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ABSTRACT

Contactless verification is possible with iris biometric identification, which helps prevent infections like COVID-19
from spreading. Biometric systems have grown unsteady and dangerous as a result of spoofing assaults employing
contact lenses, replayed the video, and print attacks. The work demonstrates an iris liveness detection approach
by utilizing fragmental coefficients of Haar transformed Iris images as signatures to prevent spoofing attacks for
the very first time in the identification of iris liveness. Seven assorted feature creation ways are studied in the
presented solutions, and these created features are explored for the training of eight distinct machine learning
classifiers and ensembles. The predicted iris liveness identification variants are evaluated using recall, F-measure,
precision, accuracy, APCER, BPCER, and ACER. Three standard datasets were used in the investigation. The main
contribution of our study is achieving a good accuracy of 99.18% with a smaller feature vector. The fragmental
coefficients of Haar transformed iris image of size 8 ∗ 8 utilizing random forest algorithm showed superior
iris liveness detection with reduced featured vector size (64 features). Random forest gave 99.18% accuracy.
Additionally, conduct an extensive experiment on cross datasets for detailed analysis. The results of our experiments
show that the iris biometric template is decreased in size to make the proposed framework suitable for algorithmic
verification in real-time environments and settings.
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1 Introduction

Automatic human access to a system has become relatively simple in the digital era. Confirmation
of the user’s identification is critical for automated system access. Biometric authentication systems
employ biometric features to confirm the identification of a user [1]. Compared to conventional
password-based traditional verification systems, the biometric system has a distinct advantage. It
minimizes the need to memorize a passcode, pin, or keep a card in hand [2]. Biometric authentication
can be thought of as an additional layer of authentication for security-critical cyber applications
and existing traditional authentication procedures. Today, there are indeed different businesses for
biometric systems. The majority of the sectors seem to be rising quickly. According to www.statista.
com (accessed on 24th June 2022), the business for contactless biometric technologies is forecasted to
increase by roughly 30.15 billion US dollars by 2027, while the overall biometric sciences industry is
forecasted to touch 19.08 billion US dollars in 2021 [3]. Iris is widely employed in the verification and
validation of people. In most applications, it uses, because of its complex textures [4] and distinctive
features, such as the UIDAI project for citizen identification in India, the Amsterdam airport, and the
Canada-US border onon-US [5].

In comparison to fingerprint and face authentication, iris authentication delivers an additional
steadfast contactless user verification. The contactless method aids in the prevention of diseases like
COVID-19 [6]. Despite the iris having a distinct textural structure, the imposter might falsify it [7].
Table 1 shows the iris presentation attacks used that are found in the literature [8].

Table 1: Iris presentation attacks [8]

Iris presentation attacks Details

Print attacks The imposter offers a printed image of validated Iris to the
Biometric sensor [9].

Contact lenses attacks The imposter wears contact lenses on which the pattern of genuine
Iris is printed [10].

Video attacks The imposter plays the video of registered identity in front of a
biometric system [11].

Cadaver attacks Imposter uses the eye of a dead person in front of a Biometric
system [12].

Synthetic attacks Embedding the iris region into the real images makes the
synthesized images more realistic [13].

Individuals frequently assault the biometric system to get admittance to another person’s creden-
tials or to conceal their accurate individuality. The iris identification system can be readily fooled by
means of alternative contact lenses (which can be transparent, textured, colored) [10], replaying the
video, or using a print attack [9]. As a result, understanding the risk and susceptibility is critical for
safeguarding the biometric system [14]. The complicated risk of biometric spoofing is minimized by
assessing the liveness of biometric features prior to authentication [15]. The main objective of this
study is to identify iris liveness detection with reduced feature vectors.

The main objective of this study is to identify iris liveness detection with reduced feature vectors.
Following are the novelty and the main contributions of this paper.

www.statista.com
www.statista.com
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• Initiatory utilization of ‘fragmental coefficients of Haar transformed iris image data’ as
signatures in iris liveness detection;

• Determining the smallest size of fragmental coefficients that might be used for feature genera-
tion without impairing iris liveness detection performance;

• To identify which classifier is optimal in iris liveness detection, the performance of machine
learning (ML) classifiers and their ensemble combinations are analyzed;

• Testing the feasibility of the developed iris liveness detection method against a variety of existing
benchmark datasets.

The paper’s organization is presented herewith. Section 2 elaborates on an outline of existing
methodologies. Section 3 portrays the proposed approach to iris liveness detection. The experimen-
tation setup is put forth in Section 4. While Section 5 elaborates on the noted outcomes and the
conclusions taken from the findings. Section 6 is where the discussion takes place. Finally, final
thoughts, limitations, and future research suggestions are presented in Section 7.

2 Prevailing Iris Liveness Detection Techniques

Various strategies have been adopted to determine whether the acquired biometric traits are alive
prior to the authentication. Several of the most well-known techniques are addressed in this section.

