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ABSTRACT

This study aims to apply ResNet-18 convolutional neural network (CNN) and XGBoost to preoperative computed
tomography (CT) images and clinical data for distinguishing Xp11.2 translocation renal cell carcinoma (Xp11.2
tRCC) from common subtypes of renal cell carcinoma (RCC) in order to provide patients with individualized
treatment plans. Data from 45 patients with Xp11.2 tRCC from January 2007 to December 2021 are collected. Clear
cell RCC (ccRCC), papillary RCC (pRCC), or chromophobe RCC (chRCC) can be detected from each patient. CT
images are acquired in the following three phases: unenhanced, corticomedullary, and nephrographic. A unified
framework is proposed for the classification of renal masses. In this framework, ResNet-18 CNN is employed to
classify renal cancers with CT images, while XGBoost is adopted with clinical data. Experiments demonstrate that,
if applying ResNet-18 CNN or XGBoost singly, the latter outperforms the former, while the framework integrating
both technologies performs similarly or better than urologists. Especially, the possibility of misclassifying Xp11.2
tRCC, pRCC, and chRCC as ccRCC by the proposed framework is much lower than urologists.
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1 Introduction

Renal cell carcinoma (RCC) is the most common subtype of primary renal cancer, accounting
for 80%–90% of renal malignancies [1]. Clear cell renal cell carcinoma (ccRCC), papillary renal cell
carcinoma (pRCC), and chromophobe renal cell carcinoma (chRCC) are common subtypes of renal
cancer, accounting for 70%, 15%–20%, and 6%–11% of all renal cancers, respectively [2–4]. Xp11.2
translocation renal cell carcinoma (Xp11.2 tRCC) is an independent and rare subtype of RCCs,
formed by the balanced translocation of the TFE3 gene on the short arm of the X chromosome
and other genes, accompanied by the overexpression of TFE3 protein [5]. Xp11.2 tRCC and RCC
associated with t (6; 11)/TFEB gene fusions were classified as MiT family translocation RCC in the
2016 World Health Organization kidney tumor classification scheme [6]. Recent studies have reported
that Xp11.2 tRCC was more aggressive than ccRCC in adult patients [7,8]. Due to the aggressive nature
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of Xp11.2 tRCC, adult patients with strong positive expression of TFE3 protein tend to have a worse
prognosis than patients with TFE3-negative RCC, namely ccRCC, pRCC, and chRCC. In addition,
the 2019 European Urological Association guidelines strongly recommended nephron-sparing surgery
for clinical stage T1 renal cancer. However, multi-center clinical studies have shown that Xp11.2 tRCC
patients who undergo nephron-sparing surgery at clinical stage T1b are more likely to suffer disease
progression than radical nephrectomy [9,10]. The treatment for Xp11.2 tRCC should be different
from common subtypes of RCCs when the surgical plan is selected for the first time. However, there
is still a lack of effective preoperative diagnosis in differentiating Xp11.2 tRCC from three main
subtypes of RCCs. Therefore, accurate preoperative prediction of Xp11.2 tRCC is essential to realize
the individualized surgical plan for patients.

Artificial intelligence (AI) for image classification through deep learning (DL) models and
machine learning (ML) has been established in health and medicine and achieved rapid development.
The diagnostic performance of AI technology in several diseases has exceeded those of manual
methods with advantages of automated quantitative evaluation, low error probability, and consistent
and stable diagnosis results [11–14]. In recent years, the applications of ML and DL in urology
increased and succeeded in image recognition diagnostics, personalized medicine, and clinical decision-
making, and the development of AI technology will further improve disease prediction accuracy and
promote precision medicine [15–18]. The deep neural network model trained and tested by histopatho-
logical images can automatically differentiate Xp11.2 tRCC and ccRCC with high performance [19],
simplifying the traditional pathological diagnosis model of Xp11.2 tRCC. However, the pathological
diagnosis was performed by pathologists or AI technology after surgery, which cannot meet the
urgent clinical needs of preoperative diagnosis. Therefore, the development of a DL neural network
model based on preoperative abdominal computed tomography (CT) scan to assist in the differential
diagnosis of Xp11.2 tRCC has greater clinical significance and practical value.

