from two initial structures

As shown in Figs. 27b and 27d, there are some differences in the optimal structures. The first
optimal structure is identical to that obtained by Lahuerta et al. [48]. The second one, which is close
to the first one, is significantly worse. The reason is that the second initial structure is much different
from the optimal structure and falls into a local solution. However, under the first initial structure,
there is no excessive deformation in the optimization process, and nonconvergence caused by mesh
distortion did not occur. To verify the proposed algorithm, the second initial structure is optimized,
and the mesh deformation is captured during the optimization process, as shown in Fig. 28. Although
excessive mesh deformation exists in the first three steps, the optimization iteration is not adversely
affected.

4.4 Cantilever Beam
The design domain and boundary condition of the cantilever beam are shown in Fig. 29. The

design domain is discretized by 120 × 30 rectangular elements. The magnitudes of the concentrated
load are 0.0002, 0.0005, 0.0007 and 0.001. The initial volume fraction is 1.0, and the volume fraction
constraint is 0.5. The design value ρmin of the weak material is 10−9, and the filter radius r is 0.014.
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Figure 28: Deformed mesh in iteration: blue elements are solid elements; red elements are weak
elements

Figure 29: The design domain and boundary condition for the cantilever beam

In this example, we verify the difference in optimization results under geometric linear and
geometric nonlinear assumptions based on a region partitioning strategy. The effects of different loads
on the topology optimization results are examined simultaneously. The results are shown in Fig. 30. On
the first two lines in Fig. 30, we compare the optimal structures and objective values for different loads
in linear and nonlinear solutions and obtained the following conclusions: (1) As expected, under the
assumption of geometric linearity, the value of concentrated force does not affect the optimal topology;
(2) Under the assumption of geometric nonlinearity, the optimal topology varies substantially with
the load value. When the load value is very large, its result is notably different from the geometric
linear solution. (3) The objective function values in geometric linear solutions and geometric nonlinear
solutions are different. When the load value f is 0.001, the objective value of the geometric linear
solution is only 17% of that of the geometric nonlinear solution.

The third line in Fig. 30 shows the final deformation mesh of the geometric nonlinear solution.
When the load is 0.001, the weak elements around the loading point are clearly excessively deformed
(Fig. 31). Due to the introduction of the region partitioning strategy, the weak regions are solved by a
linear algorithm so that nonconvergence does not occur and the optimal structure can be obtained.
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Figure 30: Optimized structure and deformed mesh for different loads

Figure 31: Excessive deformation of weak elements

5 Conclusions

Numerical instability problems caused by a material interpolation model in the weak region
are considered in this paper. A topology optimization model with geometrical region partitioning
and the corresponding FEA procedure is proposed. Numerical strategies to identify nonmanifold
points and island structures are discussed, and numerical instability during the optimization procedure
can be alleviated by properly addressing the nonmanifold points. Numerical examples illustrate that
the proposed method can solve the ill-conditioned matrix problem in FEA and nonconvergence
phenomena caused by excessive mesh deformation in finite deformation. The region partition strategy
proposed in this paper can be implemented from SERA to other topology optimization methods, such
as the SIMP method and boundary evolution type method.
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