For liveness identification, Agarwal et al. [16] explored fingerprints with iris. To create a fingerprint
vector function, the essential Haralick statistical characteristics use GLCM and NGTDM. The iris
texture feature is utilized to improve the device’s performance. To evaluate if this model is more
efficient than the current one, Agarwal used a standard dataset. GLCM has an extensive feature
vector size in the current system. Iris spoofing attacks are detected using rotation-invariant features
of Polar harmonic transformations and Zernike moments [5]. Spoofing assaults on numerous sensors
significantly impact the system’s overall competence. The system detects attacks like iris print and
contact lenses.

Thavalengal et al. created a that uses smartphones to take RGB along with NIR images of the
iris and eye [17]. Identification is made using pupil localization techniques and distance measures.
4096-dimensional features are examined for feature vector generation, which is a considerable number.
Although the author claims a high rate of liveness recognition, he does not work with standard
datasets. Authors Fathy et al. have not examined the segmentation or normalization processes
commonly utilized in Iris liveness discovery systems [13]. The original image is broken down into
wavelets using Wavelet Packets (WPs). Although the author claims it is 100 percent accurate, it is not
working with all genres of assaults and only covers a few spoof attacks.

Iris liveness detection will be made utilizing regional features by author Hu et al. [18]. The
interaction of the properties of nearby regions is used to create regional traits. The author utilized
one hundred forty-four relational measurements based on regional attributes during the experiment.
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Using pupil dynamics, the author Czajka [19] created the liveness identification system. The pupil
reaction is tested in this system using rapid changes in the intensity of light. In the case of the eye
reacting to the variations in light intensity, it is alive; otherwise, presentation attack image. In [19],
non-linear and linear SVM is employed to categorize natural reactions and impulsive oscillations. The
system’s shortcoming is that it measures a variety of functions that take time. There are inaccuracies
in the observation because the data utilized in this research does not include any details from elderly
adults.

Author Fang et al. [20] apply many data augmentation methods to generate variability. The
strategy-level and the score-level combination of fusion methods are used for Iris PAD. Bassi et al. [21]
detected PAD using NIR, visible domain, cross-datasets and cross-spectrum datasets. Authors con-
cluded that Cross-PA and cross-datasets are still challenging, as EER values above 20% in most of
cases.

A technique to detect Accurate Ocular Regions was created by Naqvi et al. [22]. This solution
uses deep neural network variants. The system’s evaluation considers publicly available databases.
Kimura et al. [23] developed a CNN-based liveness detection System that improves model accu-
racy by modifying hyperparameters. “Attack Presentation Classification Error Rate [APCER]” and
“Bonafede Presentation Classification Error Rate [BPCER]” metrics are taken to assess the system’s
performance. The hyperparameters are all studied in this work. This method is solely effective against
prints and contact lens attacks. Author [24] studied multiple transfer learning models to detect the iris
liveness and concluded that EfficeintnetB7 gives highest classification accuracy.

Only a few studies were found to be robust against all sorts of spoofing assaults [3,25]. Most of
the studies used a higher size feature vector. Based on these findings, it can be believed that there is a
necessity for a classifier or ensembles for the detection of every sort of spoofing assault.

3 Proposed Iris Liveness Detection Utilizing Fragmental Energy of Haar Transformed Iris Images

The iris recognition system is prone to a range of security threats. Because of these flaws, the
system is less trustworthy for robust authentication applications. The study employs fragmental
energy of Haar modified iris images to attempt iris liveness detection. These fragmental energies were
employed as features to detect whether the iris was real or fake. Because of these characteristics, the
suggested methodology does not require any pre-processing, such as segmentation, normalization, or
localization, which are commonly employed by methods presented in the literature. These fragmental
energies were employed as features to detect whether the iris was real or fake. Because of these
characteristics, the suggested methodology does not require any pre-processing, such as segmentation,
normalization, or localization, which are commonly employed by methods presented in the literature.
These fragmental energies make the suggested technique faster and more accessible [26]. Resizing
the iris image to 256 ∗ 256 is the sole pre-processing performed in the proposed framework. The iris
liveness detection process depicted in Fig. 1 is a block diagram. There are three phases in the proposed
system. Resizing [pre-processing] of iris images, feature formation, and classification with iris liveness
identification.
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Figure 1: Block diagram of the projected iris liveness detection employing fragmental energy of Haar
transformed iris images

3.1 Pre-Processing
The importance of iris pre-processing in iris liveness detection cannot be overstated. Two iris pre-

processing techniques are used in the suggested algorithm. Because images are obtained using three
standard datasets, each dataset stores images of different sizes. We normalized the original 256 ∗ 256
images in pre-processing to ensure they remained intact throughout the experiment. At the same time,
photographing various datasets with various sensors, some (LG, Content, Vista) acquired images in
RGB format, while others [LG, Dalsa] acquired grayscale images. The images were then converted to
grayscale to keep their originality.