In this study, we proposed an AI model based on preoperative CT images and clinical data to
distinguish between Xp11.2 tRCC and common subtypes of renal cancer and then provided patients
with individualized treatment plans.

2 Materials and Methods
2.1 Patient Enrollment

The complete CT imaging data and postoperative pathological data of patients with Xp11.2 tRCC
diagnosed in the Nanjing Drum Tower Hospital were retrospectively analyzed from January 2007 to
December 2021. 45 cases of Xp11.2 tRCC with complete clinicopathological data were enrolled in the
study, including complete medical histories, clinical information, and pathological data. According
to both tumor size and pathological stage, the matched patients included 45 with ccRCC, pRCC, or
chRCC, respectively. The study was approved by the Institutional Review Board of Nanjing Drum
Tower Hospital.

Inclusion criteria:

1. Patients underwent radical or partial nephrectomy.

2. Preoperative CT examination of renal tumors and complete examination records.

3. The reviewed pathological diagnosis was consistent with the initial postoperative diagnosis and
the pathological diagnosis of Xp11.2 tRCC was validated by the next generation sequence.

4. These patients were without cardiovascular and cerebrovascular diseases and chronic kidney
disease that affected the blood supply of the kidney.

5. These patients had a unilateral single renal tumor.
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Exclusion criteria:

1. Incomplete clinical and CT imaging data.

2. After reviewing the pathological diagnosis, it was inconsistent with the initial pathological
diagnosis.

3. These patients had cardiovascular and cerebrovascular diseases, chronic kidney disease, and
other diseases which affected the blood supply of the kidney.

4. These patients had multiple renal tumors.

2.2 CT Technical Parameters and Image Preprocessing
All patients in our hospital used 64-slice CT (Light-Speed; GE Healthcare, Princeton, NJ,

USA) for CT examination. In each case, images inputted into the model were acquired at three
phases, including unenhanced, corticomedullary, and nephrographic phases. Both corticomedullary
and nephrographic phases were included in the enhanced phase. Most of the image layer thicknesses
in the unenhanced phase were 5 and 10 mm, and the image layer thicknesses in the corticomedullary
and nephrographic phases were 1 and 6 mm. We exported anonymous images in digital imaging and
communication in medicine (DICOM) format from Picture Archiving and Communication System
(PACS) for each patient. We manually segmented the kidney cancer area in each CT image and
removed the segmented non-tumor area using MATLAB software (MATLAB R2016a). The CT
images in the folder were automatically read, manually scribed by two experienced urologists, executed
the segmentation algorithm, removed the background, and automatically saved the segmented tumor
image according to the original path. The procedure of segmentation is shown in Figs. 1 and 2. In
order to ensure that all kidney cancers were in the segmentation area, we set the mouse click position
2 mm within the edge of the tumor to ensure the accuracy of the segmentation image. Since the
boundaries of the renal tumors in the unenhanced CT images were difficult to distinguish from the
normal kidney tissue, we decided to use the enhanced image to assist the segmentation. For ambiguous
cases, determining the boundaries of renal cancers were jointly determined by two urologists with more
than 10 years of work experience.

Figure 1: Flowchart illustrating the design of the research. The ResNet-18 CNN model took image
patches of renal tumor extracted from a multi-phase CT scan as an input. The Clinical data was applied
to train and test the XGBoost model. The fusion model was constructed from the ResNet-18 CNN
combined with the XGBoost model and compared with urologists in predictive performance
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Figure 2: Representative axial CT images of delineating and extracting renal tumor in Xp11.2 tRCC
(a), ccRCC (b), pRCC (c), chRCC (d): unenhanced phase, corticomedullary phase, and nephrographic
phase were used as the input data of the model, respectively. For every single renal cancer subtype, the
left was the original CT axial image, the middle was the segmented image of the kidney tumor, and the
right was the kidney tumor after removing the non-tumor area

2.3 Clinical Data Preprocessing
Since the clinical data of patients was an essential basis for differentiating Xp11.2 tRCC from the

common subtypes of RCCs, we inputted the clinical data of patients into the model, including age,
gender, tumor size, hypertension, hematuria, hyperuricemia, abdominal pain, and abdominal mass.
Among them, age data was converted into integer type, and the rest of the clinical data was represented
by 1 for yes and 0 for no.