3.2 Feature Formation with the Fragmental Energy of Transformed Iris
A scaled iris image is subjected to the Haar transform. The Haar transform allows content

with high energy to congregate in the transform domain’s lower frequency section [27]. The Haar
coefficients are described as below:

In case s = 0, the function of Haar is presented as Eq. (1).

ho (t) = 1/
√

N (1)

In case s > 0, the function of Haar is presented by Eq. (2).
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The nonzero part of the function’s amplitude and width are determined by p, whereas the nonzero
part of the function’s placement is determined by q.
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In the Haar transform iris image, the left highest corner has the higher energy and crucial
information, as shown in Fig. 2. This results in considerable energy compression in a limited count
of high energy coefficients. As a result, these are the preferred feature vector elements. To construct
feature vectors for proposed iris liveness detection, 256 ∗ 256, 128 ∗ 128, 64 ∗ 64, 32 ∗ 32, 16 ∗ 16, 8 ∗ 8, and
4 ∗ 4. Pixels are used to capture the high-energy portion of Haar transformed iris image coefficients.

Figure 2: Proposed fragmental energy-based feature creation approach for liveness identification from
cosine transformed iris images

These feature vectors support the reduction of the size of feature vectors. As a result, iris-liveness
detection is speedier. The compacted high energy improves iris liveness detection accuracy in these
low-frequency coefficients. These high-energy features are then employed for training the ML models
working to detect iris liveness.

3.3 Iris Liveness Detection Using Meachine Learning Classifiers
The suggested method employs a combination of machine learning (ML) classifiers and ensem-

bles. Naive Bayes (NB), Support Vector Machine (SVM), Random Forest (RF), and J48 are the ML
classifiers [15] used here, along with SVM+NB+RF SVM+RT+RF, SVM+MLP+RF ensembles of
classifiers.

Ensemble method—Using multiple models concurrently on a single set for categorization is always
preferable to just one model. Ensemble learning is the name for this technique [23]. Different classifiers
are used to train a model, and the end output is an ensemble of the classifiers. The suggested method
employs majority voting logic for an ensemble of ML classifiers.

These classifiers are trained using a tenfold cross-validation approach. The most effective method
to train ML classifiers is tenfold cross-validation. Tenfold cross-validation allows all data in the dataset
to be considered as either test or training data, giving a more unbiased classifier. The ensembles of ML
classifiers are created using the majority voting mechanism.

Any deep learning architecture to perform well needs a considerable amount of data. Due to
this, the time complexity increase. This disadvantage was overcome with the help of ML classifiers
with handcrafted feature extraction. In the case of ensembles of classifiers, multiple classifiers help
to classify correctly with majority vote logic. So, with the help of combined ML classifiers, the
performance is superior compared to deep learning architectures/CNN.



CMES, 2023, vol.136, no.1 329

4 Experimentation Setup

The investigative results of the proposed method are discussed in this section. The experiments
were performed using an Intel (R) Core (TM) i3-6006U CPU @ 2.0 GHz, 12 GB RAM, and 6a
464-bit operating system with MATLAB R2015a as a programming platform. Clarkson LiveDet2013
(Clarkson 2013), LiveDet2015 (Clarkson 2015), and IITD Combined Spoofing datasets (IIITD CSD)
were used to explore the suggested approach to iris liveness detection.

4.1 Description of Datasets
Three publicly available benchmark datasets are taken in this investigation. The dataset’s detailed

description is as follows:

4.1.1 Clarkson LivDet2013

Around 1356 iris images are included in the Clarkson 2013 dataset [28]. There are two sets of
data in this dataset: testing and training. The Dalsa sensor is utilized to acquire the iris. The images
from training data (as given by the data creator) are used in this study for training purpose, and testing
images (as given by the data creator) are used for testing purposes purpose. The dataset, sensors utilized
in image acquisition, and the Count of images taken for training and testing a model during this
exploration, with some examples, are all listed in Table 2.

Table 2: Sample of images used for exploration from Clarkson 2013 dataset

Sensor Image category Sample images Count of images taken
for exploration training

Count of images
taken for testing

Dalsa

Off (Bonafide) 270 246

Pattern (Contact) 400 440

4.1.2 Clarkson LivDet2015

LivDet2015—Images used in LivDet2015 dataset are captured using Dalsa and LG sensors [29].
Images are divided into three categories: live, printed, and pattern. In total, 25 subjects are used for live,
images and patterns are printed; 15 subjects are used. The whole dataset is partitioned into training
and testing. The images from training data (as given by the data creator) are used in this study for
training purposes, and testing images (as given by the data creator) are used for testing purposes. The
dataset, sensors utilized in image acquisition, and the count of images taken for training and testing a
model during this exploration, with some examples, are all listed in Table 3.
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Table 3: Sample of images used for an experiment from Clarkson LiveDet2015 dataset

Sensor Image
category

Sample images Count of images
taken for training

Count of images
taken for testing

Live 178 197

Dalsa Printed 275 532

Patterns 349 82

Live 166 NA

LG Printed 270 NA

(Continued)
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Table 3 (continued)

Sensor Image
category

Sample images Count of images
taken for training

Count of images
taken for testing

Patterns 303 NA

4.1.3 IIITD Combined Spoofing Database [IIITD CSD]

Two iris detectors, a Cogent sensor, and a Vista iris sensor, were utilized to create the images used
in this collection [30,31].