2.4 Model
Our model consisted of two modules: a CT image classifier and a clinical data classifier. Both

modules operated in parallel. First, each patient’s CT images and clinical data were input into a CT
image classifier and a clinical data classifier, respectively. Then, each of the two classifiers classified the
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data and outputted the probability of the type of renal cancer. Finally, the results of the two classifiers
were fused to obtain the final predicted probability of kidney tumor.

2.4.1 ResNet-18 Convolutional Neural Network

We used deep convolutional neural networks (CNN) to classify CT image data, of which we
chose ResNet-18 CNN to extract image features and used Softmax for four-classification. ResNet-
18 CNN was formed by stacking a series of convolutional blocks with shortcuts, with different
suffixes depending on the number of convolutional layers. ResNet-18 CNN indicated that this network
consisted of 18 convolutional layers. At the end of the network, the activation layer Softmax directly
gave the probability of each renal cell carcinoma. For each patient, we had the CT image sequence
{Su, Sc, Sn} for its three phases, namely unenhanced, corticomedullary, and nephrographic, where
S = {st|t = 1, 2, . . . , T}, T indicated the total number of slices. For each slice, we used ResNet-18
CNN to extract features and use Softmax to classify the features into four categories to obtain the
probabilities pt, where Pt = {pt1, pt2, pt3, pt4} and p indicated the probability that the slice belonged to
the corresponding category. This process can be formulated as follows:

Pt = Softmax(ResNet(st)) (1)

Since slices at different positions of the renal cell carcinoma had different contributions to
distinguishing tumor types, the closer to the center, the stronger the degree of discrimination, so we
used the normal distribution function to calculate the fusion weight of each image. For the i-th slice,
we defined its weight as:

wi = 1√
2π

e−( t
T −0.5)

2
(2)

Therefore, the classification result of each phase can be formulated as follows:

P =
T∑

t=1

wtPt (3)

Clinical experience showed that the reliability of CT at different phases varies widely. The
reliability of unenhanced, corticomedullary, and nephrographic renal CT increased sequentially.
Therefore, we empirically set the phases of unenhanced, corticomedullary, and nephrographic weights
to be 0.2, 0.3, and 0.5 in the three phases fusion step.

PCNN = 0.2 × Pu + 0.3 × Pc + 0.5 × Pn (4)

2.4.2 XGBoost

We used XGBoost to classify clinical data. XGBoost is a variant of random forest, which is widely
used for the mining of structured data. Different from the random forest, XGBoost first builds all
the subtrees that can be established from top to bottom and then reversely prunes from the bottom
to the top to avoid the model from falling into the optimal local solution. For clinical data, it only
contained 7 fields, and each decision tree of XGBoost randomly discarded some fields, so XGBoost
with a maximum depth of 3 was enough to cover all fields. For each case, we got the corresponding
probabilities of the four tumors. The process was represented as follows:

PXGBoost = XGBoost ({di|i = 1 . . . 7}) (5)
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2.4.3 Fusion

Considering the importance of CT images and clinical data for the judgment of renal cancer types,
we added the results of CNN and the results of XGBoost to obtain the final probability.

PFinal = PCNN + PXGBoost (6)

2.5 Training and Inference
2.5.1 Training

For CT images, we train each image separately. We use the ResNet-18 pre-trained on ImageNet
[20] as the backbone. All cropped CT images are resized to 224 × 224 with the randomized horizontal
flip data augmentation. We use SGD as the optimizer with a weight decay of 0.0001 and a momentum
of 0.9 and set the batch size to 256. The model is trained for 30 epochs. The learning rate is set as 0.01
and divided by 10 at epochs 15 and 25. For clinical data, we set the learning rate of XGBoost to 0.1,
the number of estimators to 100, and the maximum depth to 3.

2.5.2 Inference

In the inference, we use the fusion method mentioned in Section 2.4.3 to fuse the CT images
probability and fuse with the probability of XGBoost to get the final result.

2.6 Statistical Analysis
We used a permutation test to compare the performance of the ensemble model with that of the

urologists. Specifically, we randomly sampled 35 times from 45 patients with replacement to obtain 35
bootstrap samples and then calculated sensitivity, specificity, accuracy, and AUCs for these 35 samples,
respectively. This process was repeated 100 times to generate the distribution of sensitivity, specificity,
accuracy, and AUCs, and then the mean and 95 confidence intervals (CI) were calculated.

3 Results
3.1 Patients and Lesion Features

We screened all RCC patients treated in Nanjing Drum Tower Hospital from January 2007 to
December 2021 and collected 45 cases of Xp11.2 tRCC with complete clinicopathological data, which
included complete medical histories, clinical information, and pathological data. The matched patients
included 45 with ccRCC, pRCC, or chRCC, respectively. The clinicopathologic characteristics of the
entire cohort were displayed in Table 1. The mean age of Xp11.2 tRCC patients was 36.40 ± 13.44
years (range 21–71 years), and young female patients were more common in Xp11.2 tRCC. Conversely,
ccRCC, pRCC, and chRCC affected older men more frequently. The mean diameter of the lesion
for Xp11.2 tRCC patients was 4.70 ± 3.23 cm, and there was no significant difference in tumor size
between Xp11.2 tRCC and the three main RCCs. The clinicopathologic records, such as hematuria,
lumbago, abdominal mass, hypertension, and hyperuricemia, were retrospectively investigated and
listed as categorical variables in the models. Patient demographics and kidney cancer subtypes
distributions for training or testing set were summarized in Table 2. Thirty-seven cases with three
CT phases were randomly selected to test these models, and the remaining cases were performed on
the training test. The mean tumor size and kidney cancer subtypes distributions were not significantly
different between the training and testing sets. The age and gender distribution in the training or testing
set were consistent with the entire cohort.
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Table 1: Clinical features of patients and RCC subtypes. Xp11.2 tRCC: Xp11.2 translocation renal
cell carcinoma; ccRCC: Clear cell renal cell carcinoma; pRCC: Papillary renal cell carcinoma; chRCC:
Chromophore renal cell carcinoma

Clinical characteristics Xp11.2 tRCC ccRCC pRCC chRCC

Age (years) 36.40 ± 13.44 57.76 ± 12.04 57.87 ± 13.32 52.71 ± 12.70
Gender (%)

Male 20 (44.4) 31 (68.9) 28 (62.2) 25 (55.6)
Female 25 (55.6) 14 (31.1) 17 (37.8) 20 (44.4)

Tumor size (cm) 4.70 ± 3.23 4.50 ± 2.24 4.47 ± 2.54 4.72 ± 3.05
Hematuria (%)

Absence 24 (53.3) 7 (15.6) 5 (11.1) 3 (6.7)
Presence 21 (46.7) 38 (84.4) 40 (88.9) 42 (93.3)

Lumbago (%)
Absence 6 (13.3) 3 (6.7) 5 (11.1) 2 (4.4)
Presence 39 (86.7) 42 (93.3) 40 (88.9) 43 (95.6)

Abdominal mass (%)
Absence 1 (2.2) 3 (6.7) 5 (11.1) 2 (4.4)
Presence 44 (97.8) 42 (93.3) 40 (88.9) 43 (95.6)

Hypertension (%)
Absence 3 (6.7) 32 (71.1) 28 (62.2) 15 (33.3)
Presence 42 (93.3) 13 (28.9) 17 (37.8) 30 (66.7)