Normal, Print-Capture attack, and Print-Scan attack are the three types of images available in the
dataset [32]. A 60:40 ratio is used for training testing split. The sensors utilized in image acquisition and
the Count of images taken during this exploration with some sample images are all listed in Table 4.

Table 4: Sample of images used for an experiment from IIITD combined spoofing dataset

Sensor Image category Sample Images Count of images
taken for training

Count of images
taken for testing

Normal 1215 809

Vista Print-scan 718 478

Print-capture 655 437

Normal 1215 809

Content Print-scan 588 392

(Continued)
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Table 4 (continued)

Sensor Image category Sample Images Count of images
taken for training

Count of images
taken for testing

Print-capture 668 445

4.2 Performance Measures
F-measure, accuracy, recall, precision, ACER (Average Classification Error Rate), APCER

(Attack Presentation Classification Error Rate), and BPCER (Bonafide Presentation Classification
Error Rate) are employed as performance metrics utilized here. Let the true positive, true negative,
false positive, and false negative of the iris liveness detection be TP, TN, FP, and FN, respectively. The
TP designates projected authentic data instances, which are truly what they are. The TN returns data
examples that have been identified as spoofed and are also spoofed examples [2]. FP denotes that the
examples were detected as bonafide but were spoofed. The data examples were detected as presentation
attacks imaged, but bonafide iris examples are shown in FN. The formulas for the performance metric
utilized are given by Eqs. (3) to (9).

Accuracy = (TP + TN)

TP + TN + FP + FN
(3)

Precision = TP
TP + FP

(4)

Recall = TP
TP + TN

(5)

F − Measures = 2 ∗ [Precision ∗ Recall]
[Precision + Recall]

(6)

APCER = FP
TN + FP

(7)

BPCER = FN
TP + FN

(8)

ACER = (APCER + NPCER)

2
(9)

5 Experimentation Setup

The benchmark datasets for all feature size variants are taken to test the proposed iris liveness
detection method. Performance measurements such as accuracy, F-measure, precision, and recall are
considered for testing versions of the proposed iris liveness detection technique.
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5.1 Clarkson LivDet2013 Results
Fig. 3 compares the performance of the investigated fragmental coefficients for a particular ML

classifier in the proposed technique of iris liveness detection, which was evaluated on the Clarkson
2013 dataset. In Fig. 3, it can be seen that fragmental coefficients 8 ∗ 8 outperformed other fragmental
coefficient combinations for all classifiers. The highest noted iris liveness detection accuracy comes
around 98.10%, with 8 ∗ 8 fragmental coefficients using a RF classifier.
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Figure 3: Performance assessment of considered fragmental coefficients for specific ML classifiers in
iris liveness detection for Clarkson 2013 dataset

From Fig. 4, it has been noted that the performance improves as the size of the feature vector
is reduced from 256 ∗ 256 to 8 ∗ 8 and then begins to deteriorate with feature vector size 4 ∗ 4.
This demonstrates that the fragmental coefficients of Haar transformed iris images provide more
outstanding iris liveness recognition capabilities while maintaining a small feature vector size, proving
the importance of the suggested method. The highest average accuracy, 95.94% achieved by 16 ∗ 16
fragmental coefficients.
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Figure 4: The performance assessment for the Clarkson 2013 dataset by averaging the specific
fragmental coefficients in iris liveness detection

Table 5 appraises the performance of specific ML classifiers and ensembles of classifiers for
iris liveness detection tested on the Clarkson 2013 dataset. From Table 5, it can be noted that NB
classifiers give the highest average ACER, whereas the lowest average ACER, 2.63% achieved by
SVM+MLP+RF ensembles of classifiers.
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Table 5: ML classifier’s performance evaluation in the proposed iris liveness detection approach for
Clarkson 2013 dataset using an average of % accuracy, % APCER, % BPCER, and % ACER values

Classifiers/EOC AVG APCER BPCER ACER

Random forest 95.83 4.1 3.38 3.74
SVM 95.63 4.3 3.54 3.92
J48 91.00 8.89 8.12 8.505
NB 88.67 11.04 9.92 10.48
SVM+NB+RF 95.07 4.53 3.63 4.08
SVM+RT+RF 96.47 3.43 3.09 3.26
SVM+RF+MLP 96.93 3.05 2.21 2.63
Note: The highest performance is represented in bold.