Hyperuricaemia
Absence 5 (11.1) 4 (8.9) 6 (13.3) 9 (20.0)
Presence 40 (88.9) 41 (91.1) 39 (86.7) 36 (80.0)

Table 2: Patients demographics and kidney cancer subtypes distributions for training or testing set.
Xp11.2 tRCC: Xp11.2 translocation renal cell carcinoma; ccRCC: Clear cell renal cell carcinoma;
pRCC: Papillary renal cell carcinoma; chRCC: Chromophore renal cell carcinoma

Total Training set Test set

Patients (n) 180 143 37
Gender (%)
Female 76 (42.2) 59 (77.6) 17 (22.4)
Male 104 (57.8) 84 (80.8) 20 (19.2)

(Continued)
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Table 2 (continued)

Total Training set Test set

Age (%)
≤45 61 (33.9) 47 (77.0) 14 (23.0)
>45 119 (66.1) 96 (80.7) 23 (19.3)

Subtypes (%)
Xp11.2 tRCC 45 (25.0) 36 (80.0) 9 (20.0)
ccRCC 45 (25.0) 36 (80.0) 9 (20.0)
pRCC 45 (25.0) 36 (80.0) 9 (20.0)
chRCC 45 (25.0) 35 (77.8) 10 (22.2)

Tumor size (cm) 4.65 ± 2.80 4.67 ± 2.83 4.58 ± 2.71
Images in CT phases
Unenhanced 1973 1405 568
Corticomedullary 8968 7296 1672
Nephrographic 5694 4767 927
Enhanced 14662 12063 2599
All 16635 13468 3167

3.2 Predictive Performance Metrics
During the training stage, 30 epochs were performed to converge the ResNet-18 CNN. For

prediction using a ResNet-18 CNN model, the subtypes of RCCs were differentiated by the average
probability scores of their image patches. The predictive performance metrics of the ResNet-18
CNN model in classifying subtypes of RCCs during the testing stage were displayed in Table 3.
Among the predictive performance metrics of the ResNet-18 CNN model based on different CT
phases, the average sensitivity, specificity, accuracy, and AUC were 0.547 (95% CI, 0.354–0.741), 0.857
(95% CI, 0.751–0.964), 0.782 (95% CI, 0.689–0.875) and 0.702 (95% CI, 0.601–0.804) respectively
in the nephrographic phase, which exhibited the high performance in comparison with single phase.
However, when we ensembled the classification results of CT images in different phases (enhanced
phases or all phases), we found that the model’s performance trained by enhanced phases or all
phases data did not improve further. Surprisingly, compared with ResNet-18 CNN model, XGBoost
model trained by clinical data achieved the top performance with the average sensitivity, specificity,
accuracy and AUC: 0.667 (95% CI, 0.596–0.737), 0.904 (95% CI, 0.848–0.959), 0.848 (95% CI, 0.798–
0.898) and 0.785 (95% CI, 0.731–0.839), respectively. In addition, the diagnostic performance of the
ResNet-18 CNN fused XGBoost model to differentiate Xp11.2 tRCC from three main RCC subtypes
is shown in Table 4. The ensemble model trained by unenhanced phase and clinical data achieved a
test sensitivity of 0.615 (95% CI, 0.529–0.700), specificity of 0.846 (95% CI, 0.725–0.966), accuracy
of 0.792 (95% CI, 0.694–0.890), precision-recall AUC of 0.730 (95% CI, 0.643–0.817), which showed
better performance than the ResNet-18 CNN model trained by unenhanced phase. Similarly, other
ensemble models outperform the compared ResNet-18 CNN model. The ensemble model trained by
corticomedullary phase and clinical data achieved optimal performance with a test sensitivity of 0.760
(95% CI, 0.690–0.831), specificity of 0.929 (95% CI, 0.882–0.977), accuracy of 0.890 (95% CI, 0.862–
0.917), precision-recall AUC of 0.845 (95% CI, 0.809–0.881).
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Table 3: Diagnostic performance of ResNet-18 CNN and XGBoost model to differentiate Xp11.2
tRCC from the three main RCC subtypes based on different phases