5.2 IIITD Combined Spoofing Database Results
Fig. 5 reflects the performance comparison of considered Fragmental coefficients for particular

ML classifiers in the proposed iris liveness detection, tested on IIITD CSD. Here, it is noted that, for
all classifiers, 4 ∗ 4 fragmental coefficients outperformed other fragmental coefficient combinations for
IIITD CSD. The highest accuracy, 97.94% achieved by using an RF classifier. Because of its significant
energy compaction, Haar can produce the best results with 4 ∗ 4 fragmental coefficients.
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Figure 5: Performance assessment of considered fragmental coefficients for specific ML classifiers in
iris liveness detection for IIITD CSD dataset

From Fig. 6, it can be seen that the performance improves as the feature vector size is compacted
from 256 ∗ 256 to 8 ∗ 8 and then begins to deteriorate with feature vector size 4 ∗ 4. This demonstrates
that the fragmental coefficients of Haar transformed iris images provide more excellent iris liveness
recognition capabilities while maintaining a small feature vector size. The highest average accuracy,
96.80% achieved by 8 ∗ 8 fragmental coefficients.
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Figure 6: Performance assessment by averaging the specific fragmental coefficients in iris liveness
detection for IIITD CSD

Table 6 provides the performance assessment of specific ML classifiers and ensembles of classifiers
in the projected iris liveness detection explored on the IIITD CSD dataset. It is noted from the table
that Decision Tree (J48) classifiers give the highest average ACER, whereas the lowest average ACER,
2.29%, is achieved by SVM+NB+RF ensembles of classifiers. The majority voting technique generates
ensembles of classifiers, so they provide the best classification accuracy.

Table 6: Performance evaluation of ML classifiers in the proposed iris liveness detection for IIITD
CSD dataset with an average of % accuracy, % APCER, % BPCER, and % ACER values

Classifiers/EOC AVG APCER BPCER ACER

Random forest 96.75 3.23 2.18 2.71
SVM 95.30 4.69 3.78 4.24
J48 95.49 4.42 3.14 3.78
NB 96.74 3.25 2.19 2.72
SVM+NB+RF 97.37 2.59 1.98 2.29
SVM+RT+RF 96.92 2.89 2.45 2.67
SVM+RF+MLP 96.47 3.51 2.67 3.09
Note: The highest performance is represented in bold.

5.3 Clarkson 2015
Fig. 7 reflects the performance comparison of considered Fragmental coefficients for particular

ML classifiers in proposed iris liveness detection, tested on the Clarkson 2015 dataset. Here, it is noted
that for all classifiers, 16 ∗ 16 fragmental coefficients outperformed other fragmental coefficient combi-
nations for Clarkson 2015 dataset. The highest accuracy, 99.90% achieved by using an SVM+RF+RT
ensemble classifier. Because of its significant energy compaction, Haar can produce the best results
with 8 ∗ 8 fragmental coefficients.

From Fig. 8, it has been noted that the performance improves as the feature vector size is
compacted from 256 ∗ 256 to 8 ∗ 8 and then begins to deteriorate with feature vector size 4 ∗ 4. This
demonstrates that the fragmental coefficients of Haar transformed iris images provide more excellent
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iris liveness recognition capabilities while maintaining a small feature vector size. The highest average
accuracy, 99.58% achieved by 8 ∗ 8 fragmental coefficients.
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Figure 7: Performance assessment of considered fragmental coefficients for specific ML classifiers in
iris liveness detection for Clarkson 2015 dataset
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Figure 8: Performance assessment by averaging the specific fragmental coefficients in iris liveness
detection for Clarkson 2015 dataset

Table 7 gives the performance assessment of specific ML classifiers and ensembles of classifiers
in the projected iris liveness detection explored on the Clarkson 2015 dataset. It is noted from the
table that Decision Tree (J48) classifiers give the highest average ACER, whereas the lowest average
ACER, 3.2%, is achieved by SVM+RF+MLP ensembles of classifiers. The majority voting technique
generates ensembles of classifiers, so they provide the best classification accuracy.

Table 7: Performance evaluation of ML classifiers in the proposed iris liveness detection for Clark-
sonclarkson 2015 dataset with an average of % accuracy, % APCER, % BPCER, and % ACER values

Classifiers/EOC AVG APCER BPCER ACER

Random Forest 93.49 6.06 5.98 6.02

(Continued)
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Table 7 (continued)

Classifiers/EOC AVG APCER BPCER ACER

SVM 96.02 3.07 3.54 3.305
J48 93.32 5.78 6.64 6.21
NB 91.34 8.29 8.61 8.45
SVM+NB+RF 95.21 3.97 4.03 4
SVM+RT+RF 95.28 4.15 4.71 4.43
SVM+RF+MLP 96.70 3.31 3.09 3.2

5.4 Cross Datasets Evaluation Results
In this section, the results of cross datasets performances are explained in detail [33]. The first

scenario, where model train on Clarkson 2015 datasets was evaluated on the Clarkson 2013 and IIITD
test datasets. The evaluation results are presented in Table 8, where bold digits indicate the highest
accuracy. From Table 8, we observed that Clarkson’s 2015 datasets give a lower ACER of nearly zero
percent. However, Clarkson’s 2013 datasets do not perform well and give a high ACER of around
74%.

Table 8: Cross datasets evaluation

Train datasets Clarkson 2015
Test datasets Clarkson 2013 IIITD
Metric Accuracy APCER BPCER ACER Accuracy APCER BPCER ACER

Random forest 89.02 10.94 10.09 10.52 74.89 25.07 24.89 24.98
SVM 83.33 16.63 15.67 16.15 48.08 51.88 50.92 51.40
J48 50.00 49.96 47.43 48.70 52.34 47.62 47.43 47.53
NB 98.78 1.18 1.09 1.14 82.97 16.99 16.78 16.89
SVM+NB+RF 91.86 8.10 8.54 8.32 72.55 27.41 27.09 27.25
SVM+RT+RF 86.58 13.38 12.90 13.14 65.95 34.01 34.15 34.08
SVM+RF+MLP 89.43 10.53 10.05 10.29 53.61 46.35 45.9 46.13
AVG 84.14 15.82 15.11 15.47 64.34 35.62 35.30 35.46
Train datasets Clarkson 2013
Test datasets Clarkson 2015 IIITD
Metric Accuracy APCER BPCER ACER Accuracy APCER BPCER ACER
Random Forest 37.19 62.77 62.09 62.43 27.65 72.31 72.45 72.38
SVM 35.92 64.04 63.29 63.67 35.95 64.01 63.29 63.65
J48 41.00 58.96 57.76 58.36 31.27 68.69 67.9 68.30
NB 30.42 69.54 69.27 69.41 66.38 33.58 33.56 33.57
SVM+NB+RF 26.71 73.25 73.06 73.16 41.91 58.05 58.01 58.03
SVM+RT+RF 33.22 66.74 66.47 66.61 28.51 71.45 72.05 71.75
SVM+RF+MLP 25.39 74.57 74.52 74.55 37.44 62.52 62.56 62.54
AVG 25.69 67.12 66.63 66.88 38.44 61.52 61.40 61.46

(Continued)
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Table 8 (continued)

Train datasets IIITD
Test datasets Clarkson 2013 Clarkson 2015
Metric Accuracy APCER BPCER ACER Accuracy APCER BPCER ACER
Random Forest 94.71 5.25 5.12 5.19 100.00 0.00 0.00 0.00
SVM 100.00 0.02 0.01 0.02 100.00 0.00 0.00 0.00
J48 90.65 9.31 9.45 9.38 99.73 0.27 0.27 0.27
NB 94.30 5.66 5.76 5.71 100.00 0.00 0.00 0.00
SVM+NB+RF 99.19 0.77 0.57 0.67 100.00 0.00 0.00 0.00
SVM+RT+RF 96.74 3.22 3.26 3.24 100.00 0.00 0.00 0.00
SVM+RF+MLP 100.00 0.03 0.04 0.04 100.00 0.00 0.00 0.00
AVG 96.51 3.49 3.45 3.47 99.96 0.04 0.04 0.04

Note: The highest performance is represented in bold.

In this section, the results of cross datasets performances are explained. The first scenario, where
model train on Clarkson 2015 datasets was evaluated on the Clarkson 2013 and IIITD test datasets.
The evaluation results are presented in Table 8, where bold digits indicate the highest accuracy. From
Table 8, we observed that Clarkson 2015 gives a lower ACER of nearly zero percentage. However,
Clarkson 2013 datasets do not perform well and give a high ACER of around 74%.

Fig. 9 shows performance evaluation on cross datasets. It can be seen that our model outperforms
in IIITD and Clarkson 2015 datasets, however, shows low performances for Clarkson 2013 dataset.
One possible reason for this is Clarkson 2013 dataset has a smaller number of images compared to the
other two datasets.

Figure 9: Performance assessment on cross datasets evaluation
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Table 9 represents the performance comparison of fragmental coefficients across all datasets used
for implementation with an average of percent accuracy, percent precision, percent recall, and percent
F-ratio values. The highest performance is represented in bold and underlined. From Table 8, it can
be seen that reducing the number of higher energy coefficients from 128 ∗ 128 to 8 ∗ 8 improves
performance since the common part is reduced and discriminative is emphasized more.