Phases Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) AUC (95% CI)

XGBoost 0.667
(0.596–0.737)

0.904
(0.848–0.959)

0.848
(0.798–0.898)

0.785
(0.731–0.839)

Unenhanced 0.264
(0.047–0.480)

0.782
(0.711–0.853)

0.657
(0.562–0.752)

0.523
(0.389–0.657)

Corticomedullary 0.559
(0.268–0.850)

0.838
(0.770–0.906)

0.770
(0.695–0.844)

0.699
(0.555–0.842)

Nephrographic 0.547
(0.354–0.741)

0.857
(0.751–0.964)

0.782
(0.689–0.875)

0.702
(0.601–0.804)

Enhanced 0.480
(0.311–0.650)

0.844
(0.782–0.907)

0.755
(0.696–0.814)

0.662
(0.575–0.749)

ALL 0.440
(0.239–0.640)

0.748
(0.645–0.851)

0.674
(0.589–0.759)

0.594
(0.484–0.704)

Table 4: Diagnostic performance of fusion model to differentiate Xp11.2 tRCC from the three main
RCC subtypes. X indicates the XGBoost method

Fusion model Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) AUC (95% CI)

XGBoost 0.667
(0.596–0.737)

0.904
(0.848–0.959)

0.848
(0.798–0.898)

0.785
(0.731–0.839)

X+Unenhanced 0.615
(0.529–0.700)

0.846
(0.725–0.966)

0.792
(0.694–0.890)

0.730
(0.643–0.817)

X+Corticomedullary 0.760
(0.690–0.831)

0.929
(0.882–0.977)

0.890
(0.862–0.917)

0.845
(0.809–0.881)

X+Nephrographic 0.688
(0.576–0.799)

0.903
(0.857–0.950)

0.853
(0.803–0.903)

0.795
(0.730–0.861)

X+Enhanced 0.646
(0.476–0.815)

0.916
(0.845–0.987)

0.853
(0.791–0.915)

0.781
(0.697–0.865)

X+ALL 0.698
(0.595–0.801)

0.900
(0.834–0.967)

0.853
(0.790–0.916)

0.799
(0.726–0.872)

3.3 Performance Compared between the Ensemble Model and Urologists
The confusion matrices for the ensemble model and three individual urologists were depicted in

Figs. 3a–3d. Urologist 1 achieved a test sensitivity of 0.495 (95% CI, 0.128–0.861), specificity of 0.830
(95% CI, 0.655–1.004) and accuracy of 0.744 (95% CI, 0.661–0.826). Urologist 2 had a test sensitivity
of 0.492 (95% CI, 0.225–0.758), specificity of 0.829 (95% CI, 0.680–0.979) and accuracy of 0.744 (95%
CI, 0.681–0.806). Urologist 3 had a test sensitivity of 0.414 (95% CI, 0.001–0.827), specificity of 0.802
(95% CI, 0.640–0.964) and accuracy of 0.703 (95% CI, 0.614–0.791). Compared with all urologists
averaged, the ensemble deep learning model had higher test sensitivity (0.667 vs. 0.467, P = 0.0036,
specificity (0.893 vs. 0.820, P = 0.2173, and accuracy (0.838 vs. 0.730, P = 0.0272). Moreover, the
results displayed that Xp11.2 tRCC, pRCC, and chRCC were frequently misclassified as ccRCC by
the urologists, whereas they were more correctly predicted by the ensemble deep learning model. As
was depicted in Figs. 3e–3g, compared to the average urologists, the ensemble model demonstrated
statistically significant improvements in sensitivity for pRCC and chRCC (P = 0.0167 and P < 0.05,
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respectively) and even in specificity for ccRCC (P = 0.0056). In addition, there were statistically
significant improvements in accuracy for ccRCC and chRCC (P = 0.0038 and P = 0.0027). The receiver
operating characteristic (ROC) curves of the ensemble model and the performance of the urologists
are depicted in Fig. 4. The AUCs with 95% CI for each curve were computed. The ensemble model
achieved an average AUC of 0.799 (95% CI, 0.726–0.872) and outperformed the urologists in most
cases. Especially most of the points indicating the performance of the urologists fell on or below the
ROC curves of the ensemble model for four subtypes of RCCs.