Table 9: Performance comparison of fragmental coefficients with an average of percent accuracy,
percent precision, percent recall, and percent F-ratio values

EOC/ Fragmental coefficients

Classifiers 256 ∗ 256 128 ∗ 128 64 ∗ 64 32 ∗ 32 16 ∗ 16 8 ∗ 8 4 ∗ 4 AVG

Random forest 97.08 84.34 86.88 93.14 97.667 98.1 96.79 93.43
SVM 97.23 94.02 94.75 95.77 97.667 96.79 92.41 95.52
J48 93 88.09 88.48 89.5 90.52 91.1 93.29 90.57
NB 76.09 88.34 88.92 91.1 92.27 90.81 82.07 87.09

Clarkson 2013 SVM+NB+RF 97.08 89.45 90.23 95.18 97.66 97.23 91.25 94.01
SVM+RT+RF 97.37 88.9 90.52 95.33 97.959 97.81 96.35 94.89
SVM+RF+MLP 95.45 95.06 95.33 96.06 97.81 97.95 96.5 96.31
AVG 93.33 89.74 90.73 93.73 95.94 95.68 92.67 —–

Random forest 97.16 94.2 94.51 95.31 96.57 97.71 97.94 96.20
SVM 96.89 95.67 96.68 96.11 96.45 94.62 93.6 95.72
J48 94.56 93.98 94.4 95.08 95.65 95.08 96.57 95.05
NB 95.89 95.09 95.65 95.31 97.02 98.17 96.91 96.29

IIITD_CSD SVM+NB+RF 96.78 96.01 96.78 97.6 97.71 97.82 96.68 97.05
SVM+RT+RF 96.9 95.48 96.02 96.45 96.68 97.37 97.48 96.63
SVM+RF+MLP 96.65 94.35 95.32 96.11 96.34 96.8 97.02 96.08
AVG 96.40 94.97 95.62 96.00 96.63 96.80 96.60 —–

Random forest 96.01 83.27 85.81 92.07 99.67 99.7 97.57 93.44
SVM 96.16 92.95 93.68 94.7 97.57 98.64 98.44 96.02
J48 91.93 87.02 87.41 88.43 99.50 99.7 98.73 93.32
NB 75.02 87.27 87.85 90.03 99.78 99.7 99.61 91.34

Clarkson 2015 SVM+NB+RF 96.01 88.38 89.16 94.11 99.89 99.8 99.02 95.20
SVM+RT+RF 96.3 87.83 89.45 94.26 99.9 99.8 99.41 95.28
SVM+RF+MLP 94.38 93.99 94.26 94.99 99.78 99.7 99.61 96.67
AVG 92.26 88.67 89.66 92.66 99.53 99.58 98.91 —–

Note: The highest performance is represented in bold.

6 Discussion

The proposed experiment was performed using the Haar transform. The fundamental goal of
experimenting with the transform domain is to learn more about how the image is split into low and
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high-energy parts, reducing the feature vector size and speeding up retrieval. The Haar statistic is used
to transform data [27].

By applying Haar transform on Iris images, high energy coefficients of transformed iris images
sized 256 ∗ 256, 128 ∗ 128, 64 ∗ 64, 32 ∗ 32, 16 ∗ 16, 8 ∗ 8, and 4 ∗ 4 do generate feature vectors for
the projected iris-liveness detection. The procedures outlined in Section 3.2 are used to create the
feature vector. Seven distinct ML and ensembles of classifiers are trained using these features. These
classifiers are trained using the tenfold cross-validation method to detect presentation attacks. Three
benchmark datasets are taken for testing: Clarkson 2013, Clarkson 2015, and the IIITD combined
spoofing database. These three datasets explain in Section 4.1. Accuracy, Precision, Recall, and F-ratio
and ISO standard metrics APCER, BPCER, and ACER are utilized to compare the performance of
all the variants of the suggested approach. Section 4.2 describes several performance measures.

As stated in Sections 5.1 and 5.2, feature extraction using Haar has shown outstanding average
classification accuracy. For the Clarkson 2013 dataset, the highest noted iris liveness detection
accuracy comes around 98.10%, with 8 ∗ 8 fragmental coefficients obtained using the classifier RF.
The highest average accuracy, 95.94% was achieved by 16 ∗ 16 fragmental coefficients, whereas the
maximum average accuracy was 96.31%, and the average ACER was around 2.63%, achieved by
SVM+MLP+RF ensembles of classifiers. For Clarkson 2015, the highest accuracy achieved was
99.90% by using an SVM+RF+RT ensemble classifier. For IIITD CSD, the uppermost accuracy of
97.94% was obtained by using the RF classifier. The uppermost average accuracy was 96.80% achieved
by 8 ∗ 8 fragmental coefficients, whereas the utmost average accuracy was 97.05%, and average ACER
was around 2.29%, achieved by SVM+NB+RF ensembles of classifiers. The findings show that our
suggested approach distinguishes between the bonafide and presentation attack images artifacts using
the Haar transform approach. Table 10 shows a comparison of the suggested strategy to recent studies
in this area.