Figure 3: Diagnostic performance of the ensemble model and individual urologists for kidney cancer.
Confusion matrices for the ensemble model (a) and individual urologists (b–d). The ensemble model
compares with urologists, including the sensitivity (e), specificity (f), and accuracy (g)
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Figure 4: The ROC curves of the ensemble model and the performance of the three urologists are
plotted for four tumor subtypes, including Xp11.2 tRCC (a), ccRCC (b), pRCC (c), and chRCC (d)

4 Discussion

Compared with other common subtypes of renal tumor, Xp11.2 tRCC is highly aggressive and
has a poor clinical prognosis. Therefore, the treatment for Xp11.2 tRCC should vary. However,
the current diagnosis of Xp11.2 tRCC depends on postoperative pathology, and there are still no
effective preoperative diagnosis methods. As the understanding and acceptance of AI grows in health
and medicine, so does our imagination in ways to improve diagnostic accuracy, expedite clinical
processes, and decrease human resource costs by assisting medical professionals in what once were
time-consuming problems [21]. Therefore, we proposed a preoperative diagnosis prediction model
based on an artificial intelligence algorithm. In the present study, we described automated methods
based on decision fusion of a slice-based ResNet-18 CNN or clinical data-based XGBoost model to
differentiate Xp11.2 tRCC from the three main RCC subtypes on multi-phase abdominal computed
tomography. Also, we evaluated the performance of the ensemble model from both the ResNet-18
CNN model and the XGBoost model for the classification of renal masses. Although the ensemble
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model slightly outperformed the urologists based on small samples, our proposed deep learning
methods assisted them in swiftly and noninvasively distinguishing Xp11.2 tRCC. For experienced
urologists, the proposed method may be useful for reducing workload and increasing consistency
of diagnostic results, and it also really does help those who are not fully trained in urology and
shorten their learning curves. To our knowledge, a definitive diagnosis is vital for Xp11.2 tRCC, which
has different surgical plans. The study is the first to investigate the use of artificial neural networks
to differentiate Xp11.2 tRCC from common RCC subtypes on multiphasic CT and thus provides
individualized treatment plans. In addition, our data consisting of CT images and detailed medical
history is extremely intact, which is beneficial to the accuracy and reliability of our model.

Artificial neural networks have been increasingly and successfully applied to image recognition
diagnostics, personalized medicine, and clinical decision-making. In recent years, powerful CNN has
been used to explore complex interactions in clinical and imaging data to provide diagnosis, treatment
planning, and prognosis for RCCs. For example, Uhm et al. proposed a DL model for differentiating
five major histologic subtypes of renal tumors that outperformed radiologists for most subtypes,
achieving an AUC of 0.889 [11], and ML also showed the same performance according to the literature
[22,23]. In our study, the ensemble deep learning model showed good performance for discriminating
Xp11.2 tRCC from common RCC subtypes with a test AUC of 0.845, and it also achieved similar or
better diagnostic performance than urologists. Additionally, the previous study has shown that deep
learning models trained by CT images can accurately distinguish between high and low nuclear grades
for ccRCC with the accuracy of 0.82 [24], but more studies displayed that ML models constructed
from CT imaging texture features can accurately predict the nuclear grades for ccRCC or pRCC
with good performance [25–28]. We speculated that ML has much better performance than DL for
nuclear-grade prediction, but ML based on artificial neural networks showed the greatest accuracy for
differentiating low- and high-grade for ccRCCs [29]. Moreover, DL was also applied to doing treatment
planning. Chen et al. evaluated epithelial-mesenchymal transition molecular classification of ccRCC
tissue to predict prognosis and the effect of immunotherapy using DL convolutional neural networks
[30], and a commercial AI-based contouring model was trained to provide prostate segmentation and
demonstrated good performance in the implementation of an automated prostate treatment planning
process [31]. Another important application of AI is the prediction of prognosis for RCCs. The AI
prediction model based on multiple gene expression signatures has been developed to predict overall
survival in ccRCC [32], and most previous studies also proposed AI model-based histopathological
images or clinical data to evaluate prognosis for RCC patients [33–35]. Although the application of AI
has been wildly studied in ccRCC, it deserves further exploration in other more aggressive renal cancer
subtypes, such as pRCC, renal collecting duct carcinoma, and Xp11.2 tRCC. These are promising
and broad prospects for developing AI models of histopathologic subtypes, nuclear grade, therapy
response, and prognosis, which benefit patients.