Table 10: The comparison of the prevailed methods with the proposed approach

Author/year Feature
generation

Classifiers Performance
metrics

Outcome [%] Dataset

Arora et al.
(2021) [34]

CNN VGGNet Accuracy (ACC)
FAR

Acc = 97.98 IIITD

LeNet Acc = 89.38

Khade et al.
(2021) [8]

TSBTC,
GLCM

RF Accuracy,
NPCER,
precision, recall,
APCER, ACER,
F-Measure

78.88
95.57

IITD
Clarkson 2015

Comparison
with same
datasets

Omran et al.
(2020) [35]

IRISNet,
CNN

[KNN, SVM,
NB, DT

Accuracy (ACC),
Precision,
F-Measure, and
Recall

Acc = 96.43 IIITD

(Continued)
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Table 10 (continued)

Author/year Feature
generation

Classifiers Performance
metrics

Outcome [%] Dataset

Fang et al.
(2022) [20]

ResNet50,
VGG16
MobileNetv3

NA APCER, BPCER
and ACER

ACER = 10.55,
ACER = 18.53
ACER = 11.41

IIITD

Bassi et al.
(2021) [21]

DenseNet,
PBS
A-PBS

NA APCER, BPCER
and HTER, EER

APCER = 10.7
APCER = 76.51
APCER = 7.38

Clarkson 2013/2015
IIITD

Das
et al.
(2021) [36]

Notre Dame
PAD MSU
PAD1
MSU PAD2

SVM, MLP,
RF, and
CNN.

APCER, ACER,
BPCER

APCER = 2.61
BPCER = 2.18
ACER = 28.96

Clarkson University
[CU], Warsaw
University of
Technology [WUT],
University of Notre
Dame [ND]

Wang et al.
(2019) [37]

CNN-Joint
Bayesian,
CNN-SDH

CNN, SDH Accuracy (ACC) Acc = 90.71 PolyU bi-spectra

Comparison
with different
datasets

Cheng et al.
(2019) [38]

CNN Hadamard +
CNN

Accuracy Acc = 97.41 CASIA-Iris-L

Chatterjee
et al.
(2019) [39]

DWT,
ResNet

ResNet Accuracy Acc = 92.57 ATVS

Proposed
Approach

Haar
Transform

RF Accuracy,
APCER,
Precision,
BPCER, Recall,
F-Measure, and
ACER

Acc = 98.10
ACER = 2.05

Clarkson 2013

RF Acc = 97.94
ACER = 2.29

IIITD Combined
Spoofing

Compared to similar current techniques based on fragmented energy, the Haar transformation
better discerns between real and artificial artifacts. The results reveal that the proposed method reduces
classification error and gets better accuracy when compared to earlier ways of detecting presentation
attacks using an iris liveness detection. Table 10 summarizes this information. The proposed strategy
outperforms some recent existing studies. As many recent studies used the different train and test
datasets, so we partition Table 10 into two parts, comparing with same datasets and different datasets.
Even though some studies outperform, our approach achieved this performance with reduced feature
vector size (only with 64 features).

While implementing this study, we faced a few challenges-one of them was getting access
to datasets with permissions for use in experimentation. The second challenge we faced was the
explorations of the proposed method with the number of test runs was time-consuming task.
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The limitations of the study are: (i) it was applied only two pre-processing techniques like resizing
and converting an image into grayscale; (ii) this experiment is limited to image size 256 by 256 and
only grayscale images were used during this study.

7 Conclusion

The paper proposed a new method for determining iris liveness. Until now, several approaches
have relied on pre-processing, such as iris segmentation, localization, and normalization; however,
this method of iris liveness detection is computationally intensive. The suggested method employs
Haar transforms on iris images to address this issue, obtaining fragmental coefficients as feature
vectors. The Haar transformed iris image fragmental coefficients are used to train various ML and
ensemble algorithms. Seven criteria are considered to compare the performance of variants of the
suggested approach. Various metrics such as accuracy, precision, recall, f-measure, APCER, BPCER,
and ACER are used to check the performance of the models. Presentation attack images are detected
with 98.10% accuracy in the Clarkson 2013 dataset. The best accuracy for IIITD-CSD was 97.94%.
The experimental results prove the effectiveness of the projected method for detecting iris spoofing
attacks. The study’s main contribution is achieving a good accuracy of 98.10% with lesser feature
vector size by using the fragmental coefficients of the Haar transformed iris image of size 8 ∗ 8
utilizing a RF algorithm with reduced featured vector size. The reduction in considered feature vector
size of iris images with improved accuracy of liveness detection is achieved by exploiting the energy
compaction property of Haar transform in the proposed method. The method is tested on three
available benchmark datasets for validation of results in a generic form. The cross-dataset validations
are performed to prove the worth of the proposed method. The main limitations of this study are as
follows: only two pre-processing techniques were applied, such as resizing and converting an image into
grayscale. Moreover, this experiment is limited to image size 256 by 256 and only grayscale images are
used. In future work, this framework may be extended with the best performance features. Currently,
the presented work is limited to the exploration of explored Haar transform features only. However, the
hybridization of transform using Haar, DCT and Kekare transforms would be an exciting exploration
in the future. Moreover, the proposed framework may be applied for the liveness detection of other
biometric traits, like face, fingerprints, etc. The best performance features a level fusion of fragmental
coefficients of Haar may be added to this framework in future work.
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