XGBoost is a highly effective ML method used widely by data scientists to achieve state-of-the-
art results on many ML challenges. As a novel type of ML algorithm, XGBoost can achieve better
performance and accuracy than ML algorithms, and it comes from an improved gradient lifting
decision tree and has great advantages in preventing over-fitting, parallel processing, cross-validation,
and processing missing values [36]. XGBoost is growingly gaining popularity in health and medicine
and is applied to predict cancer early diagnosis, subtypes, and prognosis. Schieda et al. proposed
the XGBoost ML model trained by texture analysis features from CT images to distinguish ccRCC
from other RCC subtypes or benign tumors with high performance [37]. The results from our study
displayed that the XGBoost model constructed from clinical data also achieved the top performance
with an average AUC of 0.785, which had similar or better diagnostic performance than previous
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studies. Furthermore, the XGBoost model was applied to predict the overall survival of genitourinary
cancer patients in recent studies [38,39]. Wei et al. designed the XGBoost model based on clinical
data to predict the prognosis of renal collecting duct carcinoma, and the results implied that the
models had the highest predictive accuracy and helped clinicians to make clinical decisions for
patients [40]. Consistent with our study, clinical data should be considered a very important basis for
diagnosing diseases when building models. Although some clinical data may be subjective, they still
have reference value. Our results showed that the performance of the ResNet-18 CNN model was not
very outstanding, but the clinical characteristics between Xp11.2 tRCC and the common subtypes of
RCCs were significantly different. Therefore, clinical data were used to train the XGBoost model, and
finally, the ensemble model was established and achieved great performance than urologists, especially
in Xp11.2 tRCC, pRCC, and chRCC.

Despite several strengths, our research has certain limitations. Firstly, the tumor location cannot
be automatically detected by our model, and manually segmenting the renal lesions was time-
consuming and labor-intensive work. Further study is required to combine automatic renal mass
recognition strategies with our ensemble model. Secondly, the ensemble model was validated with
our dataset; therefore, it lacks external validation. The applicability of the model in other datasets
requires further validation. Thirdly, the study was retrospective, and the patients in the entire cohort
were small and not consecutive. Therefore, it may introduce potential population bias, and validation
of our model is needed to validate in other populations, especially in prospective and consecutive large
clinical samples.

5 Conclusions

In this research, we proposed a ResNet-18 CNN combined with an XGBoost model that can
achieve urologist-level performance for distinguishing Xp11.2 tRCC from three main RCC subtypes
using CT images and clinical data. Moreover, the ensemble model successfully performed fine-grained
classification of renal tumors into four pathological subtypes, including rare and common kidney
cancer. These results highlight the potential for the ensemble model to assist urologists in diagnosing
Xp11.2 tRCC patients. Further studies with a larger number of cases will be needed to validate the
applicability of the model in clinical practice and required to validate in further research with large
prospective clinical data. Additionally, we believe the presented DL model could also be applied to
analyze other cancer types and other multimodality imaging, such as magnetic resonance imaging
and contrast-enhanced ultrasound.
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